INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

Muhammad Ashraf and Barig Bllent Kirlar, Vol.1, No.2

On the Alternate Models of Elliptic Curves

Muhammad Ashraf! and Baris Bulent Kirlar!?

Hnstitute of Applied Mathematics, Middle East Technical University, 06531, Ankara, Turkey
2Department of Mathematics, Stleyman Demirel University, 32260, Isparta, Turkey
e-mails: ashraf6061@gmail.com, bariskirlar@sdu.edu.tr

Abstract—In the recent years, alternate models of elliptic curves have been studied. Such well-known models are Edwards
curves, Jacobi intersections and Jacobi quartics, Hessian curves, Huff curves, and their variants to the more common Weierstrass
curve. These models sometimes allow for more efficient computation on elliptic curves or provide other features of interest to
cryptographers, such as resistance to side-channel attacks. In this paper, we first give the alternate models of elliptic curves
emphasizing point addition and point doubling formulae with computational costs, the suggested improvements in each model and
then countermeasures to side channel attacks if any. We also describe the geometric interpretation of the addition law in each

model.
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1. Introduction

From the advent of elliptic curve cryptosystems,
independently by Miller (1985) and Koblitz (1987),
arithmetic of elliptic curves have been so much
interest from cryptographic researchers. Along this
period, they proposed many methods to speed up
the arithmetic of elliptic curves. These methods can
be divided into four different categories:

o Use optimum underlying finite field extensions,

« Use optimum coordinates for representation of
group elements,

o Use efficient arithmetic methods,

« Use alternate models of elliptic curves.

In this work, we are dealing with the alternate
models of elliptic curves to the more common
Weierstrass curve: Edwards curves, Jacobi inter-
sections and Jacobi quartics, Hessian curves, Huff
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curves, and their variants. These models allow for
more efficient computation on elliptic curves such
that the group structure of these curves have already
been studied in [4], or provide other features of
interest to cryptographers, such as resistance to side-
channel attacks. These attacks reveal secret informa-
tion of an elliptic curve cryptosystem based on the
point multiplication operation, in which a point is
multiplied by a scalar. The basic method for imple-
menting point multiplication is the double-and-add
technique, which uses a binary representation of the
scalar and performs a sequence of point additions
and point doublings depending on the bits of the
scalar. In double-and-add point multiplication, a
point doubling is done for every bit of the key &, but
a point addition is done only when a bit of the key is
1. If, in a side-channel analysis, a point addition is
distinguishable from a point doubling, then the bits
of the secret key can be determined. This is done by
analyzing side channel information such as power
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consumption [27], running time [26], differential
fault analysis [10], electromagnetic emissions [1]
and so on. As a countermeasure of this attack,
one can use the unified addition formula which
means point addition formula that can be used for
doublings. The unified formulae for point addition
and point doubling use the same sequence of field
operations and hence are indistinguishable.

Edwards introduced the normal form of elliptic
curves together with an explicit addition law in
[15]. He also showed that every elliptic curve over
a non-binary field is birationally equivalent to a
curve in Edwards form over an extension of the
field, and in many cases over the original field.
In [3], Bernstein and Lange introduced the notion
of Edwards curves which is covering more curves
than original Edwards curves when those defined on
finite fields. Twisted Edwards curve was introduced
by Bernstein et al. in [8] as a generalization of
Edwards curves. Hisil et al. introduced the extended
twisted Edwards coordinates, and obtained efficient
point addition algorithm in [22] that is the fastest
one in the literature. These algorithms provide a
natural protection from side channel attacks based
on Simple Power Analysis (SPA). Bernstein et al.
[7] introduced Edwards curves over finite fields of
characteristic 2, and obtained addition and doubling
formulae.

Jacobi form of the elliptic curves are introduced
as the intersection of two quadrics in projective
space of dimension 3 by Liardet and Smart in
[28]. They showed that these curves could provide
a defence against Simple and Differential Power
Analysis (SPA/DPA) style attacks. The twisted Ja-
cobi intersections which contains Jacobi intersec-
tions as a special case is introduced by Feng et al.
in [19]. Billet and Joye [9] reinvestigated the Jacobi
Form suggested by Liardet and Smart. They showed
that the addition law is directly derived from the

underlying quartics.

Hessian curves are investigated as a step towards
resistance against side-channel attacks by Joye and
Quisquater in [24]. The efficient arithmetic on Hes-
sian elliptic curves are studied in [29] and [20].
They proposed efficient point multiplication algo-
rithms using the Hessian form over finite fields of
characteristic 3. In 2010, the family of generalized
Hessian curves are proposed by Farashahi and Joye
[16]. They showed that these curves cover more
isomorphism classes of elliptic curves and that have
efficient unified addition formulas. In [6], Bernstein,
Kohel and Lange introduced the twisted Hessian
form that is similar to the generalized Hessian
curves up to the order of the coordinates.

Huff model of elliptic curve is introduced by Huff
[21] over rational fields @ in 1948. Joye et al. [25]
improved these curves to the fields of characteristic
different than 2. They obtained point addition and
doubling formulae on Huff curves. The generalized
form of Huff curve is introduced by Feng and Wu
in [18]. Ciss and Sow [13] investigated the new
generalized Huff curve that the addition law in
projective coordinates is as fast as in the previous
particular cases. In 2011, Devigne and Joye [14]
obtained the unified point addition formula for Huff
curves over fields of characteristic 2.

This paper is organized as follows. In section
II, we give Weierstrass form of elliptic curves and
its group law. In section III, Edwards curves and
their variants are discussed. In section IV, Jacobi
intersection and Jacobi quartic with related modifi-
cations and improvements are discussed. In section
V, Hessian curves are elaborated. In section VI,
Huff curves and its generalizations are described.
In section VII, we compare the alternate models of
elliptic curves and conclude the paper.
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2. Weierstrass Curves

An elliptic curve in affine coordinates of simpli-
fied Weierstrass form over the finite field ' with
char(F) # 2,3 is defined by

E : y*=2>+ax+0, (1)

where a,b € F. If we apply the process of ho-
mogenization with x = X/Z and y = Y/Z for
Z # 0 to (1), we obtain the homogeneous equation
in projective coordinates given by

E : Y’Z=X34+aXZ?+ 023, (2)

where a,b € T (the algebraic closure of IF). The
curve I has exactly one point with coordinate Z
equal to zero, namely (0 : 1 : 0). This point is so
called point at infinity and denoted by oco. The curve
E has an additive group structure together with the
identity element oo.

