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Abstract- Wind energy is considered as a challenging problem for power systems because of its variable nature. As a result of 

accommodating wind resources with conventional thermal units in the system, performing of electricity markets will be more 

complicated. The results of the market clearing problem can be improved by proper wind uncertainty modeling. One of the 

best methods in order to handle wind uncertainty is to use stochastic programming. The expected value of the perfect 

information (EVPI) and value of the stochastic solution (VSS) are two well-known indices defined to analyse stochastic 

programming results compared to a case with having full information and a case disregarding uncertainty, respectively. In this 

paper, impact of the wind uncertainty on the EVPI and VSS indices is investigated in the joint energy and reserve market 

clearing problem. Wind uncertainty is characterized by two measures, namely wind penetration level and wind forecasting 

accuracy level. The wind penetration levels are modeled as a fraction of a basic wind power value while various forecasting 

accuracy levels are modeled by normal probability distribution function with different variances. The problem is investigated 

and results are analyzed under different levels of the wind penetration and forecasting accuracies. Based on obtained results, 

the value of the EVPI metric increases with increment of the wind penetration level or forecasting error variance. Also, 

because of the higher uncertainty level of the wind power arising from penetration level or variance increment, the value of the 

VSS metric increases. 

Keywords- Wind uncertainty, joint energy and reserve market, stochastic programming, Expected Value of Perfect 

Information, Value of Stochastic Solution. 

Nomenclature 

Sets 

J Thermal units set 

K Time periods set 

S Scenarios set 

Parameters 

A(j) Constant coefficient of piecewise linear generation cost 

 function of unit j 

a(j) Constant coefficient of quadratic generation cost function 

 of unit j 

b(j) First order coefficient of quadratic generation cost function 

 of unit j 

c(j) Second order coefficient of quadratic generation cost 

 function of unit j 

CDRB(j) Cost of down-reserve block of unit j 

 Cost of down-reserve block of demand at period k 

CDRD(j) Cost of depleted down-reserve of unit j 

 Cost of depleted down reserve of demand at period k 

CLSh(k) Load shedding cost at period k 

CD(j,k) Shut-down cost of unit j at period k 

CU(j,k) Start-up cost of unit j at period k 

CURB(j) Cost of up-reserve block of unit j 

 Cost of up-reserve block of demand at period k 

DRBC (k)

DRDC (k)

URBC (k)
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CURD(j) Cost of depleted up-reserve of unit j 

