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ABSTRACT 

 

In this study, the linear Caputo fractional differential equation of order 𝑛 − 1 < 𝑛𝑞 < 𝑛 is 

investigated. First, the solution of the equation of order 0 < 𝑞 < 1, with variable coefficients, is 

obtained by using the solution of differential equation of integer order which is the least integer 

greater than fractional order. Moreover, the solution of linear fractional differential equations of order 

𝑛 − 1 < 𝑛𝑞 < 𝑛 is considered. The solutions of the equation are presented in terms of Mittag-Leffler 

function with three parameters. The main goal of this study is to present a closed-series form of the 

solutions. To demonstrate the accuracy and the effectiveness of the proposed approach, some 

numerical solutions are given. 

 

Keywords: Fractional Differential Equation, Mittag-Leffler function, Three parameters 

 

1. INTRODUCTION 

 

The fractional derivative is very appropriate in modelling of physical pneumonias which involves past 

memory. Since fractional differential equations hold memory and are non-local in nature, it is known 

that mathematical models with fractional derivatives are more convenient and economical (See [1-8] 

and the references there in for more details). Due to this fact, they have been drawing increasing 

importance from scientist in past three decades (See [9-15] for some applications).  

 

In this study, the Caputo fractional derivative is used. Since properties of Caputo fractional derivative 

are closed to properties of integer derivative, enormous studies on Caputo fractional differential 

equation and their applications can be found in the literature. 

 

The linear Caputo fractional differential equation of order 0 < 𝑞 < 1, with variable coefficients, is 

considered and its solution is obtained as a series form. Next, the solution of linear sequential Caputo 

fractional differential equations of order 𝑛 − 1 < 𝑛𝑞 < 𝑛 is examined. The solutions of the equation 

are presented in terms of Mittag-Leffler function with three parameters. 

 
2. PRELIMINARY DEFINITIONS 

 

Definition 1. The derivative operator 𝐷𝑞  of order 𝑞 > 0 is defined as follows 
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 𝐷𝑞𝑢(𝑡) =
1

Γ(𝑛 − 𝑞)
∫ (𝑡 − 𝑠)𝑛−𝑞−1𝑢(𝑛)(𝑠)𝑑𝑠

𝑡

𝑡0

𝑓𝑜𝑟 𝑛 − 1 < 𝑞 < 𝑛,   (1) 

 

where 𝑛 is the smallest integer that exceeds 𝑞, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] and 𝑢(𝑛)(𝑡) =
𝑑𝑛𝑢(𝑡)

𝑑𝑡
 . 

 

The expression (1) is definition of Caputo (left-sided) fractional derivative of 𝑢(𝑡) for 𝑛 − 1 < 𝑞 < 𝑛 

[7]. 

Moreover, it is clear that Caputo fractional derivative of order 0 < 𝑞 < 1 is defined as follows: 

 

 𝐷𝑞𝑢(𝑡) =
1

Γ(1 − 𝑞)
∫ (𝑡 − 𝑠)−𝑞𝑢′(𝑠)𝑑𝑠.

𝑡

𝑡0

    (2) 

 

Definition 2. The Mittag-Leffler function is defined by the series expansion as shown below 

 

 𝐸𝑞(𝑧) = ∑
𝑧𝑘

Γ(𝑞𝑘 + 1)

∞

𝑘=0

 ,    (3) 

 

where 𝑞 > 0 [8]. 

 

In [7], some properties of Mittag-Leffler function and Caputo derivative are given as follows: 

(i) 𝐷𝑛𝑞𝑢(𝑡) = 𝐷(𝑛−1)𝑞(𝐷𝑞)𝑢(𝑡) for 𝑛 − 1 < 𝑛𝑞 < 𝑛. 

(ii) If 𝑞 = 1, 𝐸1,1(𝑡) = 𝑒𝑡, then it can be said that Mittag-Leffler function is generalization of usual 

exponential function.  

(iii) 𝐷𝑞(𝐸𝑞(𝑡𝑞)) = 𝐸𝑞(𝑡𝑞). 