P = (x1,51)

Fig. 1. Addition and doubling over R

The geometric interpretation of the addition law
is given by the following way using divisor theory
from algebraic geometry [12]: Let P,Q € F.
Suppose the line between P and () (tangent line if
P = @) has an equation L(x,y) = 0. By Bezout’s
theorem, this line L intersects £ at a third point S =
(zs,ys) in the projective space. Then the divisor of
Lis div(L) = (P)+(Q)+ (S) —3(c0). The vertical

line V(z) = (z — xzg) passes through the points S
and R = P+ Q. Then div(V) = (S) + (R) — 2(0).
Therefore, the equation R = P + () corresponds to
div(L/V) = (P) +(Q) — (R) — ().

This observation allows us to write down the ex-
plicit formula for point addition and point doubling
of the curve E as follows: Let P = (x1,y;) and
@ = (w2,y2) be the points on F with P,Q # oo
and ) # —P. Then

o If P#(Q, then P+ Q = R = (z3,y3), where

_ Y2 — Y1 o
T3 = — 1 — T2
To — X1
2= B _
Ys = ($2 — $1)(x1 T3) — Y1

o If P=(), then 2P = R = (x3,y3), where

312 —a
T3 = ( L )2 - 21‘1
21
32 —a
Ys = ( 213/1 )(901 - 553) — U1

Formulas that do not involve field inversions for
adding and doubling points in projective coordinates
can be derived by first converting the points to affine
coordinates, then using the formulae above to add
the affine points, and finally clearing denominators.
The computational cost of point addition and point
doubling in projective coordinates are 12M+-2S and
5M+-68, respectively. Until today, much more point
representations were used in simplified Weierstrass
form of elliptic curves for fast computations, such as
Jacobian, Chudnovsky and mixed coordinates. The
mixed addition formulae can also be obtained by
replacing Zs = 1 in this form that reduces the total
costs to OM + 2S. In 2002, Brier and Joye [11]
obtained the unified point addition formulae for sim-
plified Weierstrass curves in projective coordinates
such that the computational cost is 11M + 5S + 1D.

For the rest of the paper, we enumerate the cost
of field operations in terms of multiplication M,
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squaring S, multiplication by a constant D, and
addition/subtraction a in F.

3. Normal Form of Elliptic Curves

In this section, we will discuss salient features of
Edwards curves and their variants in respect of point
addition and point doubling.

3.1. Edwards Curves

Edwards [15] introduced a new model of elliptic
curves over I with char(IF) # 2 which is defined by

E.: 2 +y* = A1 + 2%?), 3)

where ¢ € . He obtained an efficient explicit for-
mula for point addition of these curves as follows:
Let P = (x1,4;) and @ = (x2,y2) be two points on
E.. Then P+ @ = R = (x3,y3), where

_ T1y2 + Tl
- c(1 + z17291Y2)
Y1Y2 — 122
c(1 — m1223192)

Ys =

Edwards showed that all elliptic curves over non-
binary finite field [ can be transformed to Edwards
curves if [F is algebraically closed. However, over
the finite field I, only a small number of elliptic
curves can be expressed in this form.

Bernstein and Lange [3] improved the notion of
Edwards form defined by

Ey: 2 +y° =1+ dz?y?, “)

where d € F \ {0,1}. They showed that more than
1/4 of all isomorphism classes of elliptic curves
over the finite field F could be transformed to
Edwards curve over the same field. The curve Ej,
has an additive group structure together with the
identity (neutral) element O = (0,1). The point

Fig. 4. Addition and doubling over R for 0 < d < 1

O = (0,—1) has order 2. The points (1,0) and
(—1,0) have order 4.

The geometric interpretation of the addition law
for Edwards curves is given by the following way
[2]: We first observe that ; = (1 : 0 : 0) and
2y = (0:1:0) are the points at infinity that have
multiplicity 2. There is a conic C' determined by
passing through the 5 points P, Q, O, ; and Q, has
only one more intersection point — R with the curve
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E. Let hy be the function corresponding to C' with
div(hy) = (P)+(Q)+(O)+(—R)—2(21) —2(Qy).
In order to replace O by © and —R by R, one can
use another function h, that is the product hy = ¢4/,
of two lines. A horizontal line ¢; passing through
the point R is with div(¢;) = (R) 4+ (—R) — 2(22),
and a vertical line /5 passing through the point O is
with div(fy) = (O) + (O") — 2(€4). Therefore, the
equation R = P+ () corresponds to div(h, /¢ ls) =
(P)+(Q) — (R) = (0).

Using this observation, Bernstein and Lange write
down the explicit formula for point addition and
point doubling of the curve £; as follows: Let P =
(x1,11) and @ = (x2, yo) be two points on E,. Then
P+ Q = R = (z3,y3), Where

vy — T1Y2 + T2l

1+ dziz2y1y2

Y2 — 112
BT dx122y1Y2
These formulae are strongly unified. If d is a non-
square in [F, the addition law is complete, i.e, it
works for all pairs of inputs. The inverse of the
point (x1,y;) on Eg is (—z1,y1).

In order to avoid the inversion in addition for-
mulae, the notion of Edwards curves in projective
coordinates [3] is defined by

(X2 +YHZ? = (Z* + dX?Y?). 5)
The point addition for (5) is obtained by the fol-
lowing formulae: Let P = (X; : Y} : Z;) and
Q = (X3 : Yy : Zy) be two points on (5), then
P+Q=R=(X3:Y;:Z3), where
X3 = Z125(2%72 — dX1 XoY1Ys)[(X1 + Y7)( X2 + Y3)
—X1X> — V1Yo
Yy = 21 Z5(Z272 + dX1 X2 Y1 Ys) (Y1 Vs — X1 Xo)
T3 = (2272 — X\ Xo V1 Ya) (2222 + dX1 Xa V1 Y5)
These formulae are also unified. The point (0 :

1 : 1) is the identity element of addition law. The

inverse of (X; : Y1 : Zy) is (—=X; : Y7 @ Z)).

The computational cost for addition, doubling, and
unified addition is 10M+1S+1D+7a, 3M+4S+-6a,
and 10M + 1S + 1D + 7a, respectively. The mixed
addition formulae can also be obtained by replacing
Z5 = 1 in the above formulae that reduces the
total costs to 9M + 1S + 1D + 7a. The presence
of point of order 4 in the group of elliptic curves in
equation (5), reduces the number of elliptic curves
in Edwards model over [F. To overcome this problem
Bernstein et al. [8] introduced further variation of
Edwards curves which is so called Twisted Edwards
curves.