 Cost of depleted up-reserve of demand at period k 

CWS(k) Wind spillage cost at period k 

Dmax(k) Maximum demand at period k 

Dmin(k) Minimum demand at period k 

Demand(k) Base (constant) demand at period k 

DT(j) Minimum down-time of unit j 

EPW(k,s) Wind power forecasting error at period k and scenario s 

FL(j,l) Slope of segment l of piecewise linear generation cost 

 function of unit j 

G(j) Number of time periods unit j must be initially online  

              due to its minimum up-time constraint 

L(j) Number of time periods unit j must be initially offline  

              due to its  minimum down-time constraint 

NL(j) Number of segments of generation cost function of unit j 

P(s) Probability of scenario s 

PD(k) Demand price at period k 

Pmax(j) Maximum generation capacity of unit j 

Pmin(j) Minimum generation capacity of unit j 

PW(k) Forecasted mean wind power at period k 

RD(j) Ramp-down limit of unit j 

RU(j) Ramp-up limit of unit j 

S0(j) Number of time periods unit j has been offline prior to the 

 first period of the time span  

SD(j) Shut-down ramp limit of unit j 

SU(j) Start-up ramp limit of unit j 

U0(j) Number of time periods unit j has been online prior to the 

 first period of the time span  

UT(j) Minimum up-time of unit j 

V0(j) Initial state of unit j 

Variables 

CB Sum of power balancing costs in real-time state 

CP(j,k) Generation cost of unit j at period k 

CRB(j,k) Sum of reserve block costs of unit j and load at period k 

D(k) Demand at period k 

DSch(k,s) Scheduled Demand at period k and scenario s 

DRB(j,k) Down-reserve block of unit j at period k 

 Down-reserve block of demand at period k 

DRD(j,k,s)Depleted down-reserve of unit j at period k and scenario s 

 Depleted down-reserve of demand at period k and scenario s 

LSh(k,s) Amount of load shedding at period k and scenario s 

Pavail(j,k) Available generation capacity of unit j at period k 

PG(j,k) Generated power of unit j at period k 

PSch(j,k) Scheduled generated power of unit j at period k and 

 scenario s 

t off(j) Number of time periods unit j has been offline prior to the 

 start-up in period k 

URB(j,k) Up-reserve block of unit j at period k 

 Up-reserve block of demand at period k 

URD(j,k,s) Depleted up-reserve of unit j at period k and scenario s 

 Depleted up-reserve of demand at period k and scenario s 

V(j,k) Binary variable that is equal to 1 if unit j be online in 

 period k  and 0 otherwise 

WS(k,s) Spilled wind power at period k and scenario s 

 δ (j,k,l) Generated power in segment l of piecewise linear 

 generation cost function of unit j at period k 

1.    Introduction 

Strong interests toward the use of the renewable energy 

resources are created because of growing increase of energy 

consumption, high and increasing cost of the fossil fuels and 

non-renewable nature and environmental pollution caused by 

them. In the terms of the use of the renewable energies, the 

share of the wind energy is more than the other resources of 

renewable energies because of its characteristics. It is 

plentiful, renewable, widely distributed, clean, produces no 

greenhouse gas emissions, and uses little land. But wind 

energy is considered as a challenging problem for the power 

systems because of its intermittent and variable nature [1, 2]. 

In last year, at least 84 countries were utilizing wind power 

to supply their power demands. Wind power capacity has 

expanded to 336 GW by June 2014, and wind energy 

generation is growing fast and has reached around 4% of the 

worldwide use of electricity [3, 4]. 

On the other hand, the power industry has been led to the 

restructuring in many countries because of problems arising 

from the inefficiency and inability of governments to supply 

the costs of investment and operation of this industry. As a 

result of the restructuring, the power industry that operated as 

a vertically integrated structure in the long-term became a 

competitive industry. Formation of the free and competitive 

markets for electricity and companies with various tasks was 

one of the results of the restructuring and deregulation. It 

should be noted that the independent system operator (ISO) 

clear the electricity market using the pool market strategy 

that is one of the best methods for market clearing. Also, 

performing the real time market is one of the best ways to 

compensate the imbalances between the power production 

and consumption in the real time state. The real time market 

is formed to utilize the ancillary services such as depleted up 

and down reserves at the moment of energy delivery. As a 

result, the energy and reserve markets should be cleared by 

the ISO at the same time [5-7].  

By adding the wind energy to the system, solution of the 

joint energy and reserve market clearing problem become 

more complicated and appropriate uncertainty modeling of 

the wind power will have a significant impact on the results 

of this problem. One of the best tools to model the effect of 

the wind power uncertainty on the market clearing problem 

is stochastic programming [8, 9]. Stochastic programming is 

used to formulate and solve the problems that have uncertain 

parameters and two or more stages of decision-making. In 

this type of programming, each uncertain parameter is 

modeled by means of the possible scenarios set. By taking 

into account the stochastic solution instead of its 

deterministic counterpart, optimal decisions maximize the 

ISO expected profit in the market clearing problem [10, 11]. 

Although, accuracy of the wind power forecasting is 

acceptable in the literature, but it is not equal to 100 percent 

and there is some forecasting errors. So, the stochastic 

programming can be used to model the wind power 

uncertainty properly. Because in this type of programming, a 

number of scenarios can be defined to model the different 

wind power realizations and at the same time, the objective 

function is depending on these scenarios. Furthermore, in the 

URDC (k)

BDR (k)

DDR (k,s)

BUR (k)

DUR (k,s)
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stochastic programming different stages are defined that can 

simulate our problem model properly. 

Many studies on the settlement of electricity markets 

have been conducted using the stochastic programming so 

far. Authors in [12] have considered a mixed integer linear 

stochastic programming for the generation scheduling of the 

units in the day ahead electricity market. In this model, 

spinning reserves pricing and different scenarios are taken 

into account in the real time. Also, instead of considering all 

possible scenarios, a certain number of them have been 

considered to limit the size of the model. In [13], a model 

with stochastic programming has been considered to 

optimize biding strategies of the hydroelectric units. The 

one-day short-term planning and Pumped-storage units have 

been utilized to maximize profit, too. In [14], the power 

production of the units in the day ahead joint energy and 

reserve markets has been scheduled by use of the stochastic 

programming. This stochastic model has considered both of 

the uncertainties of the forecasted prices and unit outages. 

Authors in [15], have utilized a stochastic model to 

determine the optimal bidding strategy for the profit 

maximization of the thermal and wind units in the joint 

energy and reserve markets. In [16], the storage units belong 

to the independent investors have been considered to sell 

energy in the day ahead market. The generated power of the 

wind farms and other renewable sources has been considered 

as the main source of the electrical power. Also, the 

stochastic programming has been used to model the variable 

nature of the market prices and to select the optimal pricing 

strategy of the storage units. In [17], authors have proposed a 

model for the short-term electricity market in order to 

analyze the impact of the wind farms. As well, in this model, 

uncertainty of the wind power and power balancing methods 

has been considered. 