(iv) 𝐷𝑛𝑞(𝐸𝑞(𝑟𝑡𝑞)) = 𝑟𝑛𝐸𝑞(𝑟𝑡𝑞) where 0 < 𝑞 < 1, 𝑟 is a constant and 𝑛 ∈ ℕ. 

 

Definition 3. The Mittag-Leffler function with two parameters is defined by the series expansion as 

shown below 

 𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
 ,

∞

𝑘=0

    (4) 

 

where 𝛼, 𝛽 > 0 [8]. 

 

Definition 4. The Mittag-Leffler function with three parameters is defined by the series expansion as 

shown below 

 

 𝐸𝛼,𝛽
𝛾 (𝑧) = ∑

(𝛾)𝑘 𝑧
𝑘

k! Γ(𝛼𝑘 + 𝛽)
 ,

∞

𝑘=0

    (5) 

 

where 𝛼, 𝛽, 𝛾 > 0 and (𝛾)𝑘 = 𝛾(𝛾 + 1) ⋯ (𝛾 + 𝑘 − 1) [8]. 
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3. METHODOLOGY 

 

In this study, fractional power series expansion method is used for linear Caputo fractional differential 

equation. The method is presented in [16] to obtain approximate solutions of fractional partial 

differential equations. The numerical results show that the method is significant method for fractional 

differential equation because of its simplicity and accuracy. 

 

The main idea of the method is based on solving the differential equation of integer order which is the 

least integer greater than fractional order. Then, this solution is transformed the solution of fractional 

differential equation by using following series expansion: 

 

 𝑢(𝑡) ≅ 𝑇(𝑣(𝑡)) = ∑
𝑣(𝑘)(0)𝑡𝑘

𝑘!

𝑚−1

𝑘=0

+ ∑ ∑
𝑣(𝑚𝑘+𝑖)(0)𝑡𝑘𝑞+𝑖

𝛤(𝑘𝑞 + 1 + 𝑖)

𝑚−1

𝑖=0

∞

𝑘=1

 ,     (6) 

 

where 𝑢(𝑡) and 𝑣(𝑡) are solutions of fractional and ordinary differential equations respectively, 𝑚 is 

the least integer greater than fractional order 𝑞. For 0 < 𝑞 < 1, transformation (6) is expressed as 

follows: 

 

 𝑢(𝑡) ≅ 𝑇(𝑣(𝑡)) = ∑
𝑣(𝑘)(0)𝑡𝑘𝑞

𝛤(𝑘𝑞 + 1)

∞

𝑘=0

 .     (7) 

 

4. SOLUTION OF THE LINEAR FRACTIONAL DIFFERENTIAL EQUATION 

 

4.1. Fractional Differential Equation of Order 𝟎 < 𝒒 < 𝟏 

Let us consider the following linear differential equation with initial condition:  

 

 
𝐷𝑞𝑢(𝑡) = 𝑝(𝑡, 𝑞)𝑢(𝑡) + 𝑓(𝑡, 𝑞), 𝑡𝜖[0, 𝑇], 𝑇 > 0

𝑢(0) = 𝑢0,
     (8) 

where 𝑝(𝑡, 𝑞) and 𝑓(𝑡, 𝑞) are continuous on 𝑡𝜖[0, 𝑇] for 0 < 𝑞 ≤ 1 and 𝑝(𝑡, 1), 𝑓(𝑡, 1) ∈
𝐶∞([0, 𝑇], ℝ). 

 

In order to obtain the solution 𝑢(𝑡) of the problem (8) by using fractional power series expansion 

method, we need to have the solution of following ordinary differential equation 

 

 
𝑣′(𝑡) = 𝑝(𝑡)𝑣(𝑡) + 𝑓(𝑡), 𝑡𝜖[0, 𝑇], 𝑇 > 0

𝑣(0) = 𝑢0,
     (9) 

 

where 𝑝(𝑡) = 𝑝(𝑡, 1) and 𝑓(𝑡) = 𝑓(𝑡, 1). 