3.2. Twisted Edwards Curves

Let IF be a field with char(F)# 2. Then twisted
Edwards curve is defined by

E,q: ar® +y* =1+ day?, (6)

where a, d € F\ {0}. The twisted Edwards curve
Eq 4 1s a quadratic twist of the Edwards curve Ey 4/,.
If a is square in [, then E, ;4 is isomorphic to Ey 4/,
over F. The set of these curves is invariant under
quadratic twists, in other words, every quadratic
twist of a twisted Edwards curve is isomorphic
to a twisted Edwards curve. The point addition
for (6) is obtained by the following formulae: Let
P = (z1,y1) and Q = (w2,y2) be two points on
Eqq4. Then P+ Q = R = (z3,y3), Where
Y2+ Tl
1+ dayzayye

_ Yp —anzy
B dx122Y1Y2
These formulae are unified. The point (0,1) is the
identity element of addition law and the inverse of
the point (x1,y1) on E,4(F) is (—zq1,y1). If @ is
square in F and d is non-square in [, then the

X3

addition law for Twisted Edwards curve is complete.

In order to avoid inversion in addition formulae
given above, twisted Edwards curves in projective
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coordinates is defined by
(aX?+YHZ? = 7 + dX*Y2 (7)

For Z; # 0, the homogeneous point (X; : Y] : Z4)
represents the affine point (X;/2,,Y1/Z1) on E, 4.
Bernstein et al. [8] obtained the following explicit
formulae for addition and doubling on twisted Ed-
wards curves in projective coordinates as follows:
LetP:<X1:}/1:Z1) andQ:(ngYg:Zg)be
two points on (7), then P+Q = R = (X3 : Y3 : Z3),
where

X3 = (X1Ys — Y1X2)(X1Y1222 + XZYQZ%)

Vs = (WY + aX 1 Xo) (X Y125 — XoYo Z7)

Zs = Z1Z5(X1Ys — Y1 Xo)(Y1Ys + a X1 Xs)
and 2P = R = (X3 : Y3 : Z3), where
X3 = (aXf + Y7 = 2Z7)[(X1 + 11)?

X7 7]
Y3 = (aX? 4+ Y7?)(aX? - YY)
Zy = (aX{ +Y7?)(aX{ + Y7 — 227)
The computational cost of point addition and point
doubling are 11M + 2D + 9a and 3M + 4S + 1D +

7a, respectively. It turns out that a mixed addition
requires 9M + 2D + 9a by setting Z, = 1.

The unified addition formulae for twisted Edwards
curves in projective coordinates are also obtained as
follows: Let P = (X7 : Y1 : Zy) and Q = (X3 : Yo :
Z5) be two points on (7), then P+ Q = R = (X3 :
Y; : Z3), where

X3 = Z179(Z272 — dX1 Xo Y1 Y2)[( X1 + Y1)

(X2 +Ys) — X1Xo — Y1Y75]
Y; = 2122(212222 +dX1 XoY1Ys) (1Y, — a X X5)
Zs = (2373 + dX1 XoY1Y2) (27 73 — dX1 X2Y1Ya)

The computational cost of unified addition is 10M—+
1S + 2D + T7a.

Another way to avoid inversions is to define
inverted coordinates as follows:

(X2 +aY?)Z? = X?Y? +dz*. ®)

where XY Z # 0. The homogeneous point (X :
Y: : Zy) with X Y1Z; # 0 represents the affine
point (Z,/Xy,%4,/Y1) on E,4. In [5], Bernstein
and Lange introduced these inverted coordinates for
the case ¢ = 1, and observed that the coordinates
save time in addition. Bernstein et al. generalized
to arbitrary a in [8]. They also obtained the fol-
lowing explicit formulae for unified addition and
doubling on twisted Edwards curves in inverted
coordinates as follows: Let P = (X, : Y] : Z)
and Q = (X5 : Ys : Zy) be two points on (8), then
P+Q=R=(X3:Y;:Z3), where

Xy = 21 Zo(X1 Xo + aV1Ya) (X1 Y1 Z2 — Z2X,Y5)
Y3 = Z1Z5(X1Ys — V1 Xo)(X1Y123 + Z2X5Y5)
Zs = (X1Y172 — Z2X5Yo) (X1 V1723 — Z2 X, Y5)
and 2P = R = (X3 : Y3 : Z3), where

X3 = (X7 +aY?)(XT — aY?)

Vs =[(X1+Y1)? = X7 = YP|(XT + Yy — 2dZ})

Zs = (X{ —aY?)[(X1 4+ Y1)? — X7 — V7]

The unified addition formulae for twisted Edwards

curves in inverted coordinates are also obtained as
follows: Let P = (X7 : Y1 : Zy) and Q = (X5 : Yo :
Z,) be two points on (7), then P+ Q = R = (X3 :
Y; : Z3), where

X3 = (X1 XoV1 Yo + dZ327Z3) (X1 Xy — aY1Ys)

Ya = (X1 XoY1Ys — dZ323)[( X1 + Y1) (X2 + Y2)
—X1 X, — 11Y5]

Zs = 71 Z5(X1Xo — aY1Ya2)[(X1 + Y1) (X3 + Y2)

—X1X2 - Y1Y3]

The computational cost of point addition, point
doubling and unified addition are 11M + 2D + 9a,
3M + 4S + 2D + 6a, and OM + 1S + 2D + Ta,
respectively. The mixed addition formulae can also
be obtained by replacing Z; = 1, which gives an
obvious saving of 2M since 7 - Z, = Z;, leading
to a total cost of 9M + 2D + 9a.

Hisil et al. [22] introduced the extended Twisted
Edwards coordinates by defining an auxiliary coor-
dinate ¢t = xy to represent a point (z,y) on E, 4 in
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extended affine coordinates (x, y,t). One can pass to
the projective representation (X : Y : T': Z) which
satisfies (7) and corresponds to the extended affine
point (X/Z,Y/Z,T/Z) with Z # 0. The auxiliary
coordinate 7" has the property 7" = XY/Z. Let
P=(Xy:Y1:Th:Z))and Q = (Xo: Yy : Ty : Z)
be two points on (7) with Z; # 0 and Z, # 0, then
P+Q=R=(X3:Y;3:T;3:Z;), where

X3 = (XaYo + Y1X5)(Z1Zy — dT1T)
Ys = (V1Ys — a Xy Xo) (212 + dTV T5)
T3 = (Y1Ys —aX 1 X5)(XqY2 + Y1 Xo)
Zy = (Z1Zy — dIVT) (212 + AT T)

These formulae are unified that derived from the
addition formulae on E, ;. It is deduced from [3]
and [8] that these formulae are also complete when
d is not a square in [ and a is a square in F. The
identity element is represented by (0 : 1 : 0 : 1).
The negative of (X, : Yy : T : Z;) on (7)is (— X :
Yy : =Ty : Z;). The computational cost of point
addition, point doubling and unified addition are
IM-+1D+T7a, AM+4S+1D+7a, and 9IM+2D+T7a,
respectively. The mixed addition formulae can also
be obtained by setting Z, = 1 in the above formulae,
reduces the total costs to SM + 1D+ 7a. This means
that one can add (X; : Y7 : T} : Z;) and an extended
affine point (9, Y2, T2y2), Which is equally written
as (g 1 ya : ways & 1).