In the literature, the advantages of using the stochastic 

programming instead of its deterministic counterpart in the 

electricity markets have not been analyzed mathematically. 

The advantages of the stochastic programming can be 

showed by use of the two main metrics: the Expected Value 

of Perfect Information (EVPI), and the Value of Stochastic 

Solution (VSS). In this paper, the impact of the wind power 

uncertainty level on the EVPI and VSS metrics is analyzed in 

the joint energy and reserve market clearing problem. Using 

EVPI metric, the additional profit obtained for the ISO 

because of accurate forecasting of the wind power, is 

calculated. By use of VSS metric, the additional profit 

obtained for the ISO because of using the stochastic 

programming instead of the deterministic one, is calculated.  

The wind power uncertainty level is modeled by use of 

two methods. First, the wind power penetration level is 

considered as a portion of the base case wind power and 

then, the wind power forecasting error is modeled as a 

normal probability distribution function that its variance can 

change. Also in the proposed model for the market clearing 

problem, the thermal units offer bids including power / Price 

/ unit characteristics unlike most of the articles in this field 

that consider simple bids including power / price. In other 

words, the generation, start up and shut down costs, as well 

as all technical constraints of the thermal units are considered 

by the ISO. Therefore, the average proposed price of the 

generated power will be reduced. These thermal constraints 

include ramp up limit, ramp down limit, start up ramp limit, 

shut down ramp limit, minimum up time limit and minimum 

down time limit of the units. Also, the spinning up and down 

reserves provided by the thermal units and demand are 

considered to balance the power production and consumption 

in the real time state. In addition, the concepts of the wind 

spillage and load shedding are utilized in the model.  

The study case consists of five thermal units and one 

wind unit and generation scheduling of the units is done of 

the GAMS software environment. The remaining sections 

after this introduction are outlined as follows. In section 2, 

the concepts of the stochastic programming, EVPI and VSS 

metrics and modeling of the wind power uncertainty will be 

studied. The proposed model will be formulated in Section 3 

and input parameters and Simulation results are analyzed in 

Section 4. Finally, in section 5, relevant conclusions will be 

presented. 

2.   Mathematical Concepts 

In this section, the concepts of the stochastic 

programming and EVPI and VSS metrics as well as 

uncertainty modeling of the wind power are described. The 

two-stage stochastic programming is utilized to clear the 

joint energy and reserve markets. To evaluate the efficiency 

of the stochastic programming, two metrics including EVPI 

and VSS are considered.  

2.1.   Stochastic Programming 

One of the best methods to model the problems with 

uncertain parameters is stochastic programming. In our 

proposed approach, the stochastic programming is used to 

model the uncertainty on the wind power output, which is 

characterized as a random variable [22, 23]. A limit number 

of the scenarios should be generated by sampling of this 

random variable to represent the realizations of the wind 

power uncertainty. This sampling can be carried out by 

utilization of the forecasted wind power, mean and standard 

deviation of the wind power forecasting error. Generated 

scenarios can be shown as a scenario tree according to Figure 

1 [24, 25]. Also, in the stochastic programming to express 

when a new realization of the uncertain parameter is 

observed and the related information is available for the 

decision maker (ISO), different stages are defined [13].  

In our case, the two-stage stochastic programming is 

used. The first-stage decisions are the on/off states of the 

thermal units and their output power and reserve blocks, and 

the second-stage ones are the depleted reserves and amounts 

of the wind spillage and load shedding. It should be noted 

that in the stochastic programming the expected value of the 

objective function should be calculated because it is a 

multivalued function considered as a random variable. 
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Figure 1: Scenario tree in the stochastic programming 

2.2. EVPI and VSS Metrics 

The Expected Value of the Perfect Information (EVPI) 

and the Value of the Stochastic Solution (VSS) are two 

metrics used to evaluate the efficiency of the stochastic 

programming. The EVPI metric shows the cost that the ISO 

can pay for receiving perfect information of the wind power 

future realizations. Suppose that in the joint energy and 

reserve market clearing problem, P1 be the optimal value of 

the objective function. This value shows the ISO expected 

profit by taking into consideration of the all wind power 

scenarios. Also, suppose that P2 be the optimal value of the 

objective function of the joint energy and reserve market 

clearing problem when perfect information is available for 

the ISO. Then, the EVPI metric is defined as follows: 