 

The solution of problem (9) is well known and as follows: 

 

 𝑣(𝑡) = 𝑢0𝑒∫ 𝑝(𝑡)𝑑𝑡 + 𝑒∫ 𝑝(𝑡)𝑑𝑡 ∫ 𝑓(𝜏)𝑒∫ 𝑝(𝜏)𝑑𝜏𝑑𝜏

𝑡

0

.   (10) 
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By plugging the following derivatives of the solution 𝑣(𝑡) at 𝑡 = 0  

 

 

𝑣(0) = 𝑢0

𝑣(𝑛)(0) = ∑ (
𝑛 − 1

𝑘
) 𝑝(𝑘)(0)𝑣(𝑛−1−𝑘)(0) + 𝑓(𝑛−1)(0)

𝑛−1

𝑘=0

   (11) 

 

into transformation (7), the solution 𝑢(𝑡) of the problem (8) is obtained as follows: 

 

 𝑢(𝑡) ≅ 𝑢0 + ∑ ∑ ((
𝑛 − 1

𝑘
) 𝑝(𝑘)(0)𝑣(𝑛−1−𝑘)(0) + 𝑓(𝑛−1)(0))

𝑡𝑛𝑞

𝛤(𝑛𝑞 + 1)

𝑛−1

𝑘=0

 .

∞

𝑛=1

   (12) 

 

If 𝑝(𝑡, 𝑞) = 𝜆 is a constant in problem (8), the solution of problem (9) is obtained as follows: 

 

 𝑣(𝑡) = 𝑢0𝑒𝜆𝑡 + 𝑒𝜆𝑡 ∫ 𝑓(𝜏)𝑒𝜆𝜏𝑑𝜏

𝑡

0

 .   (13) 

 

Moreover, derivatives of 𝑣(𝑡) are formed as follows: 

 

 𝑣(𝑛)(0) = 𝜆𝑛𝑢0 + ∑ 𝜆𝑛−𝑘𝑓(𝑘−1)(0)

𝑛

𝑘=1

.   (14) 

 

Thus, by using transformation (7), the solution 𝑢(𝑡) of the problem (8) for 𝑝(𝑡, 𝑞) = 𝜆 (constant) is 

obtained in the following form:  

 

 𝑢(𝑡) ≅ 𝑢0𝐸𝑞(𝜆𝑡𝑞) + ∑ ∑ (𝜆𝑛−𝑘𝑓(𝑛−1)(0))
𝑡𝑛𝑞

𝛤(𝑛𝑞 + 1)

𝑛

𝑘=1

∞

𝑛=1

 .   (15) 

 

Additionally, for 𝑝(𝑡, 𝑞) = 𝜆, the problem (8) is investigated in [5,6] and its solution is presented in 

the following explicit form 

 

 𝑢(𝑡) = 𝑢0𝐸𝑞(𝜆𝑡𝑞) + ∫ (𝑡 − 𝑠)𝑞−1𝐸𝑞,𝑞(𝜆(𝑡 − 𝑠)𝑞)𝑓(𝑠, 𝑞)𝑑𝑠
𝑡

0

 .   (16) 

 

Hence, because of existence and uniqueness of the solution, the solution (15) equals to the solution 

(16) and this equality implies the following proposition. 

 

Proposition 1. Let 𝑓(𝑡, 𝑞) be continuous on 𝑡𝜖[0, 𝑇] for 0 < 𝑞 ≤ 1  and 𝜆 ∈ ℝ. The following 

equality is satisfied 

 

 ∫ (𝑡 − 𝑠)𝑞−1𝐸𝑞,𝑞(𝜆(𝑡 − 𝑠)𝑞)𝑓(𝑠, 𝑞)𝑑𝑠 ≅ ∑ ∑
(𝜆𝑛−𝑘𝑓(𝑛−1)(0))𝑡𝑛𝑞

𝛤(𝑛𝑞 + 1)

𝑛

𝑘=1

∞

𝑛=1

𝑡

0

 , (17) 
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where 𝑓(𝑡) = 𝑓(𝑡, 1) ∈ 𝐶∞([0, 𝑇], ℝ) . 

 

In order to show efficiency of the method, Proposition 1 is used. In Figure 1 and Figure 2, numerical 

simulations of the difference of both side of the equality (17) are given for some values of 𝑞 and 

functions 𝑓(𝑡, 𝑞) =
𝑡𝑞

𝛤(𝑞+1)
 and (𝑡, 𝑞) =

𝑡2𝑞

𝛤(2𝑞+1)
 . 

