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Abstract- The paper describes the procedure for parameter tuning of the power system stabilizer, as part of the structure of the 
automatic voltage regulator of synchronous generator AVR. Parameter tuning is based on a method that uses a mathematical 
model of synchronous generator on the power system. The parameters of the mathematical model of synchronous generator are 
determined by identification. Application of the identified mathematical model defines the function of dependence of the 
characteristics of the voltage regulator of the synchronous generator to the parameters of the controller. Developed method for 
parameter tuning is tested on the real laboratory system. 
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1. Introduction 

Electromechanical oscillations of synchronous generator 
which is connected to the power system can reduce stability 
in operation. These oscillations can be significantly damped 
by extending the automatic voltage regulator (AVR) with 
power system stabilizer (PSS).  

Determining the values of the parameters settings of the 
PSS is very complex procedure due to the nonlinear 
characteristics of a synchronous generator and the power 
system. 

Taking this all into account, the authors have attempted 
to develop a process of identifying of the mathematical 
model of synchronous generator in operate on the power 
system with the aim to improve the procedure of setting PSS. 
Identification procedure has been developed taking into 
account the requirement for fast and stable convergence of 
the numerical procedure, and model that are  identified 	must 
have required accuracy. 

 

Determination value of parameters settings PSS, is based 
on determining the optimum operating point of the 
sensitivity function of eigenvalues of the modelled system. 
The mathematical model of the system includes: a 
synchronous generator, power system, automatic voltage 
regulator and PSS. The function of the sensitivity of the 
eigenvalues of the system was based on numerical procedure. 

Developing and testing procedures will be carried out on 
a laboratory model of a synchronous generator. Synthesis of 
digital regulator and measurement system for the 
identification and testing will be performed with module xPC   
in  Matlab Simulink 

2. Model of Synchronous generator on the power grid 

Mathematical model of the synchronous generator is 
presented in [1]. Basic equations of the linearized 3rd order 
model of synchronous generator in state space matrix form 
are: 
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(1) 

where: fψΔ  - excitation magnetic flux, ωΔ  angular 

velocity, δΔ  angular load and fVΔ  excitation voltage. 

Model outputs are generator voltage VΔ , angular velocity 
differential ωΔ  and active power differential PΔ . 
Regulator output is generator voltage, with angular velocity 
and generator power as PSS control inputs 

2.1. Identification 

.   A procedure of direct identification of the state-space 
matrix coefficients is used in the paper. Two models are 
formed in order to achieve better identification accuracy and 
speed up the numerical calculations. 

To obtain output variables and output matrix is formed (2).  
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To determine output variables VΔ  and PΔ  using 
mathematical model in (1) output matrix is formed: 
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Relations (1), (2) and (3) are define all system variables used 
in design of AVR with PSS. Identification procedure directly 
determines state-space matrix coefficients in relations (1), (2) 
and (3). 

Mathematical model parameters of synchronous 
generator are identified by applying the Kalman filter [3, 4 
and 5]. The parameters of the mathematical model are 
determined by iteration method in which measured output 
values on the system being identified are used as algorithm 
inputs. 

Main relations of the Kalman algorithm are   

1T( ) ( ) ( ) ( ) ( ) ( )K P k H k k H k k H kη
−

⎡ ⎤= ⋅ ⋅ ⋅ + ⋅ ⋅⎢ ⎥⎣ ⎦
I P  (4) 

[ ]m( ) ( 1) ( ) ( )k k K k kθ θ= − + ⋅ −y y             (5) 
T( 1) ( ) ( ) ( ) ( )k k K H k k k+ = − ⋅ +P P P Q                  (6) 

To determine the Kalman gain in (4), matrix of partial 
derivatives of model output variables over model parameters  

d ( )( )
d ( )
kH k
kθ

=
y  is used. New values of ( )kθ   are determined 

using relation (5), where the parameters value are adjusted by 
difference of measured and model values m( ) ( )k k−y y . 
Error covariance matrix is calculated using relation (6). 
Values of covariance matrix coefficients P (k + 1) are 
determined in order to be used in the next step. Matrix P (k) 
coefficients are determined by the efficiency of identification 
through Kalman gain K, which should be reduced to a 
negligible amount over successful identification. The value 
of the matrix P (k) is corrected by a diagonal matrix Q (k), 
while the values of matrix Q (k) are set arbitrarily. 
Intentional introduction of errors in the matrix P (k) reduces 
possibility of local minima results.	 Kalman identification 
procedure (4) is comprised of prediction and correction steps. 
Stability and convergence rate is controlled by setting values 
of matrix ( )kQ   and training coefficient ( )kη .  