EVPI = (P2 - P1) > 0                                                     (1) 

The value of the stochastic solution is a metric to 

calculate the additional profit obtained from using the 

stochastic programming instead of its deterministic 

counterpart. In the stochastic programming of the joint 

energy and reserve market clearing problem, the random 

variable describing wind power is replaced by the expected 

value of the wind power. The optimal values of the first-

stage variables are obtained from the solution of this 

deterministic problem. Then, the stochastic market clearing 

problem can be solved by fixing the values of the first-stage 

variables to those provided by the deterministic one. Suppose 

that P3 be the optimal value of the objective function of the 

joint energy and reserve market clearing problem with fixed 

first stage variables [10]. Therefore, the VSS metric is 

calculated as follows: 

VSS = (P1 - P3) > 0                                                      (2) 

2.3. Uncertainty Modeling of the Wind Power  

The hourly power demand and different penetration 

levels of the wind power are shown in Figure 2. It should be 

noted that this demand curve have two peaks in the hours 12 

and 20. According to this figure, the amount of the wind 

power in the state with name of wind1 is considered as the 

base case wind power. Other states (wind2, wind3, and 

wind4) show the amounts of the wind power with penetration 

levels 0.75, 0.5, and 0.25, respectively. In other words, the 

penetration level is equal to 1 in the base case and in the 

other cases the amount of the wind power is reduced to 75 

percent, 50 percent, and 25 percent of the base case wind 

power [18]. 

Also, the wind power forecasting error can be modeled 

as a normal probability distribution function with zero mean 

and different variances. Different variances are equal to 

0.025, 0.050, 0.075, and 0.100 according to Figure 3. Each 

normal probability distribution can be discretized into 

thirteen equal sections and thirteen error values with their 

relevant probabilities can be calculated. Therefore thirteen 

scenarios with their relevant probabilities can be considered 

for the wind power [19-21]. 

 

 
Figure 2: Different penetration levels of the wind power 

 

 
Figure 3a: variance 0.025 

 
Figure 3b: variance 0.050 
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Figure 3c: variance 0.075 

 
Figure 3d: variance 0.100 

Figure 3: Normal probability distribution of the wind power 

forecasting error with variance 0.025 (Figure 3a), variance 

0.050 (Figure 3b), variance 0.075 (Figure 3c), and variance 

0.100 (Figure 3d) 

3. Proposed formulation 

In this paper, the impact of the wind power uncertainty 

level on the EVPI and VSS metrics is analyzed in the joint 

energy and reserve market clearing problem. To model the 

uncertainty of the wind power a two-stage stochastic 

programming is used. The proposed model is in the form of a 

mixed integer linear programming due to the use of the 

binary variables to model the on/off states of the thermal 

units. In this section, first, the objective function of the 

problem is described and then, the real time constraints and 

day ahead constraints of the market are presented. 

3.1. Objective Function  

The ISO expected profit in the joint energy and reserve 

market clearing problem is considered as follows [10]: 

   (3)  

 

The expected profit in equation (3) consists of two terms. 

First term is equal to the revenue obtained from selling 

energy to the consumers. Second term is sum of the of the 

thermal units power production, start up and shut down costs, 

reserve block costs, and the expected cost of the power 

balancing in the real-time state. So, the expectation value of 

the profit is equal to the difference between this two terms. 

Usually, a quadratic function is utilized to model the 

production cost function of a thermal unit and as a result the 

objective function consisted of this quadratic function is non-

linear. So, a linear approximation is applied to the production 

cost functions of the thermal units in order to guarantee 

convergence of the solution. The quadratic production cost 

function of the thermal units can be defined as follows: 

              (4) 

This quadratic cost function is approximated by a 

piecewise-linear cost function according to equations (5), (6), 

and (7) [26]: 

               (5) 

                              (6) 

               (7) 

Also, in objective function (3) there is a cost that pay for 

purchase the reserve blocks in the day ahead market (CRB). 

This cost is considered as the reserve block cost and it is 

equal to sum of the costs of the up and down reserve blocks 

provided by the thermal units and demand. This cost is 

considered as equation (8): 

           (8) 

The expectation value of the power balancing cost (CB) 

in the real-time is the last term in objective function (3). This 

cost is equal to sum of the expected costs of the depleted up 

and down reserves provided by thermal units and load, wind 

power spillage and load shedding in the real-time market. 

The expected power balancing cost is calculated as follows: 

              (9) 

3.2. Market constraints 

In this section, the real time market constraints are 

described first, and then, the day ahead market constraints 

are studied. The power production and consumption should 

be balance in the real-time state according to constraint (10). 