 

 

Figure 1: When 𝑞 = 0.2, 0.4, 0.6, 08, the graph of difference of both side of the equality (17) for 

function 𝑓(𝑡, 𝑞) =
𝑡𝑞

𝛤(𝑞+1)
 and for 10 iteration 

 

 

Figure 2: When 𝑞 = 0.2, 0.4, 0.6, 08, the graph of difference of both side of the equality (17) for 

function 𝑓(𝑡, 𝑞) =
𝑡2𝑞

𝛤(2𝑞+1)
 and for 10 iteration 
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4.2. Fractional Differential Equation of Order 𝒎 − 𝟏 < 𝒎𝒒 < 𝒎 

The following linear sequential fractional differential equation with initial conditions is investigated in 

this section. 

 

 
𝐷𝑚𝑞𝑢(𝑡) + 𝑏𝑚−1𝐷(𝑚−1)𝑞𝑢(𝑡) + ⋯ + 𝑏1𝐷𝑞𝑢(𝑡) + 𝑏0𝑢(𝑡) = 0, 𝑡𝜖[0, 𝑇], 𝑇 > 0

𝑢(0) = 𝑢0, 𝐷𝑖𝑞𝑢(0) = 𝑢𝑖,0, 𝑖 = 1,2, ⋯ , 𝑚 − 1
 ,    (18) 

 

where (𝑚 − 1) < 𝑚𝑞 < 𝑚 for 𝑚 ∈ ℕ and 𝑏𝑖 ∈ ℝ, 𝑖 = 1,2, ⋯ , 𝑚 − 1. 

 

It is well known that the solutions of equation (18) are given in the form of 𝑢 = 𝐸𝑞(𝑟𝑡𝑞) where 𝑟 is 

the solution of the corresponding characteristic equation of the following form:  

 

 𝑃(𝑟) = 𝑟𝑚 + 𝑏𝑚−1𝑟𝑚−1 + ⋯ + 𝑏1𝑟 + 𝑏0 = 0 .   (19) 

 

If equation (19) has 𝑘 distinct roots 𝑟𝑖 for 𝑖 = 1,2, ⋯ , 𝑘 and 𝑘 ≤ 𝑚, a solution of the equation (18) is 

obtained as follows: 

 

 𝑢(𝑡) = ∑ 𝑐𝑖𝐸𝑞(𝑟𝑖𝑡
𝑞)

𝑘

𝑖=1

 .   (20) 

 

Moreover, if equation (19) has 𝑘 coincident roots 𝑟0 for 𝑘 ≤ 𝑚, the solutions 𝑈𝑖(𝑡) of the equation 

(18) can be constructed by the following recursive relation which is obtained from equation (16). 

 

𝑈0(𝑡) = 𝐸𝑞,1(𝑟0𝑡𝑞)

𝑈𝑖(𝑡) = 𝑢0𝐸𝑞,1(𝑟0𝑡𝑞) + 𝑈𝑖−1(0) ∫ (𝑡 − 𝑠)𝑞−1𝐸𝑞,𝑞(𝜆(𝑡 − 𝑠)𝑞)𝑈𝑖−1(𝑠)𝑑𝑠 ,
𝑡

0

    (21) 

 

where 𝑖 = 1,2, ⋯ , 𝑘 − 1. Hence, the solution of the equation (18) is formed as follows: 

 

 𝑢(𝑡) = ∑ 𝑐𝑖𝑈𝑖(𝑡)

𝑘

𝑖=1

 .   (22) 

 

In the following subsection, the closed forms of the solutions 𝑈𝑖(𝑡) related with the coincident roots of 

characteristic equation are presented by using fractional power series method.  