Efficiency of identification procedure is improved using 
multi-streaming. In each identification step N consecutive 
measurement records are used to calculate new values of 
parameter.  

To use multi-streaming matrix dimensions in (4), (5) and 
(6) need to be adjusted. Vectors and matrices dimensions in 
multi-streaming procedure are based on the number of input 
and output values N used in one step, and on the number of 
output values M of the mathematical model. Vector of 
modelled and measured outputs is defined as [ ],m N My ,. 

Covariance matrix [ ],( ) M MP k , ( )[ ],N N M
H k

⋅
 is partial 

derivations matrix, with gain matrix in multi-streaming 
procedure defined as ( )[ ],N M

K k . 

To identify mathematical model of synchronous generator 
(1), vectors of measured and model values of the model 
being identified, and 2 yN   as the number of coefficients in 
matrix of measured values in (5). Identification of 
mathematical model is performed in two steps. In step 1 
coefficients of state matrix A, input matrix B and output 
matrix C are determined, according to (1) and (2). 
Identification is performed using data obtained from 
measurements of generator connected to the grid 

( [ ]Tmy V ω= Δ Δ ). 

In step 2 coefficients of state matrix A, input matrix B 
and output matrix C are determined, according to (3). 
Identification is performed using data obtained from 
measurements of generator connected to the grid 

( [ ]Tmy V P= Δ Δ ). To reduce computation time, initial 
coefficients of matrices A and B are determined from step 1.  
The coefficients for all matrices of mathematical model (1) 
are directly determined from identification. 
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Fig. 1. Comparative plots of generator voltage VΔ and  
angular velocity ωΔ , obtained from measurements and 
simulated using identified   model .	 Measured values are 
marked with my , while the values obtained by applying the 
identified models marked with y .  
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Fig. 2.. Comparative plots of generator voltage VΔ  and 
generator power PΔ , obtained from measurements and 
simulated using identified model.	 Measured values are 
marked with my , while the values obtained by applying the 
identified models marked with y .  
In Fig. 1 results of mathematical model identification of 
synchronous generator (1) and (2) are shown. Measured 
values are obtained from actual system. A square waveform 
with 0.2s duration was applied to the voltage reference input 
of the excitation system. Random values were used for initial 
model coefficients in (1) and (2). 

In Fig. 2 results of mathematical model identification of 
synchronous generator (1) and (3) are shown. Measurements 
were performed in same setting as in the previous case. 
Random values were used for initial model coefficients in (1) 
and (2). In both cases, identification took 1000 steps to 
complete.  

In Fig. 3 result of mathematical model identification of 
synchronous generator is shown. Matrix coefficients in (1) 

and (3) are identified. Output vector [ ]Tmy V P= Δ Δ is 
obtained from measurements. In Fig. 3a and 3b measured 
response and simulation response of identified model are 
presented.  
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Fig. 3. Identification result for mathematical model of 
synchronous generator.  Measured values are marked with 
my , while the values obtained by applying the identified 

models marked with y .  
Figure 3c shows identification progress, where   

[ ] [ ]m m( ) ( ) ( ) ( )TRMS k k k k= − ⋅ −y y y y  represents 
scalar product of model output error. Identification process is 
stable, with convergence achieved in approximately 700 
steps. 

3. PSS parameter tuning 

Block diagram of mathematical model of the power 
system stabilizer is shown in Fig. 4. Model inputs are angular 
velocity differential ωΔ  and generator power 
differential PΔ .  

The PSS is essentially comprised of two compensation 
loops ( ωΔ  and PΔ ) which can be tuned separately. 
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Fig. 4. Block diagram of AVR and PSS. 

To tune PSS parameters it is necessary to form a 
mathematical model of synchronous generator with voltage 
regulator and PSS. From (1), (2), and (3) follows: 
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(7) 

Mathematical model of PSS with two compensation 
components is shown in (7). From (1) and (7) mathematical 
model of the entire system can be expressed as  

s
GRS

s s

A B C
A

B C A
⋅⎡ ⎤

= ⎢ ⎥⋅⎣ ⎦ 0GRS

B
B ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

[ ]0GRSC C=  (8) 

Where GRSA , GRSB  and GRSC   are state space matrices 
of a system comprised of generator, AVR and PSS. A, B and 
C are system variable matrices comprised of generator and 
AVR. sA , sB  and sC  are state space matrices of PSS from 
(7). 