In the left hand side of this equation, power production is 

equal to the scheduled power of the thermal units plus the 

generated wind power minus the spilled wind power. On the 
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other hand, Power consumption is equal to the scheduled 

power demand minus the amount of the load shedding. Also, 

scheduled power of each thermal unit is equal to the 

generated power of it plus its depleted up reserve minus its 

depleted down reserve. Similarly, the scheduled power 

demand is equal to the power demand plus depleted up 

reserve minus depleted down reserve of demand side. This 

variables are given in the equations (11) and (12), 

respectively:  

                  (10) 

                 (11) 

                           (12) 

The scheduled power of the thermal units is limited by 

the minimum generation capacity and available generation 

capacity of them according to equation (13). Also, according 

to equation (14), available generation capacity of the units 

should be smaller than the maximum generation capacity of 

them. As well, the scheduled power demand is limited by the 

supposed minimum and maximum amounts of the power 

demand in equation (15): 

                          (13) 

                                 (14) 

                                        (15) 

Constraints (16)-(19) are used to describe the limits of 

the depleted reserves in the real-time state. The depleted up 

and down reserves provided by the thermal units and demand 

should be smaller than the up and down reserve blocks 

provided by them: 

                                                (16) 

                                                (17) 

                                                         (18) 

                                                           (19) 

Also, the spilled wind power and amount of the load 

shedding are smaller than the generated wind power and 

scheduled power demand, respectively:    

                      (20) 

                                    (21) 

Described constraints were the real time market 

constraints. The other remaining constraints are the day-

ahead market constraints. These constraints consist of 

technical constraints of the thermal units such as ramp-up 

limit, ramp-down limit, start-up ramp limit, shut-down ramp 

limit, minimum up-time, and minimum down time [27]. The 

ramp-up and the ramp-down limits of the thermal units are 

described in equations (22), (23), and (24): 

        (22) 

                                         (23) 

      (24) 

The minimum up-time constraints are defined in 

equations (25)-(28):  

                                   (25) 

                                                (26) 

                         (27) 

                          (28) 

Finally, the minimum down-time constraints are shown 

in equations (29)-(32): 
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

                     (31) 
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                            (32) 
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Sch G D DP (j,k,s) P (j,k) UR (j,k,s)-DR (j,k,s)

j J ,   k K ,   s S 

 

     

Sch D DD (k,s) D(k) UR (k,s)-DR (k,s)

                   k K ,   s S  

 

   

min Sch availP (j) V(j,k) P (j,k,s) P (j,k)

j J ,   k K ,   s S  

  

     

avail max0 P (j,k) P (j,k) V(j,k)

j J ,   k K

  

   

min Sch maxD (k) D (k,s) D (k)

k K ,   s S  

 

   

D BUR (j,k,s) UR (j,k)  

j J ,   k K ,   s S



     

D BDR (j,k,s) DR (j,k)

j J ,   k K ,   s S



     

D BUR (k,s) UR (k)  

k K ,   s S



   

D BDR (k,s) DR (k)

k K ,   s S



   

D DLSh(k,s) D(k) UR (k,s)-DR (k,s)

k K ,   s S

 

   

WW PWS(k,s) P (k)(1 E (k,s))

k K ,   s S

 

   

avail Sch

max

P (j,k) P (j,k-1,s)+RU(j) V(j,k)

+SU(j) [V(j,k)-V(j,k-1)]+P (j) [1-V(j,k)]

 j J ,  k K ,   s S 

 

 

     

avail maxP (j,k) P (j) V(j,k+1)

+SD(j) [V(j,k)-V(j,k+1)]

 j J ,  k K 

 



   

Sch Sch

max

P (j,k-1,s)-P (j,k,s) RD(j) V(j,k)

+SD(j) [V(j,k-1)-V(j,k)]+P (j) [1-V(j,k-1)]

 j J ,  k K ,   s S 

 

 

     

0 0G(j)=min{T,[UT(j)-U (j)] V (j)}

G(j)

k=1

[1-V(j,k)]=0      j J 

k+UT(j)-1

n=k

V(j,n) UT(j) [V(j,k)-V(j,k-1)]

 j J ,  k=G(j)+1,...,T-UT(j)+1

 

  



T

n=k

[V(j,n) (V(j,k)-V(j,k-1))] 0

 j J ,  k=T-UT(j) 2,...,T

 

   


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4. Case study and simulation results 

The considered case consists of five thermal units and 

one wind farm and the proposed model is solved in the 

GAMS software version 24.2.2 using CPLEX solver version 

11. In this section, the input parameters are given and then, 

the simulation results are analyzed. 