3.3. Binary Edwards Curves

Let I be a field with char(IF)= 2. Then Binary
Edwards curve is defined by

Epay i, + di(z+y)+do(z® +y?) = zy+ay(e+y) + 2%y,

where d; # 0 and dy # d? + d;. The point addition
is obtained by the following formulae: Let P =
(1,71) and @ = (z2,y2) be two points on Ep 4, 4,

Then P + () = R = (x3,y3), where
_ dy (21 4 22) + da(z1 + y1) (22 + 12)

s di + (x1 + 23) (22 + y2)
(21 4 27) (@2 (y1 + y2 + 1) + 1130)
dy + (z1 + 23) (29 + y2)
Js = di(y1 + y2) + do(x1 + y1) (22 + ¥2)

di + (y1 + 1) (22 + )
(y1 + y1) (@1 + @2 + 1) + 3179)
di + (y1 + 1) (@2 + 12)
The addition law on Ep g4, 4, is strongly unified.
The point (0,0) is the identity element of addition

+

law and the inverse of the point (z1,%;1) on Eg 4, 4,
is (y1,x1). The computational cost of addition and
doubling in projective coordinates are 21M+1S+4D
and 2M+6S+-3D, respectively. When 2+t +dy # 0
for all ¢ € F, the addition law on the binary Edwards
curve Ep 4, 4,(F) is complete. The mixed addition
formulae lead to a total cost of 13M + 3S + 3D
that can be obtained by (X3 : Y3 : Z3) = (X; :
Yi © Zy) + (w9,y2), where (X; : Y] : Z;) and
(x9,y2) on Eg 4, 4,(F). Bernstein et al. introduced
different methods for computing point addition and
point doubling with that of computational costs in

[7].
4. Jacobi Curves

Jacobi curves gained special attention due to
resistance against SPA attacks. In this section, the
various forms of Jacobi curves are discussed in
respect of point addition and point doubling.

4.1. Jacobi Intersections

Liardet and Smart [28] introduced the Jacobi
Intersections over the finite field F with char(F) # 2
which are defined by

E Jb -

)

b’ 4+t =1
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where b € F and b(1—b) # 0. They obtained an ex-
plicit unified formulae for point addition on E; as
follows: Let P = (z1,y1,t1) and @ = (x2, Yo, t2) be
two points on E;;. Then P+ Q = R = (z3,ys,t3),
where

- 95192;52 + 552;/1751
Y3 + x3tq

vs = y1y22— 9511;126’2152
Y5 + x5ty

£y = 12 ; 53312133292
Y3 + 33

and 2P = R = (x3,y3), Where

S 22191t
g = —2o1 1
yi + 2ttt
2 2,2
y; — a3t
ys = 1

Coyi et

tt — batyi

yi +att]

The point (0, 1, 1) is the identity element of addition
law and the inverse of the point (z1,y1,t1) on Ey,
is (—x1,y1,11).

t3 =

The affine version of Jacobi Intersections has
inherent greater computational cost due to the field
inversion involved in addition formulae. In order to
avoid inversions in addition formulae, Jacobi Inter-
sections in projective coordinates [28] is defined by

X2 4+Y?2 =22

Ejpyp - 1

o { bX2 +T% = Z° (10)
with the map (z,y,t) = (X/Z2,Y/Z,T/Z) — (X :
Y : T : Z) for Z # 0. The unified point addition
for (10) is obtained by the following formulae: Let
P:(X1:Y1:Tl:Zl)andQ:(Xg:Yg:ngZ2)
be two points on (10), then P+ Q = R = (X3 :
Y;: T3 : Z3), where
X = X015 + YT XoZs
Yy =Y12,YoZy — XiTh Xy T
I3 = T2\ 152y — bX Y1 X0,

%= 23V + X3T?

The point (0 : 1 : 1 : 1) is the identity element of
addition law and the inverse of the point (X : Y :
Ty : Zy) on Eypis (=X, : Yy : Ty« Zy). There
are three points of order 2, namely, (0:1:1: 1),
(0:1:1:1)and (0:1:1:1). In this case, the
computational cost of point addition, point doubling,
and unified addition are 13M +2S + 1D + 7a, 4M +
3S + 5a, and 13M + 2S + 1D + T7a, respectively.
The mixed addition formulae can also be obtained
by replacing Z> = 1 in the above formulae that
reduces the total costs to 11M + 2S + 1D + 7a.

4.2. Twisted Jacobi Intersections

In [19], the twisted Jacobi Intersections which
contains Jacobi intersections as a special case was
introduced by Feng et al. These curves encompass
more number of elliptic curves and have explicit
formulae for addition and doubling with almost as
fast as the Jacobi Intersections. The twisted Jacobi
Intersections over F with char(F) # 2 are defined

by
EJ,a,b : {

where a,b € F and ab(a — b) # 0. They obtained
an explicit unified addition formulae on F;,; as
follows: Let P = (x1,41,t1) and QQ = (x2, Yo, t2) be
two points on E;, ;. Then P+Q = R = (z3,ys, t3),
where

ar’ +y* =1

ba? + 2 =1 (

e T1Yats + x2y1tq
’ y2 + azt?
Js = Y1y2 — aritixats
° v2 + ax?t?
te 1ty — bx1y122Y2
3 — 2 212
Y3 + axity

The point (0,1, 1) is the identity element of addi-
tion law and the inverse of the point (z1,y;,%;) on

Ejapis (—x1,91,t1).
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The twisted Jacobi Intersections in projective co-
ordinates [28] is defined by

Ejap : {

with the map (x,y,t) = (X/Z,Y/Z,T/Z) — (X :
Y : T :Z) for Z # 0. The unified point addition
on (12) is obtained by the following formulae: Let
P=(Xy:Y1:Tv:Z))and Q = (Xy: Yo : Ty : Zy)
be two points on (12), then P+ Q = R = (X3 :
Y3 : T3 : Z3), where

aX?4+Y? = 7>

X2+ T2 = 72 12)

X3 = X1 Z1YoTo + VW' Xy 2y
Y3 = Y12,YoZy — aX 11 X515
I3 =ThZ\12Z; — bX1Y1.X0Y5
Zs = 737 + aX3T?