 

4.2.1. The closed forms of the solutions related with the m coincident roots 

If the characteristic equation (19) has 𝑚 coincident roots 𝑟0, sequential differential equation (18) 

reduced to  

 

 (𝐷𝑞 − 𝑟0)(𝐷𝑞 − 𝑟0)𝑚−1𝑢 = 0 .   (23) 

 

Letting (𝐷𝑞 − 𝑟0)𝑚−1𝑢(𝑡) = 𝑈0(𝑡), the following fractional differential equation is obtained 

 

 (𝐷𝑞 − 𝑟0)𝑈0(𝑡) = 0  
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and by using the solution (15) with 𝑓(𝑡) = 0, the solution is obtained as follows:  

 

 𝑈0(𝑡) = 𝐸𝑞(𝑟0𝑡𝑞) .   (24) 

 

Moreover, letting (𝐷𝑞 − 𝑟0)𝑚−2𝑢(𝑡) = 𝑈1(𝑡), the following fractional differential equation is 

obtained 

 

 
(𝐷𝑞 − 𝑟0)𝑈1(𝑡) = 𝑈0(𝑡) 

⇒ 𝐷𝑞𝑈1(𝑡) − 𝑟0𝑈1(𝑡) = 𝐸𝑞(𝑟0𝑡𝑞) 
  (25) 

 

Now, we solve the equation (25) by using fractional power series method. Let us consider the 

following ordinary differential equation which is obtained from equation (25) by equaling q to 1 

 

 𝑉′
1(𝑡) − 𝑟0𝑉1(𝑡) = 𝑒𝑟0𝑡 .   (26) 

 

The solution of equation (26) is 𝑉1(𝑡) = 𝑡𝑒𝑟0𝑡. Then, applying transformation (7) to 𝑉1(𝑡) = 𝑡𝑒𝑟0𝑡, it 

is obtained that 

 

 𝑈1(𝑡) =
𝑡𝑞

𝑞
𝐸𝑞,𝑞(𝑟0𝑡𝑞) ,   (27) 

 

which is exact solution of (25). Similarly, letting (𝐷𝑞 − 𝑟0)𝑚−3𝑢(𝑡) = 𝑈2(𝑡), the following fractional 

differential equation is obtained 

 

(𝐷𝑞 − 𝑟0)𝑈2(𝑡) = 𝑈1(𝑡) 

⇒ 𝐷𝑞𝑈2(𝑡) − 𝑟0𝑈2(𝑡) =
𝑡𝑞

𝑞
𝐸𝑞,𝑞(𝑟0𝑡𝑞) . 

  (28) 

 

Also, the solution of the equation (28) is obtained in the form of Mittag-Leffler function with three 

parameters as follows: 

 

 𝑈2(𝑡) =
𝑡2𝑞

2𝑞
𝐸𝑞,2𝑞

2 (𝑟0𝑡𝑞)   (29) 

 

which is exact solution of (28). After applying m times these calculations recursively, the following 

solutions are obtained  

 

 

𝑈1(𝑡) =
𝑡𝑞

𝑞
𝐸𝑞,𝑞

1 (𝑟0𝑡𝑞)

𝑈2(𝑡) =
𝑡2𝑞

2𝑞
𝐸𝑞,2𝑞

2 (𝑟0𝑡𝑞)

𝑈3(𝑡) =
𝑡3𝑞

3𝑞
𝐸𝑞,3𝑞

3 (𝑟0𝑡𝑞)

⋮

 .

  

 

Moreover, these solutions can be written as follows: 
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 𝑈𝑛(𝑡) =
𝑡𝑛𝑞

𝑛𝑞
𝐸𝑞,𝑛𝑞

𝑛 (𝑟0𝑡𝑞), 𝑛 = 1,2, ⋯ , 𝑚 − 1 .   (30) 

 

Consequently, if characteristic equation (19) has 𝑚 coincident roots 𝑟0, there exists 𝑚 linearly 

independent solutions as follows:  

 

 

𝑈0(𝑡) = 𝐸𝑞(𝑟0𝑡𝑞),                                              

𝑈𝑛(𝑡) =
𝑡𝑛𝑞

𝑛𝑞
𝐸𝑞,𝑛𝑞

𝑛 (𝑟0𝑡𝑞), 𝑛 = 1,2, ⋯ , 𝑚 − 1 .
   (31) 

 

5. CONCLUSION 

 

The approximate solution of linear Caputo fractional equation of order 0 < 𝑞 < 1 with variable 

coefficients is constructed as a series form. In this construction, the solution of differential equation of 

integer order which is the least integer greater than fractional order and its derivatives are used. 