The thermal units parameters are shown in Table 1. The 

time span is considered 24 hours and it is divided into 24 

time periods. Also, the hourly base power demand and 

hourly demand price are given in Tables 2 and 3.  

                               

 

 

 

 

The hourly forecasted mean wind power is shown in 

Table 4. Furthermore, different variances of the discretized 

normal probability distribution function of the wind power 

forecasting error and their relevant probabilities are 

considered according to Table 5.   

 

 

 

The price of one MW of the reserve block and depleted 

reserve of the thermal units are equal to 10 and 20 percent of 

the one MW generated power price of them, respectively. 

Also, the price of one MW of the reserve block and depleted 

reserve of the power demand are considered 3 and 5 percent 

of the hourly power demand price, respectively. The costs of 

the load shedding and wind spillage are supposed 500 and 10 

dollars per MW, respectively.  

The simulation results including the obtained expected 

profit due to the use of the stochastic programming (profit 1), 

the obtained profit due to the use of the perfect information 

of the wind power (profit 2), and the value of the EVPI 

metric are shown in Tables 6a to 6d. These results are given 

by consideration of penetration levels 0.25, 0.5, 0.75, and 1 

Table 1: Thermal units parameters [27] 

Parameters Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

Pmin (MW) 125 100 75 50 50 

Pmax (MW) 500 400 300 200 200 

UT (h) 7 6 5 4 3 

DT (h) 7 6 5 4 3 

a ($) 700 900 600 700 400 

 b($/MW) 16 23 17 21 18 

c ($/MW2) 0.0045 0.0060 0.0035 0.0052 0.0027 

CU($) 700 900 600 700 400 

CD($) 700 900 600 700 400 

RU(MW) 250 200 150 100 100 

RD(MW) 500 400 300 200 200 

SU(MW) 125 100 75 50 50 

SD(MW) 500 400 300 200 200 

 

Table 2: Hourly base demand (MW) [27] 

Hour 1 2 3 4 5 6 

Load 700 750 850 950 1000 1100 

Hour 7 8 9 10 11 12 

Load 1150 1200 1300 1400 1450 1500 

Hour 13 14 15 16 17 18 

Load 1400 1300 1200 1050 1000 1100 

Hour 19 20 21 22 23 24 

Load 1200 1400 1300 1100 900 800 

 

Table 3: Hourly demand price ($) 

Hour 1 2 3 4 5 6 

Price 20 20.25 20.75 21.25 21.50 22 

Hour 7 8 9 10 11 12 

Price 22.25 22.50 23 23.50 23.75 24 

Hour 13 14 15 16 17 18 

Price 23.50 23 22.50 21.75 21.50 22 

Hour 19 20 21 22 23 24 

Price 22.50 23.50 23 22 21 20.50 

 

Table 4: Hourly forecasted mean wind power (MW) [18] 

Hour 1 2 3 4 5 6 

Power 700 525 435 350 525 435 

Hour 7 8 9 10 11 12 

Power 525 435 700 610 525 610 

Hour 13 14 15 16 17 18 

Power 525 525 525 785 610 435 

Hour 19 20 21 22 23 24 

Power 700 875 875 875 875 785 

 

Table 5: Probabilities of the different variances  
of the wind forecasting error distribution function [19-21] 

Scen. 1 2 3 4 5 6 7 

Mean 

Error 
-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0 

Prob 

Var. 1 
0 0 0 0 0.0013 0. 1573 0.6827 

Prob 

Var. 2 
0 0 0.0002 0.0060 0.606 0.2417 0.3829 

Prob 

Var. 3 
0.0001 0.0012 0.0085 0.038 0.1109 0.2108 0.2611 

Prob 

Var. 4 
0.0030 0.0092 0.0278 0.0656 0.1210 0.1747 0.1974 

Scen. 8 9 10 11 12 13  

Mean 

Error 
0.05 0.10 0.15 0.20 0.25 0.30  

Prob 

Var. 1 
0. 1573 0.0013 0 0 0 0  

Prob 

Var. 2 
0.2417 0.606 0.0060 0.0002 0 0  

Prob 

Var. 3 
0.2108 0.1109 0.038 0.0085 0.0012 0.0001  

Prob 

Var. 4 
0.1747 0.1210 0.0656 0.0278 0.0092 0.0030  
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of the forecasted wind power as well as variances 0.025, 

0.05, 0.075 and 0.1 of the normal probability distribution 

function of the wind power forecasting error. 