To achieve optimal tuning of PSS parameters it is 
necessary to determine system damping as a function of 
parameter values. PSS structure is shown in Fig. 4. 

System damping can be calculated from eigenvalues of 
matrix GRSA . 

0GRSI Aλ − =                                                            (9) 

State space systems in (1), (2) or (1), (3) can be written as N 
partial transfer functions, where N is matrix size. 
Characteristic equations of partial transfer functions have 
form: ( )s λ− , of ( )( )1 2s sλ λ− −   for complex 

conjugated values of λ .  

Damping coefficient of partial transfer function is  

2 2

σ
ξ

σ ω
=

+
                                                        (10)     

Where Re( )σ λ= , Im( )ω λ= . 

Damping coefficient as a function of PSS parameters need to 
be defined: 

 ( ),s sf K Tξ =                                                  (11) 

Time constants sT ω  and sPT   are selected for tuning since 
they have largest impact on the PSS phase offset and gain 
constants sK ω  and sK ω , as they determine main signal 
gain. Damping function is formed using numerical procedure 
for calculation of eigenvalues of system matrix. Durand-
Kerner method for calculating eigenvalues is used. 

     ( ) ( )
( )

1

: 1 i GRS
i i n

i k
k k i

I A
k k

λ
λ λ

λ λ
= ≠

−
= − −

−∏
                 (12) 

In (12), basic relation for obtaining new eigenvalues is 
shown. Procedure is repeated until the error threshold is 

reached (e.g.
610ε −= ). Calculation of dumping function is 

performed for predetermined range of parameter values sT    

and sK . With the preselected time constant sT , eigenvalues 

of the system matrix GRSA  in (8) are calculated for a range 

of values of sK . In order to form the ordered set of 

eigenvalues, considering sK , gain constant is incremented in 

small steps. For each value of sK  matrix GRSA   in (8) is 
calculated, from which eigenvalues are computed using 
iterative methods. 

To retain the order of eigenvalues between changes of 

sK , initial values ( )i s sK Kλ +Δ  in (12) are selected from 

( )i sKλ  of previous sK . Although small value of sKΔ   
demands large number of eigenvalue calculations, it also 
reduces the number of iterations in Durand-Kerner procedure 
(12). Damping coefficients are determined from system 
eigenvalues using (10). Range of values sT  and sK  is 
adjusted to find the area with maximum damping. 

Selection of parameters for tuning is based on eigenvalues 
that show large sensitivity to change of parameter and have 
small values. After the calculation of damping functions for 
all partial transfer functions, only those functions are selected 
that are sensitive to parameter tuning and have lowest 
absolute value Re( )iλ .	
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Fig. 5. Function of eigenvalues of system matrix on system 
parameters, for output   variables,  generator voltage VΔ and 
angular velocity ωΔ . Where figure (a) shows real part 
Re( )λ of the eigenvalues, and figure (b) shows damping 
coefficient ( )ξ λ  of the system. 

Optimal tuning procedure is tested on the laboratory model 
of synchronous generator on the power grid. System matrix  

GRSA  in (8) is determined using the identification results of 
mathematical model (1) and (2) with output variables 

[ ]Ty V ω= Δ Δ  shown on fig. 1.  Using eigenvalues 
calculated from (12), for applied change of stabilization gain 
Ks  and time constant Ts , functional dependence of 
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Re( )λ  (Fig. 5a) and functional dependence of damping 
coefficient  ( )ξ λ  (Fig. 5b) is obtained. Output variables of 

mathematical model are generator voltage VΔ  and change 
of angular velocity ωΔ . From the results on Figure 5, tuning 
parameters are chosen based on maximum damping,  

0.03Ts = and 0.15Ks = .  