Numerical results show that the approximation is significantly efficient when components of 𝑓(𝑡, 𝑞) 

are formed as 
𝑡𝑛𝑞

𝛤(𝑛𝑞+1)
 and 𝑝(𝑡, 𝑞) is constant in equation (8). Moreover, this result yields to obtain the 

solution of linear sequential fractional differential equation of higher order with constant coefficient. 

Specifically, when characteristic equation has coincident root, the solutions are presented in terms of 

Mittag-Leffler function with three parameters.  

 

 

REFERENCES 
 

[1] Debnath, L., (2003), Recent applications of fractional calculus to science and engineering, 

International Journal of Mathematics and Mathematical Sciences, 54, 3413–3442. 

 

[2] Ross, B., (1975), A Brief History and Exposition of the Fundamental Theory of Fractional 

Calculus. Fractional calculus and its Applications, Lecture notes in Mathematics, Springer: 

Berlin, Germany, 457, 1–36. 

 

[3] Oldham, K.B., Spanier, J., (1974), The Fractional Calculus: Theory and Applications of 

Differentiation and Integration to Arbitrary Order, Academic Press: Newyork. 

 

[4] Podlubny, I., (1998), Fractional Differential Equations, Volume 198: An Introduction to 

Fractional Derivatives, Fractional Differential Equations, to Methods of their solutions, 

Mathematics in Science and Engineering, Academic Press: San Diego. 

 

[5] Podlubny, I., (2002), Geometric and physical interpretation of fractional integration and 

fractional differentiation, Fractional Calculus and Applied Analysis 5, 4, 367–386. 

 

[6] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., (2006), Theory and Applications of Fractional 

Differential Equations, North-Holland Mathematics Studies, Elsevier: Amsterdam, The 

Netherlands. 

 



 
 

 
 
 

Erman. S., Journal of Scientific Reports-A, Number 45, 81-89, December 2020. 
 

 
 

89 
 

[7] Deithelm, K., (2004), The Analysis of Fractional Differential Equations, Volume 2004 of 

Lecture Notes in Mathematics, Springer: Berlin, Germany. 

[8] Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin S.V., (2014), Mittag-Leffler Functions, 

Related Topics and Applications, Springer: Berlin, Germany. 

 

[9] Pooseh, S., Rodrigues, H.S., Torres, D.F.M., (2011), Fractional Derivatives in Dengue 

Epidemics, AIP Conf. Proc., 1389, 739–742. 

 

[10] Debnath, L., (2003), Recents Applications of Fractional Calculus to Science and Engineering, 

Int. J. Math. Appl. Sci, 54, 3413–3442. 

 

[11] Singh, J., Kumar, D., Kılıçman, A., (2014), Numerical Solutions of Nonlinear Fractional Partial 

Differential Equations Arising in Spatial Diffusion of Biological Populations, Abstr. Appl. Anal., 

2014, 535793. 

 

[12] Koeller, R.C., (1984), Applications of Fractional Calculus to the Theory of Viscoelasticity, J. 

Appl. Mech., 51, 299–307. 

 

[13] Saha, R.S., Bera, R.K., (2000), The random walk’s guide to anomalous diffusion: a fractional 

dynamics approach, Phys. Rep. 339, 2000, 1-77 

 

[14] Waggas, G.A., (2010), Application of Fractional Calculus Operators for a New Class of 

Univalent Functions with Negative Coefficients Defined by Hohlov Operator, Math. Slovaca, 1, 

75–82. 

 

[15] Aliev, F.A., Aliev, N.A., Safarova, N.A., Gasimova K.G.,, Velieva N.I., (2018), Solution of 

Linear Fractional-Derivative Ordinary Differential Equations with Constant Matrix Coefficients, 

Applied and Computational Mathematics, 17, 3, 317-322 

 

[16] Demir, A., Erman, S., Özgür, B., and Korkmaz, E., (2013), Analysis of fractional partial 

differential equations by Taylor series expansion, Boundary Value Problems, 68 

 

 

 