The point (0 : 1:1:
addition law and the inverse of the point (X : Y; :
Ty : Zy)on Ejapis (=X : Yy : Ty ¢ Zy). In this
case, the computational cost of addition, doubling,
and unified addition are 12M + 11la, 3M + 4S +
1D + 7a, and 13M + 2S + 5D + 13a, respectively.
For a mixed point addition, the number of required

1) is the identity element of

multiplications drops to 10M + 11a.
4.3. Jacobi Quartics

Jacobi Quartic [9] curves over the finite field F
with char(F) # 2, 3 are first defined by

Ej - yP =ka2t — (K> + 1)2® + 1, (13)

where k # 0,+1. As usual to improve the security
parameter that is to increase number of elliptic
curves, a modification in Jacobi Quartic was intro-
duced by Hisil et al. in [23]. The modified Jacobi
Quartic curves are so called extended Jacobi Quartic
curves which are defined by

cy? =dat + 202 41, (14)

Ejia

where a,d € F with char(F) # 2,3. They showed
that arithmetic on Jacobi Quartics is faster as com-
pared with Jacobi Intersections. Moreover, unified
point addition formulae offer additional security
against some side channel attacks as well. The curve
E ;4. has an additive group structure together with
the identity element O = (0,1). Note the fact
O' = (0,—1) is a point on the curve.

Fig. 5. Addition and doubling over R

The geometric interpretation of the addition law
for Jacobi Quartics is shown in the following [30]:
We first observe that there is a singular point
Q=(0:1:
point at infinity in affine plane. Let C' be a conic
passing through the points P,Q, O  and —R with
div(C) = (P) 4+ (Q) + (=R) + 3(0') — 6(Q2). Let
¢ be the vertical line passing through the points O
and O, then div(¢) = (O) + (O') — 2(Q). Let fz
be a function with div(fz) = (R) + (—R) — 2(0).
Therefore, the equation R = P + () corresponds to

div(C/frt?) = (P) + (@) — (R) — (O).

0) in projective space, which is a

Using this observation, the explicit formulae for
point addition and point doubling of the curve £ 4,
are adapted from [23] as follows: Let P = (x1, 1)
and ) = (z2,y2) be two points on F4,, then P +
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Q = R = (x3,y3), where

e T1Y2 + %2
’ 1 — da?23
s — (Y12 + 2az129) (1 + daiad)

(1 — dzia3)
2dx 39(2% + 23)
(1 — daix3)?

and 2P = R = (x3,ys), where
T3 = 01
{ ys =000 —my) —1
where § = 2y, /(2 + 2az? — y}). The inverse of the
point (z1,y1) on Ejg4, is (—x1,y1).

In order to avoid inversion in addition formulae
given above, the extended Jacobi Quartic curves in
Jacobian coordinates with x = X/Z and y = Y/ Z?
are defined by

Y? = dX* —2aX22% + Z4, (15)

where a,d € F with char(IF) # 2, 3. Billet and Joye
[9] proposed a faster inversion-free unified addition
algorithm on (15) as follows: Let P = (X; : Y; :
Z1) and @ = (X3 : Y3 : Zy) be two points on (15),
then P+ Q = R = (X3 :Ys: Z3), where

X3 =X1YaZ1 + XoY1 2o
Yg = [(Z1Z2)2 + d(X1X2)2}(Y1Y2 — QGXlezle)
12dX1 X271 75(X2 22 + Z2X2)

Z3 = (2122)2 — d(X1X2)2
The identity element of addition law is given by
(0:1:1) and the negative of the point (X; : Y] :
Zy) on (15) is (—X; : Y7 : Z1). The computational
cost of addition, doubling, and unified addition are
10M+3S+1D, IM+9S+ 1D, and 10M +3S+ 1D,

respectively. The total cost of point addition reduces
to 8M + 3S + 1D by replacing Z; = 1.

An other improvement was obtained by Hisil et
al. in [23]. They showed that the extended Jacobi

Quartic curves in extended projective coordinates
was defined by

X2 -TZ =0
16
{YQ—dTQ—QaXQ—ZQ_O (16)
or simply
Y2Z% = dX* + 20X 7% + Z*, (17)

where T is omitted in the latter case. In this case,
a point (z,y) € E;4,(F) corresponds to the point
(X :Y :T:Z), where T = X?/Z. The identity
element is represented by (0 : 1: 0 : 1) and negative
of (X;:Y1:Ty:Zy)on(17)is (—X; : Yy : Ty ¢
7). They obtained the following explicit formulae
for addition and doubling on the extended Jacobi
Quartic curves in extended projective coordinates
as follows: Let P = (X; : Y1 : T} : Z;) and Q =
(Xo : Yy : Ty : Z5) be two points on (17), then
P—l—Q:R:(XgZYEJ,ZTgZZg)Wﬁth%O,
Zy # 0 and P # (@), where

X3 = (X1Ys — V1 X0)(T1 25 — Z1Ts)

Vs = (T1 72 + Z0Ts — 2X1 X2)(Y1Ya — 20X, X,
7175 + dTVTy) — Zs

Ty = (1175 — 7, Ty)?

Z3 = (X1Y2 — V1X3)?
and 2P = R = (X3 : Y3 : T35 : Z3), where
Xs = XY Z1 4+ XoY1 2,
Y3 = [(Z122)? + d(X1X2)?|(V1 Y2 — 2a X1 X221 Z5)
+2dX1 X271 Zo( X272 + Z2X2)
Ts = (2X1Y7)?
Z3 = (Z179)* — d(X1X5)?
If a = —1/2, the computational cost of point
addition and point doubling are 7TM + 3S + 2D and

8S, respectively. The total cost of point addition
reduces to 6M + 3S + 2D by replacing Zs = 1.

They also obtained the unified addition formulae
for extended Jacobi Quartics in extended projective
coordinates as follows: Let P = (X, : Y, : T : Z3)
and Q = (X5 : Yy : Ty : Zy) be two points on (17),
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thenP—FQ:R:(XgIYEgiT?)ZZg)Wichl#O
and Z5 # 0, where

Xy = (X1Ye + V1Xo) (212, — dZ,T))

Ys = (Y1Ys + 20X, X0) (2125 + AT T)
+2d X 1 Xo(Th Zy + Z1T5)

T = (X1Ys + Y1 .X5)?

Z3 = (Z1Zy — dTTy)?

If d is not a square in F, then the unified addition
formulae are complete. The computational cost is
8M + 3S + 2D + 17a when a = —1/2. More
on formulae and operation counts can be found
Appendix B in [23].