The same calculation is performed for model of 
synchronous generator (1) and (3), for output variables 

[ ]Ty V P= Δ Δ . Results of identification are shown in Fig 

3. Functional dependences 1 s3Re( ) f(Ks,T ,T )sλ =  and 

1 s3f(Ks,T ,T )sξ =  for selected partial transfer function are 
shown on Fig. 6. 
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Fig. 6.  Functional dependence of system matrix eigenvalues 
on tuning parameters, for output variables generator voltage 
VΔ  and generator power PΔ . Where figure (a) shows real 

part Re( )λ of the eigenvalues, and figure (b) shows 
damping coefficient ( )ξ λ  of the system.  

Parameters for maximum damping are 0.035Ts = 	 and 
0.12Ks = − . In the examples shown, other eigenvalues had 

large real component or small sensitivity to PSS tuning 
parameters. PSS parameter tuning was applied on laboratory 
model of synchronous generator on the grid, with results 
shown in Figure 5. Step generator voltage reference signal 
was applied to the tuned model. Voltage change is 

0.1refVΔ = − . Experiment results are shown in Fig. 7. 
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   Fig. 7.  Functional dependence of system matrix 
eigenvalues on tuning parameters, for output variables VΔ  
and PΔ .  

In the experiment, change of angular velocity ωΔ  was used 
for system stabilization. For next example, results of 
parameter tuning were applied, shown in Fig. 6. Comparison 
of system responses and measurement results of laboratory 
model are shown in Fig. 8. Stabilization of electromechanical 
oscillations is performed using active power differential 
PΔ .  

In the third experiment, both stabilization signals ωΔ  
and PΔ  were used, with PSS formed according to IEEE 
PS2B. PSS parameters for input ωΔ   are set from results in 
Fig. 5. ( 0.03Ts =  and 0.15Ks = ). Parameters for input 
PΔ  0.15Ks =  are set from results in Fig. 6. 

( 0.035Ts =  and 0.12Ks = − ).  

Comparison of system responses of generator voltage VΔ , 
angular velocity ωΔ  and active power PΔ , for AVR and 
AVR+PSS is shown in Fig. 9.  
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Fig. 8. Comparison of system responses of voltage VΔ , 
active power PΔ , angular velocity ωΔ , for step change of 
generator voltage reference, with and without   PSS. 
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Fig. 9. Comparison of system responses of voltage VΔ , 
angular velocity ωΔ , active  power PΔ , for step change of 
generator voltage reference, with and without PSS.  

 Results obtained from actual generator show the 
efficiency of the described process of PSS parameter tuning. 
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4. Conclusion 

In the paper, the procedure of mathematical model 
identification of synchronous generator is presented. Kalman 
filter method is applied to achieve stable identification 
procedure with excellent matching of measurement and 
simulation results. Mathematical model of synchronous 
generator has two output values. The first in both cases being 
the generator voltage, and the other is used as PSS input. The 
procedure is more time consuming during model 
identification, but provide better results during PSS 
parameter tuning. 

Described tuning procedure produces results as 
sensitivity to parameter change. Procedure was used for a 
large range of parameter values, providing a good insight in 
the sensitivity of procedure for individual parameter values. 
By using the measured values used in AVR as inputs for 
parameter tuning, measurement and signal processing errors 
are eliminated, contributing to the procedure accuracy. 
Testing on the actual generator shows feasibility of use of 
suggested procedure of PSS parameter tuning. Matlab and 
Simulink were used for procedure implementation. 
Measurements and control systems on laboratory model were 
implemented using XPC Toolbox from Matlab library.   
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Fig. 10.  The principle diagram of the laboratory model 
based on   MATLAB xPC Target. 

Fig. 10 shows principle diagram of synchronous generator 
laboratory model on which testing of the proposed procedure 
of optimal parameter setting of the power system stabilizer 
was connected. The laboratory model consists of 
synchronous generator connected to a power grid and an 
induction motor with speed controller as a mover of the 
generator. Control, measurement and processing of measured 
data was realised using a system of two computers – host and 
target. Host computer is running MATLAB and Simulink 
XPC Target module. Target computer is equipped with a 
DAQ card and is running XPC Kernel from MATLAB XPC 
Target software.  

The corresponding model was developed in Matlab 
Simulink environment on host computer, and then compiled 
and transferred to the target computer. The described method 
accomplishes fast digital controller, where time discretization 
is 410DT

−=  s. The laboratory model presented in Fig. 10 is 
used in both cases: in the process of identifying as well as 
testing of the effectiveness of the proposed algorithm  
for determination of optimal parameters of PSS.  
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