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Abstract -The paper obtains a lower bound on the necessary number of parity-check digits in an  (n=n1+n2, k) linear code 

over GF(q) that corrects all solid burst errors of length b1 or less in the first block of length n1 and all solid burst errors of 

length b2 or less in the second block of length n2.  Further, the author studies these codes over GF(2) that are optimal in a 

specific sense and gives a sufficient condition for the existence of such codes.  
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 1.  Introduction 

 

  Perfect codes are considered to be very good 

codes for correcting errors occurred in the 

transmission of information. It was a good exercise 

for mathematicians for searching out perfect codes 

for several years. Then in 1971, Tietavanien and 

Perko[14] have established that there are no 

perfect codes other than the single error correcting 

Hamming codes[8], double and triple error 

correcting Golay codes ([6],[7]) and the Repetitive 

codes. Thereafter mathematician started to find 

codes that are not perfect in the usual sense but 

that correct certain types of error patterns and no 

others. They are called optimal codes. An attempt 

was given by Sharma and Dass[13] in the paper 

“Adjacent error correcting binary perfect codes”. 

They studied codes that correct all solid burst 

errors of certain length and no others.  

 

  In certain memory systems (e.g. some spacecraft 

memories and supercomputer storage system), the 

most commonly occurred errors are solid burst 

errors.  By a solid burst error, we mean as follows: 

 

Definition: A solid burst error of length b is a 

vector with non zero entries in some b consecutive 

positions and zero elsewhere. 

 

  Das[2] studied linear codes that detect and correct 

solid burst errors of certain length or less.  The 

author obtains bounds on the parity check for a 

linear code that detects and corrects such errors. A 

midway concept between error detection and error   

correction, known as Error Locating Codes, is also 

studied by Das[1]. This paper studies optimal 

codes that correct certain types of errors and no 

others. 

 

  Among the solid burst errors, the first most 

probable errors are solid burst error of length 1 and 

2. And the next probable error is of solid burst of 

length 3. An effort is given to study these types of 

errors in this paper. 

 

  In many memory systems, the information is 

stored in different parts (sub-blocks) of the code 

and it is natural to expect that errors occur of 

different patterns in different sub-blocks. In this 

direction, Dass & Tyagi[4] explored a new type of 

binary (1, 2) optimal codes. Dass and Das[3] did a 

survey of such codes. Tuvi[15] also presented a 

paper which deals with the construction of such 

optimal codes. For more study on optimal codes, 

one may refer [5], [9], [10]. 

 

  In this correspondence, this paper studies 

(n=n1+n2, k) linear codes over GF(q) that correct 

all solid burst errors of length b1 or less in the first 

block of length n1 and all solid burst errors of 

length b2 or less in the second block of length n2. 
Section 2 obtains a lower bound on the number of 

parity check digits for such codes. Then, by fixing 

b1=1 and b2=3 in binary case, optimal codes for n1 

≤ 21 are investigated in section 3. In section 4, 

construction of such codes is presented in which 

sufficient condition for the existence of such codes 
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is also given. Section 5 gives the conclusion and 

open problem. 

 

In what follows, the code length is taken to 

be n over GF(q), consisting of two blocks of length 

n1 and n2, such that n1+ n2 = n. The distance 

between two vectors shall be considered in the 

Hamming sense. 

 

 

2. A Lower Bound 

 

  In the following, a lower bound on the number of 

parity check for an (n = n1+ n2, k) linear code over 

GF(q) that corrects all solid burst errors of length 

b1 or less in the first block of length n1 and all solid 

burst errors of length b2 or less in the second block 

of length n2 are provided. The proof follows the 

technique used in the theorem 4.16, Peterson and 

Weldon [11]. 

 

Theorem 1: The number of parity check digits 

for an (n=n1+n2, k) linear code over GF(q) that 

corrects all solid burst errors of length b1 or less in 

the first block of length n1 and all solid burst errors 

of length b2 or less in the second block of length n2 

is at least 
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Proof: This proof is based on counting the number 

of errors of above specific type and comparing 

with the available cosets in the (n=n1+n2, k) linear 

code over GF (q). 