5. Hessian Curves

In [24], Hessian elliptic curves are investigated by
Joye and Quisquater. They obtained the formulae of
point addition, point doubling and unified addition.
The Hessian elliptic curve over F with char(FF) #
2,3 is a plane cubic curve given by

Hy @ 2 +1° 4+ 1= 3day, (18)
or in projective coordinates,
Hy : X3+Y3+23=3dXYZ, (19)

where d € F and d® # 1. The curve H, has an
additive group structure together with the identity
element O = (1 : —1:0). The points (0:1: —1)
and (1:0:—1) are two points of order 3.

¥

Ha H&

Fig. 6. Addition and doubling over R

The geometric interpretation of the addition law
for Hessian curves is given by the following way
[17]: For P,QQ € Hy, let /1 be the line passing
through the points P and (). Then the divisor of
Lis div({y) = (P) + (Q) + (—R) — 3(O). Let /5
be the line passing through the points —R and R.
Then div({;) = (R) 4+ (—R) — 2(O). Therefore, the
equation R = P + @) corresponds to div(¢;/ls) =
(P) + (@) — (R) — (c0).

This observation allows us to write down the ex-
plicit formula for point addition and point doubling
of the curve H, as follows [24]: Let P = (X; : Y} :
Z1) and Q = (X5 : Y3 : Z3) be two points on (19),
then P+ Q = R = (X3 :Y3: Z3), where

X3 - }/12X2Z2 - Y22X1Z1
Y; = X3YaZs — XN\ 24
Zy = Z3Yo Xy — Z3Y1 Xy

and 2P = R = (X3 : Y3 : Z3), where

X3 =Y1(Z} — X7)
Yy = X1 (Y? - Z7)
Zs = Z1(X7 - YP)

The inverse of the point (X : Y] : Z;) on Hy is
(Y1 : X; : Z1). Owing to the formulae 2(X; : Y] :
Z)=(Z1: X1 : Y1)+ M : Zy: Xp) and (X :
Vi:Z)—(Xo:Yo:Zy)=(X1:Y1:7Z))+ (Ya:
Xy : Zy), the following addition algorithm given
by Joye and Quisquater in [24] can be used also
doubling and subtraction as well as addition: Let
P=(Xy:Y1:Z))and Q = (X5 : Yy : Z5) be two
points on (19), then P+ Q = R = (X3 : Y3 : Z3),
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where
Ly — Xy Ly = Y15 Ly — 2
MY L X Ly - Ve Lo — 2,
L7 — Ly-Le; Ly < Ly Ls
Step 2{ Ls < L3+ Ls; Ly — L3~ Ly
Ly« Ly-Ly; Ly« Ly Lg
Lg «— Lo+ L7y Ly« Ly Ly
Step 3{ La« L3-Ls; Ly — L3 Ls
Ls«— Ly-Ls; Ly« Ly Ly

X3HL2—L5; }%HLl_LéL
Z3 — L3 — Lg

Step 4 {

The computational cost of these operations are
12M + 3a. The total cost of point addition reduces
to 10M + 3a by replacing 7, = 1.

More recently, Farashahi and Joye [16] considered
a generalized form of Hessian curves that covers
more isomorphism classes of elliptic curves. These
curves are similar to the twisted Hessian form [6],
introduced by Bernstein, Kohel and Lange, up to the
order of the coordinates. The generalized Hessian
curve over [ is defined by

H.q : 2°+9° +c = duay, (20)

where ¢,d € F with ¢ # 0 and d® # 27c. A
generalized Hessian curve over [ is isomorphic over
[F to a Hessian curve if and only if cis a cube in FF. It
is easy to adapt the addition and doubling formulae
for generalized Hessian curves which are so-called
Sylvester formulas as follows: Let P = (x1,y)
and Q = (z2,y2) be two points on H.,4, then
P+ Q= R = (z3,y3), where

 yis — yia
T2Y2 — T1lh
23ys — 23
T2Y2 — 1l

xs3

Ys =

and 2P = R = (x3,y3), Where

o yl(C—f;’)
L3 = —3 3
Ty — Y1

ys = z1(c—yy)
z} — i

Furthermore, the inverse of the point (z1,y;) on
H., is the point (y;,21). The generalized Hessian
curves in projective coordinates are defined by

H.y: X°+Y3+ceZ?=dXYZ. (21)

The point (1 : —1 : 0) is identity element and the
inverse of the point (X; : Yy : Z;) on H.4 is
(Y1 : Xy : Zy). They obtained point addition and
doubling formulae on generalized Hessian curves
in projective coordinates as follows: Let P = (X :
Yi: 7)) and Q = (X5 : Yy : Z3) be two points on
H.g4, then P+ Q = R = (X3:Y3:Z;), where

X3 = XQZ2}/12 - X121Y’22
Y; = Y2 ZoX? — Y12, X2
Zy = XoYo 22 — X\ V1 23

and 2P = R = (X3 : Y3 : Z3), where

X3 =Y1(cZ} — X7)
Yy = X (Y? —cZ3)
Zs = Z1(X} - YP)

In this case, the computational cost of point addition
is 4M, 3M, or 2M correspond to use of 3,4 or 6
processors, respectively. The point addition formu-
lae are complete if the difference of all pairs of
points on H, 4 is not equal the identity. The cost of
point doubling is 6M+ 3S + 1D. The point doubling
formulae are complete for all inputs.

The unified addition formulae for generalized
Hessian curves in projective coordinates are also
obtained as follows: Let P = (X; : Y7 : Z;) and
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Q = (Xy : Yy : Zy) be two points on H.,4, then
P+Q=R=(X3:Y;:Z3), where

X3 = C)/QZQZ% — X1}/1X22

Y; = X2Y2Y12 - CX121222

Zs = XoZo X7 = V1 21Y5
The computational cost of unified point addition is
12M + 1D. The unified point addition formulae on
H, 4 are complete if c is not a cube in F. It turns out
that a mixed addition requires 10M + 1D by setting
Zy = 1.

Farashahi and Joye [16] obtained point addition,
doubling and tripling formulae for binary general-
ized Hessian curves with the computational cost of
them. Differential addition, that is, point addition
with a known difference was also devised for binary
Hessian curves by them.

6. Huff Model of Elliptic Curves

In this section, we will give the details of the mod-
els of Huff curves, especially their group structure
and related formulae with associated computational
costs.