Table 6: Values of the profits ($) and EVPI metric ($) for 

different penetration levels and variance 0.025 (Table 6a), 

variance 0.050 (Table 6b), variance 0.075 (Table 6c), 

variance 0.100 (Table 6d) 

 
 

 
 

 
 

 

Based on obtained results, following increasing wind 

penetration level, the expected profit increases because of 

less power production of the thermal units and less operating 

cost of them. Also, the value of the EVPI metric increases 

with penetration level increment; because more uncertainty is 

generated in the problem and as a result, difference between 

the obtained expected profit due to the use of the stochastic 

solution and the obtained profit due to the use of the perfect 

information increases. On the other hand, by increasing the 

variance of the normal probability distribution function of 

the wind power forecasting error, the expected profit 

decreases; because the accuracy of the wind power 

forecasting decreases and as a result, the ISO needs to pay 

more costs to purchase the reserve blocks and depleted 

reserves for the power balancing in the real time. Also, the 

value of the EVPI metric increases with variance increment 

due to the more uncertainty generated in the problem. 

The obtained expected profit due to the use of the 

stochastic programming (profit 1), the obtained profit due to 

the use of mean value of the wind power and deterministic 

programming (profit 3), and the value of the VSS metric with 

regard to the different penetration levels and variances are 

given in Tables 7a to 7d. The values and variations of the 

obtained expected profit due to the use of the stochastic 

programming are quite similar to the previous results (Tables 

6a to 6b). The VSS metric is utilized to calculate the 

additional profit obtained from using a stochastic 

programming instead of its deterministic counterpart. This 

metric is equal to the value of the expected profit obtained 

from the stochastic solution minus the value of the profit 

obtained from the deterministic solution. As the results in the 

Tables 7a to 7b show, all of the values of the VSS metric are 

positive and this means that the ISO can earn more profit by 

use of the stochastic programming instead of the 

deterministic one; so, the necessity of the utilization of the 

stochastic solution is revealed. It should be noted that, 

because of the higher uncertainty level of the wind power 

arising from penetration level or variance increment, the 

value of the VSS metric increases.  

Table 7: Values of the profits ($) and EVPI metric ($) for 

different penetration levels and variance 0.025 (Table 7a), 

variance 0.050 (Table 7b), variance 0.075 (Table 7c), 

variance 0.100 (Table 7d) 

 
 

 
 

 
 

 

Table 6a: variance 0.025 

EVPI Profit 2 Profit 1 PL 

24645 150958 126313 0.25 

48568 253911 205343 0.50 

71300 355143 283843 0.75 

93326 454292 360965 1.00 

 

Table 6b: variance 0.050 

EVPI Profit 2 Profit 1 PL 

25341 150958 125616 0.25 

50084 253911 203826 0.50 

72867 355143 282276 0.75 

94216 454292 360075 1.00 

 

Table 6c: variance 0.075 

EVPI Profit 2 Profit 1 PL 

25993 150958 124994 0.25 

51022 253911 202939 0.50 

73893 355143 281321 0.75 

97226 454292 357156 1.00 

 

Table 6d: variance 0.100 

EVPI Profit 2 Profit 1 PL 

26614 150958 124359 0.25 

52509 253911 201426 0.50 

75189 355143 279989 0.75 

98081 454292 356256 1.00 

 

Table 7a: variance 0.025 

VSS Profit 3 Profit 1 PL 

8367 117945 126313 0.25 

13329 192013 205343 0.50 

17157 266686 283843 0.75 

22982 337983 360965 1.00 

 

Table 7b: variance 0.050 

VSS Profit 3 Profit 1 PL 

9409 116207 125616 0.25 

13813 190013 203826 0.50 

17589 264687 282276 0.75 

23773 336302 360075 1.00 

 

Table 7c: variance 0.075 

VSS Profit 3 Profit 1 PL 

10025 114969 124994 0.25 

14887 188051 202939 0.50 

19420 261901 281321 0.75 

23965 333191 357156 1.00 

 

Table 7d: variance 0.100 

VSS Profit 3 Profit 1 PL 

11401 112957 124359 0.25 

15394 186032 201426 0.50 

20172 259817 279989 0.75 

25728 330528 356256 1.00 
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The hourly generated power of the thermal units in the 

form of the radar diagrams are shown in Figures 4 and 5. In 

our problem, the ISO has scheduled the power generation of 

the thermal units 1, 3, and 5 optimally. Figure 4 depicts the 

generated power variations of these three units with regard to 

the different penetration levels of the wind power. According 

to this figure, when the wind power penetration level 

(generation) increases, the power generation of these thermal 

units decreases. For instant, when penetration level has 

equaled to 0.75 or 1, unit 5 has been shut down in some 

hours like the first and last hours of the time span. Also, the 

generated power variations of these three units considering 

the different variances of the probability distribution function 

of the wind power forecasting error are shown in Figure 5. 