 

The number of solid burst errors of length b1 or 

less in the first block of length n1 is        
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The number of solid burst errors of length b2 or 

less in the second block of length n2 
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Thus the total number of errors, including the 

vector of all zero, is 

1+ 



21

1

2

1

1 ).1()1()1()1(
b

j

j
b

i

i jnqinq  

Hence  

.)1()1()1()1(1
21

1

2

1

1 


 
b

j

j
b

i

ikn jnqinqq   (1) 

 

  Now the equality of the inequality (1) gives us 

the optimal case i.e., we need to check for which 

parameters the bound is tight and the 

corresponding codes exist. In this communication, 

if we fixed b1=1 and b2=3, we obtain optimal 

codes. The codes are optimal in the sense that 

these codes correct all solid burst errors of length 1 

or less in the first block of length n1 and all solid 

burst errors of length 3 or less in the second block 

of length n2 and no more. These codes are named 

as (1, 3) optimal codes. 

 

 

3. Optimal Codes  
   

  Considering the inequality (1) when the bound is 

optimal, 

 q
n-k

= .)1()1()1()1(1
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If we fix b1=1 and b2=3 for binary case, the 

equality (2) becomes 

 knn  212  = n1+3n2-2.                  (3) 

The codes obtained from different parameters of 

the equation (3) are called as binary (1, 3) optimal 

linear codes. 

 

  We now examine the possibility of existence of 

such codes for values of n1, n2, and k. This paper 

investigates for such codes for values of n1 upto 

21.  

 Now assigning the values of n1 as 1, 2, 3, …,21 in 

equation (3), we shall find out possible values of 

the parameters n2 and k. 

 

Let n1=1. Then the values of n2 and k satisfying 

the equation (3) are  

(3, 1), (11, 7), (43, 37), ……  

This gives the possibility of the existence of (1+3, 

1), (1+11, 7), (1+43, 37), …codes which may be 

binary (1, 3) linear optimal codes. Consider the 

matrix in the following 
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H = 

)31(3
0011

0100

1001


















 

as the parity check matrix of a code which gives 

rise to (1+3, 1) code. This code can correct all 

solid burst errors of length 1 in the first block of 

length 1 and all solid burst errors of length 1 in the 

second block of length 3 or less and no other error 

pattern. It can be verified from the table 1 that the 

syndromes of all the errors are all distinct and 

exhaustive. This shows that the code under 

discussion is a binary (1, 3) optimal linear code. 

 
      Table 1 

------------------------------------- 

Error patterns      Syndromes 

 ------------------------------------- 

     1000          101 

     0100          100  

     0010          010 

     0001           001 

     0110          110 

     0011          011 

     0111          111 

 ------------------------------------- 

 

Let n1= 2. Then the equation (3) reduces to 

  kn  22
2 = 3n2. 

It is clear that the above equation does not have 

integer solution for n2. Therefore binary (1, 3) 

optimal linear code for n1= 2 cannot exist. 

 

Let n1= 3. The equation (3) reduces to 

  
kn  23

2 = 3n2+1. 

The various values of the parameter satisfying the 

above equation are 

 (n2, k) = {(5, 4), (21, 18), …}. 

This shows the possibility of the existence of (3+5, 

4), (3+21, 18)…binary (1, 3) linear codes. 

Consider the matrix H, 

 

H=

)53(4
00010111

00101001

01000111

10001011





















 

The code obtained from the above matrix H as the 

parity check matrix is a (3+5, 4) linear code. The 

following error pattern-syndromes table 2 shows 

that all the syndromes of the errors are distinct and 

exhaustive, thereby the code is a binary (1, 3) 

optimal linear code. 

 
       Table 2  

-------------------------------------- 

Error patterns        Syndromes 

-------------------------------------- 

10000000  0101 

01000000  1101 

00100000  1111 

00010000  1000 

00001000  0100 

00000100  0010 

00000010  0001 

00000001  1010 

00011000  1100 

00001100  0110 

00000110  0011 

00000011  1011 

00011100  1110 

00001110  0111 

00000111  1001 

-------------------------------------- 

 

Let n1= 4. The equation (3) reduces to 

  kn  24
2 = 3n2+2. 