6.1. Huff Curves

In [21], Huff investigated the Huff elliptic curves
over rational fields @Q in 1948. Joye et al. [25]
improved these curves to the finite field F with
char(F) # 2 that are given by

E.p ¢ ax(y* — 1) = by(a* — 1), (22)
where a,b # 0 and a®> — 0> # 0. The unified
point addition for (22) is obtained by the following
formulae: Let P = (x1,y;) and Q) = (22, y2) be two
points on (22). Then P + @Q = R = (x3,y3), where

(z1 4+ 22)(1 + y192)
(1 4+ z122)(1 — y192)
(1 +y2) (1 + z125)
(1= z122)(1 + 11%2)

T3 =

3:

These formulae are complete whenever x5 # +1
and y,y, # £1. The Huff model of elliptic curves
in projective coordinates are defined by

aX(Y? - Z%) =bY (X? - 7Z?), (23)

where a,b # 0 and a? — b? # 0. Huff curves has an
additive group structure together with the identity
element O = (0 : 0 : 1). We note that a point at
infinity is its own inverse. Hence, there are three
points at infinity, namely, (1:0:0), (0:1:0) and
(a:b:0). The sum of any two of them is equal to
the third one.

Fig. 7. Addition over R

The geometric interpretation of the addition law
for Huff curves is given by the following way [25]:
For P,QQ € E,;, let ¢ be the rational function
passing through the points P and ) with div(¢) =
P)+(@Q)+(-R)—(1:0:0)—(0:1:0)—(a:
b : 0), where —R is the third point of intersection
of the line ¢ with the elliptic curve. The neutral
element of the group law is O = (0: 0: 1). Let f
be the line function with div(f) = (R) + (—R) +
O)—(1:0:0—-0:1:0—(a:b:D0).
Therefore, the equation R = P + () corresponds to
div(f/f) = (P) + (@) — (R) — (O).

This observation allows us to write down the ex-
plicit unified addition formulae on (23) as follows:
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LetP:(Xl:Yl:Zl) andQ:(XQ:YQ:Zg)be
two points on (23), then P+ @Q = R = (X3 : Y3 :
Z3), where

X3 = (X122 + XoZ))(N1Yo + 21 Z2) (Y122 + Yo Z1)
Y = (X1 Xo — Z12)(2223 — Y2YD)
Zz = N1Zo + Y221 ) (X1 Xy + Z1 Zo) (V1Yo — Z1Z3)

These formulae are obtained by choosing O = (0 :
1 : 0) as the neutral element results in translating
the group law, in other words, the point addition
P + @ transforms to P + Q + O'. The inverse of
the point (X; : Yy : Z;) on (23) is (X; : Y3
—Z1), which is unchanged. Note also that the above
formulae are complete provided that X Xy # 7,75
and V1Y, # 7,75, and are independent of curve
parameters a, b € [F. The computational cost of point
addition, point doubling, and unified addition are
12M, 6M + 58, and 11M, respectively. For a mixed
point addition (i.e., when Z; = 1), the number of
required multiplications drops to 10M.

Joye et al. [25] investigated twisted Huff curves
defined by

ax(y® — d) = by(z® — d), (24)

where abd(a®* — b*) # 0. These curves are also

defined in projective coordinates as follows:
aX(Y?—dZ% =bY(X*—dZ%, (25)

— b?) # 0. They obtained point
addition formulae with performing 12M. For more

where abd(a®

formulae, one can look at [25].

In order to improve the number of isomorphism
classes, a generalized Huff curves was introduced
by Wu and Feng in [18]. It is note worthy that
the Huff curve family is included in the generalized
Huff curves. These curves over the finite field F
with char(FF) # 2 are defined by

z(ay® — 1) = y(ba® — 1), (26)

where ab(a — b) # 0. They obtained the following
formulae for addition and doubling on generalized
Huff curves in affine coordinates as follows: Let
P = (z1,11) and Q = (x9,y) be two points on
(26), then P + @ = R = (x3,y3), where

(x1 4+ z2)(ay1ys + 1)
 (bryxe + 1) (ayrye — 1)
(y1 + y2) (baiza + 1)
(br1xe — 1)(ay1ye + 1)

and 2P = R = (x3,y3), where

3:

2z (ay? + 1)
(bt + 1) (ayi — 1)
vy = 2y, (bx? + 1)

(bt —1)(ayi +1)

In order to avoid inversion for addition formulae in

T3 =

affine coordinates, the generalized Huff curves in
projective coordinates are defined by

X(aY? - 7% =Y (bX? - Z?), (27)

with the map (z,y) — (X : Y : Z) for Z # 0.

In this case, there are three infinite points, namely

(1:0:0),(0:1:0)and (a :b:0). We will

now discuss addition of any two points by selecting

(1 : 0 : 0) as identity element. The negative of

(X1 : Y1 : Zy)on 27) is (X; : Y7 : —Z)). Let

P=(Xy:Y1:2Z)) and Q = (X3 : Yy : Z5) be two

points on (27). Then P+ Q = R = (X3: Y3 : Z3),

where

X3 = (bX 1 Xo — Z2175)(bX 1 X + Z17Z5)
(2122 - (lYlyz)

Y3 =0(X1 25 + Xo27)(bX 1 Xo + Z175)
Y12y + Y Zy)

Zy = b(X1Z5 + Xo27)(bX 1 Xo — Z175)

(aY1Ys + Z1Z5)

These formulae are unified. The computational cost
of point addition and doubling corresponding the
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identity element (1 : 0 : 0) are 11M + 3D and
6M + 58S + 3D, respectively. For a mixed point
addition (i.e., when Z, = 1), the number of required
multiplications drops to 10M + 3D. It is possible to
choose (0 : 1:0) and (a : b : 0) as identity ele-
ments. In each case, the negative of (X : Y] : Z;)
on (27) is (X7 : Yy : —Z7). In order to examine the
related point addition formulae and more, we refer
the reader to [18].

In 2011, Ciss and Sow [13] introduced the new
generalized Huff curves over the finite field F of
char(F) # 2. These curves are defined by

az(y* — c) = by(2* — d), (28)

where a,b,c,d € F with abed(a’c — b?d) # 0.
The new generalized Huff curves contains the gen-
eralized Huff’s model az(y?* — d) = by(z* — d)
with abd(a® — b*) # 0 of Joye et al. [25] and the
generalized Huff curves z(ay? — 1) = y(bz? — 1)
with ab(a — b) # 0 of Wu and Feng [18] as a
special case. Ciss and Sow obtained the addition and
doubling formulae of new generalized Huff curves
in affine coordinates as follows: Let P = (x1, )
and () = (z2,y2) be two points on (28). Then
P+ @ = R = (z3,y3), where

_ d(l‘l + SL’Q)(C + y1y2)

3 (d+ z129)(c — 11Yy2)
)

)

_ c(y1 + yo)(d + 2122
(d — x129)(c + Y12

and 2P = R = (x3,y3), where

Ys

L — 2(1&71(0 + y12)
A+ (c—yi?)
20y1 (d + Ilz)
Y3 =

(d =) (c+ %)

The addition formulae are complete if zix9 # +c
and y;yo # +d and the doubling formulae are
complete if 7,2 # 4 and y;> # 4d and in
particular if ¢ and d are not square in F.