As this figure show, generated powers of the units have 

slight variations when variance changes. In this situation, the 

values of the reserve blocks and depleted reserves in the real 

time change significantly to compensate the power 

imbalance arising from inaccurate wind power forecasting.   

 
Figure 4: Hourly generated power of units 1(—), 3(→), and 

5( ) with regard to the different penetration levels (MW) 

 

 
Figure 5: Hourly generated power of units 1(—), 3(→), and 5(

) with regard to the different variances (MW) 
 

Amounts of the up and down reserve blocks (URB & 

DRB) and expected value (in different scenarios) of the 

depleted up and down reserves (URD & DRD) are 

represented in Figure 6. This reserves are sum of the reserves 

provided by the five thermal units in every hour and their 

value are calculated for PL=0.5 and Var=0.075. Based on 

these results, significant part of the reserves is provided as 

down reserve; in other words, the thermal units decrease their 

power production to balance the power production and 

consumption in the real time state. On the other hand, the 

amounts of the reserve blocks and depleted reserves provided 

by the demand are shown in Figure 7. For the demand side 

reserves, up reserves have an important role in the power 

balancing. It should be noted that the expected value of the 

depleted reserves is always smaller than the reserve blocks. 

Also, due to the applying the two stage stochastic 

programming, in the solution process the amounts of the 

reserve blocks (first stage decisions) are determined first, and 

then, the amounts of the depleted reserves (second stage 

decisions) are calculated. 

The other second stage decision variables that play a role 

in the power balancing in the real time state are the spilled 

wind power and amount of the load shedding. The values of 

these two variables in the different scenarios during 24 hours 

are shown in Figures 8 and 9 for PL=0.5 and Var=0.075. 

According to Figure 8, in the scenarios 10 to 13 all of the 

generated wind power is not utilized; because wind farm 

produces abundant power in these scenarios and excess wind 

power is spilled to balance the power production and 

consumption in the real time. Also, it can be deduced from 

the Figure 9 that in the scenarios 1 and 2 the power demand 

is not supplied completely; in other words, in these scenarios 

load shedding occurs due to the less power production of the 

wind farm. In this situation, load shedding is a more 

economical way than the power production of the thermal 

units to supply demand. 

 

 
Figure 6: The up and down reserve blocks (URB & DRB) and 

expected value of the depleted up and down reserves (URD & 

DRD) of the thermal units (MW) 
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Figure 7: The up and down reserve blocks (URB & DRB) and 

expected value of the depleted up and down reserves (URD & 

DRD) of the demand (MW) 

 

  
Figure 8: Hourly spilled wind power in different scenarios (MW) 

 

 
Figure 9: Amount of the load shedding in different scenarios (MW) 

5. Conclusion 

In this paper, the impact of the wind power uncertainty 

on the stochastic programming evaluation measures, namely 

EVPI and VSS metrics is studied. The proposed formulation 

clears joint energy and reserve markets considering wind 

energy uncertainty. The EVPI metric has been utilized to 

show the value of the accurate wind power forecasting. On 

the other hand, the VSS metric has been used to describe the 

advantages of the using stochastic programming instead of 

the deterministic one. The wind power uncertainty level 

modeled by use of two methods. First, the wind power 

penetration level considered as a portion of the base case 

wind power and then, the wind power forecasting error 

modeled as a normal probability distribution function that its 

variance can change. Also in the proposed model for the 

market clearing problem, the thermal units offered bids 

including power / Price / unit characteristics. Therefore, the 

average proposed price of the generated power reduced. 

Based on the obtained results for EVPI metric, it can be 

deduced that the ISO expected profit increases in the range of 

16 to 21 percent if the ISO perform accurate forecasting of 

the wind power. Also, the values of the abovementioned 

metrics increase when the penetration level of the wind 

power or the variance of the wind power forecasting error 

increases. As the VSS metric variations showed, it revealed 

that by use of the stochastic programming instead of its 

deterministic counterpart to solve the market clearing 

problem, the value of the profit increases in the range of 6 to 

9 percent. This profit increment is arising from the correct 

scheduling of the thermal and wind units and proper wind 

power uncertainty modeling by use of the first and second 

stage decision variables in the two stage stochastic 

programming framework. As a result, the VSS metric 

demonstrates the superiority of the stochastic programming 

against deterministic model in order to handle wind energy 

uncertainty in joint energy and reserve markets. 
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