The various values of the parameter satisfying the 

above equation are 

 (n2, k) = {(2, 3), (10, 9), (42, 39) …}, but 

(2, 3) does not fall under our case. 

This shows the possibility of the existence of 

(4+10, 9), (4+42, 39)……...binary (1, 3) linear 

codes. Consider the matrix H as the parity check 

matrix of the code (4+10, 9): 

 

H= 

)104(5
00001010011011

00010100100100

00100001011101

01000010100011

10000101010110
























 

It can be verified from the error pattern-syndromes 

table of the code that the (4+10, 9) code is a binary 

(1, 3) optimal linear code. 

 

Let n1= 5. Then the equation (3) reduces to 

  
kn  25

2 = 3(n2+1). 

The above equation does not have integer solution 

for n2. Therefore binary (1, 3) optimal code for n1= 

5 cannot exist. 
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Let n1= 6. The equation (3) reduces to 

  kn  26
2 = 3n2+4. 

The various values of the parameter satisfying the 

above equation are 

 (n2, k) = {(4, 6), (20, 20) …}. 

This shows the possibility of the existence of (6+4, 

6), (6+20, 20)…..binary (1, 3) linear codes. 

Consider the matrix H, 

H=

)46(4
0001011111

0010100101

0100010011

1000101111





















 

This matrix being the parity check matrix, gives 

rise to a binary (1, 3) optimal linear code. It can be 

verified from the error pattern-syndrome table. 

 

Let n1= 7. The equation (3) reduces to 

  kn  27
2 = 3n2+5. 

The various values of the parameter satisfying the 

above equation are 

 (n2, k) = {(9, 11), (41, 41),….}. 

This shows the possibility of the existence of (7+9, 

11), (7+41, 41),…… binary (1, 3) linear codes. 

The following matrix is an example of (7+9, 11) 

binary (1, 3) optimal linear code. 

 

H=

)97(5
0000101001101111

0001010010010101

0010000101110011

0100001010001111

1000010100111001
























 

 

Let n1= 8. The equation (3) reduces to 

  kn  28
2 = 3n2+6. 

The above equation does not have integer solution 

for n2. Therefore binary (1, 3) optimal code for n1= 

8 can not exist. 

 

Let n1= 9. The equation (3) reduces to 

  
kn  29

2 = 3n2+7. 

The various values of the parameter satisfying the 

above equation are 

 (n2, k) = {(3, 8), (19, 22), …}. 

This shows the possibility of the existence of (9+3, 

8), (9+19, 22),….. binary (1, 3) linear codes. The 

following parity check matrix gives rise to an 

(9+3, 8) binary linear code. It can be verified that 

this code is a binary (1, 3) optimal linear code with 

the help of error pattern-syndrome table 2. 

 

H=

)39(4
000011111111

001100100111

010011000011

100101101001





















 

 

Let n1= 10. The equation (3) reduces to 

  kn  210
2 = 3n2+8. 

The various values of the parameter satisfying the 

above equation are 

 (n2, k) = {(8, 13), (40, 43), ..…}. 

This shows the possibility of the existence of 

(10+8, 13), (10+40, 43), … binary (1, 3) linear 

codes. The following parity check matrix gives 

rise to (10+8, 13) binary linear code. It can be 

shown this code is a binary (1, 3) optimal linear 

code with the help of error pattern-syndrome table. 

 

H=

)810(5
000010100110111101

000101001101001011

001000010011011111

010000101100110011

100001010011101011
























 

 

For n1= 11. The equation (3) reduces to 

  kn  211
2 = 3n2+9. 

 This gives no solution, so no such (1, 3) optimal 

code can exist for n1= 11. 

 

  Now, following is a table in which the first two 

pair suitable values of n2 and k for fixed value of 

n1 (upto 21) are provided. 