In order to avoid inversion in addition formulae,
the new generalized Huff curves in projective coor-
dinates are defined by

aX(Y?—cZ%) =bY(X®—dZ%), (29)

where a, b, c,d € F with abed(a*c — b*d) # 0. The
neutral element of the group law is O = (0:0: 1)
and the negative of (X; : Y] : Z;) on (29) is
(Xy1 : Y1 : —Zp). The addition law in projective
coordinates is as fast as in the previous particu-
lar cases. They obtained point addition and point
doubling on (29) by the following formulae: Let
P:(Xl:leZl) andQ:(Xg:Ygng)betwo
points on (29), then P+ Q = R = (X3 : Y3 : Z3),
where
X3 = d(X1Z2 + XQZl)(021Z2 =+ }/1}/2)2
(dZ1Zy — X1X5)
Ys = (Y125 + Yo Z4)(dZ1 Zy + X1 X5)
(62122 - Y1Y2)

7= (P22} = XEXDNEZRZ3 = VoY)
and 2P = R = (X3 : Y3 : Z3), where

X3 =2dX(cZ? + Y2)*(dZ? — X?)

Yy = 26Y(dZ2 + XP)A(eZE — V)

Zy = (d*Z{ — X{)(*Z{ - YY)
The above point addition formulae are complete
provided that X Xy # dZ7Z, and Y Yy # cZ1Zs.
The computational cost of point addition and point
doubling formulae are 12M+4D and TM +5S+4D,
respectively. The total cost of point addition reduces

to 11M + 4D by replacing Z; = 1. For further
details, we refer the reader to look at [13].

6.2. Binary Huff Curves

Joye et al. [25] introduced the binary Huff curves
over F with char(F) = 2 which are defined by

ax(y® +y+1)=by(@x®> +z+1), (30)
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or in projective coordinates
aX(Y?*+YZ+ 2% =0Y (X2 +XZ+ 7%, (31)
where ab(a — b) # 0. Devigne and Joye [14]
described the addition law for binary Huff curves.
They showed that there are three points at infinity
satisfying the curve equation, namely (a : b : 0),
(1:0:0),and (0:1:0). They obtained unified
point addition formulae as follows: Let P = (X :
Yi:Zy) and Q = (X5 : Yy : Zy) be two points on
(31), then P+ Q = R = (X3 : Y3 : Z3) with
X3 = (2122 + 1'Y2) (X122 + X220 ) (27 Z35
+X1XoV1Y2) + aX1 X0 Z1 Z5(21 Z2 + Y1Y2)]
Y3 = (2175 + X1X2)[(Y1 2o + Yo 21) (2322
+ X1 Xo V1Y) + BY1Y2 21 Z5(21 Z2 + X1 X3)]

Zy = (Z1Z2 + X1 X2)(Z1Z2 + Y1Y3)

(Z272 + X1 X2Y1Y3)

(a+b)/b and B = (a + b)/a.
The computational cost of unified point addition is
15M + 2D.

where o =

The generalized binary Huff curves over F with
char(F) = 2 are also defined by Devigne and Joye
[14] which are of the form

ax(y’ + fy +1) = by(a* + fz + 1),
or in projective coordinates
aX(Y?+fYZ+2Z%) =bY (X*+fXZ+2%), (33)

where abf(a—b) # 0. They obtained the unified ad-
dition formulae of generalized binary Huff curves in
affine coordinates which are given by the following
formulae: Let P = (x1,y;) and @ = (22, y2) be two
points on (32). Then P+ @ = R = (x3,y3), where
b(x1 + @2)(1 + 212291Y2)
b(1 + z122)(1 + z122y1y2)
fla+ b)ziza(1 + y1yp)
b(1 + x129) (1 + 21229172)
_a(yr + yo) (1 + z120y190)
7 (14 yiy) (1 + z120y110)
fla+b)y1ya(1 + 2129)
a(l 4+ y1y2) (1 + z122912)

(32)

T3 =

The computational cost of point addition, point
doubling and unified addition formulae are 15M,
6M + 2D and 15M —+ 2D, respectively. For more
information and formulae, we refer the reader to
[14].

7. Comparison and Conclusions

In this paper, the alternative models of ellip-
tic curves are surveyed by pinning down group
operations, and performance in various coordinate
systems. Table 1 summarizes the speeds of addition,
doubling, mixed addition and unified addition on
alternate models of elliptic curves. The comparison
in affine coordinates is skipped so that the cost of
field inversion is so expensive. We enumerate the
cost of field operations in terms of multiplication
M, squaring S, and multiplication by a constant D
in [F.

The unified addition formulae offer inherited
countermeasure against SPA with comparable per-
formance. In these models, SPA is avoided by
employing the unified addition formulae or an al-
gorithmic adaptation of it that behaves in similar
fashion during the process of point addition and
point doubling. Hence, for algorithmic flexibility,
alternate models of elliptic curves with desirable
properties are put together in this paper for elliptic
curve cryptographic protocols.
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TABLE 1

Cost of Arithmetic on Alternate Models of Elliptic Curves

EC Model Coordinates Addition Doubling Mixed Addition (Z2 = 1) Unified Addition

Weierstrass Projective 12M + 28 SM+6S OM+2S 1IM+5S + 1D

Edwards Projective 10M+1S+1D 3M+4S OM+1S+1D 10M+1S+1D
Projective 1IM+2D 3M+4S+1D OM+2D 10M+1S+2D

Twisted Edwards Inverted 1IM+2D 3M+4S+2D OM+2D OM+1S+2D
Extended 9M+1D 4M+4S+1D 8M+1D 9M+2D

Jacobi Intersections Projective 13M+2S+1D 4M+3S 1IM+2S+1D 13M+2S+1D

Twisted Jacobi Intersections Projective 12M 3M+4S+1D 10M 13M+2S+5D

Extended Jacobi Quartics Jacobian 10M+3S+1D 1M+9S+1D SM+3S+1D 10M+3S+1D
Extended Projective TM+3S+2D 8S 6M+3S+2D 8M+3S+2D

Hessian Curves Projective 12M 12M 10M 12M

Generalized Hessian Curves Projective 12M+1D 6M+3S+1D 10M+1D 12M+1D

Huff Curves Projective 12M 6M+5S 10M 11M

Generalized Huff Curves Projective 11M+3D 6M+5S+3D 10M+3D 11M+3D

New Generalized Huff Curves Projective 12M+4D TM+5S+4D 11M+4D Open Problem
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