 
   Table 3 

============================ 

       n1        n2      k      

============================ 

      12     18    24 

        82    86 

 _______________________________ 

   13      7                 15 

      39     45 

_______________________________ 

    15                        17    26 

          81      88 

_______________________________cont… 
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Table 3 

  ============================ 

        n1          n2          k      

  ============================ 

      16       6    17 

      38    47 

 ________________________________ 

     

     18      16    28 

      80    90 

________________________________    

     19       5    19 

      37    49 

________________________________ 

     21      15    30 

      79    92 

________________________________ 

     

 

4. Construction of (1, 3) optimal codes 

 

  For the construction of these binary (1, 3) optimal 

codes that correct all single errors in the first block 

of length n1 and all solid burst errors of length 3 or 

less in the second block of length n2 and no more, 

2
nd

 block construction will be sufficient because: 

 

  Suppose if 2
nd

 block of length n2 is constructed 

that means syndromes of all the solid burst errors 

of length 3 or less are all distinct. If the number of 

such syndromes is removed from the nonzero (n-k) 

tuples, there will be left out with exactly n1 

nonzero (n-k)-tuples. If these n1 nonzero (n-k)-

tuples are considered as the columns of the first 

block irrespective of their order, they are going to 

correct all single errors in the first block.  

 

  The construction of the second block follows the 

technique used in the deriving Varshamov-Gilbert-

Sacks bound (refer Sacks [12], also Theorem 4.7, 

Peterson and Weldon [11]). The construction of 

the second block is as follows.  

 

  Select any nonzero (n-k) tuple as the first column 

of the requisite second block of length n2. After 

having selected the first j-1 columns h1, h2,…..,hj-1 

appropriately,  we lay down the condition  to add  

j
th  

column as follows ( refer [2] ): 

 

hj should not be a linear sum of immediately 

preceding upto 2 consecutive columns hj-1, hj-2 , 

together with any 3 or fewer consecutive columns 

from amongst the first j-3 columns h1, h2,…., hj-3. 

In other words, 

 
hj ≠ (uj-1 hj-1+ uj-2 hj-2)+ (vi hi+ vi+1 hi+1+vi+2 hi+2 ),     (4) 

where hi 's in the second bracket are any 3 or less 

consecutive columns among the first (j-1-Ɩ) 

columns, Ɩ = 0,1,2 and the coefficients ui,vi ε GF(2) 

are non zero. 

 

  This condition ensures that there shall not be a 

code vector which can be expressed as sum 

(difference) of two solid bursts of length 3 or less 

each, thereby correcting all solid burst of length 3 

or less. Thus, the coefficients ui form a solid burst 

of length Ɩ and the coefficients vi form a solid burst 

of length 3 or less in a (j-1-Ɩ)-tuple, Ɩ = 0,1,2. 

 

  The number of ways in which the coefficients ui’s 

and vi’s on the R.H.S. of the expression (4), 

including the vector of all zero, is given by 

 

   1+ )11(
3

1





i

ij + )12(
3

1





i

ij + )13(
3

1





i

ij  

=1+9
 
(j-3). 

   

In fact this will give rise to the sufficient condition 

for the existence of such (1, 3) optimal linear 

codes. In view of this, we obtain the following 

result: 

 

Theorem 2: There exists an (n=n1+n2, k) linear 

code over GF(2) that corrects all solid burst errors 

of length 1 in the first block of length n1 and all 

solid burst errors of length 3 or less in the second 

block of length n2 provided that 

 

2
n-k

 > 1+9(n2-3). 

 

Remark 

 

If we interchange the two sub blocks i.e., if we 

consider (n=n1+n2, k) linear codes, these will form 

a class of (3, 1) optimal codes. 

 

 

5. Conclusion and Open question 

 

  It is well known that the use of optimal code 

improves the efficiency of the channel as optimal 

codes economize in the number of parity checks in 
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a code reducing thereby the redundancy and 

improving the rate of transmission. Therefore 

optimal codes are useful from application point of 

view in communication. 

 

  This paper investigates the integer solution of the 

equation (3) for n1 = 1, 2, … , 21. The equation (3) 

has integer solution for n1 = 1, 3, 4, 6, 7, 9, 10, 12, 

13, 15, 16, 18, 19, 21. For other values of n1, the 

equation has no integer solution. The author gives 

a code corresponding to one of the solutions only. 

In view of the existence of other solutions of the 

equation (3), the existence of corresponding codes 

is an open problem. 

 

  Further, there may be a systematic way of 

constructing the parity check matrices of such 

binary (1, 3) optimal codes. Non binary (1, 3) 

optimal codes are also open problems. 
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