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Abstract- In this paper, the role of thermoelectric generators (TEGs) in conversion of geothermal energy into electrical energy 

has been presented. In addition, the structures of the TEGs used in the electrical energy production have been reported. The 

TEGs directly convert the thermal energy into the electrical energy. The thermoelectric (TE) technology is used in both the 

air–conditioning and the electrical energy generation. Also, the TE technology is eco–friendly as it has no greenhouse gas 

emissions, durable due to the absence of moving parts and is silent. However, the conversion efficiency of the thermoelectric 

modules (TEMs) used commercially is less than about 10%. 
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1. Introduction 

Thermoelectric (TE) technology is used both the 

electricity generation and the air-conditioning. TE power 

generators convert the thermal energy into the electrical 

energy directly. Moreover, the TE technology is 

environmentally friendly. It has no moving parts and is long-

lived. Although their efficiency is about 5–10%, considering 

reuse of waste energy gain, their efficiency cannot be 

ignored. 

The TE is defined as the science and technology related 

to the electricity generation and the cooling with the TE 

method. The technology uses the Seebeck and Peltier effects. 

Basic science of it is referenced to the theory of 

thermoelement (thermocouple). The basic structure of a 

thermoelectric module (TEM) using in the electricity 

generation has a thermoelement. The thermoelement forms 

from p– and n–type semiconductors connecting in series as 

electrical. Then, a large number of the thermoelements are 

electrically connected in series to increase the operating 

voltage and are thermally connected in parallel to increase 

the thermal conductivity. In the end, a TEM is occurred [1-

5].  

Devices containing the TEM are classified in two groups 

as depending on the effects in the TEMs; (1) the 

thermoelectric generators (TEGs) and (2) the thermoelectric 

coolers (TECs). The TEGs using Seebeck effect convert the 

thermal energy between two surfaces of the TEM into the 

electrical energy. TECs using Peltier effect convert the 

electrical energy applied from the ends of the TEM into the 

temperature difference [6-11]. 

TEGs are environmentally friendly in the electricity 

production for using waste heat as the input source, and they 

allow the efficient use of energy [12,13]. Despite the low 

productivity of the TEGs being renewable of energy input 

source increases the economic viability of the systems. Many 

studies related to increased efficiency and economic 

feasibility have been conducted [1,14]. There is no a moving 

part of a TEG. It is fully scalable, highly reliable and silent 

[12,15]. In recent years, studies on TEGs such as industrial 

plants, geothermal areas, automobile engines, computers and 

the human body on the production electrical energy with the 

TEGs have focused on the recycling of waste heat [2-3]. 

When a TEG is compared to other renewable energy 

resources, the most significant disadvantage is the low 

semiconductor figure-of-merit used (Z) in the TEGs and 

quality factor (figure–of–merit, Z) [16-17]. Until recently, the 

TE applications limited due to the ZT (< 1) values.  Since the 

early 1990s, the ZT of TEMs has been increased from 1 to 2. 

So, the TEG applications have rapidly increased [3]. 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
Hayati Mamur et al., Vol.4, No.1, 2014 

129 

 

2. Basic Theory of TEGs 

2.1. Structure of the TEG 

TEGs are semiconductor devices [18]. It is tried to 

establish a connection between thermocouples and TEGs. 

However, there are big differences between them. Exception 

of Seebeck effect, thermocouples and TEGs does not show a 

similarity. Thermocouples are made of two different metals. 

It is given a T-type thermocouple is made of copper and 

constantan, in Figure 1. When the junction point of 

thermocouple is kept in the cold or heat and compared to the 

ambient temperature, it produces a small voltage 40 μV/°C in 

per one degree temperature change by Seebeck effect. For 

this reason, thermocouples are usually preferred as the 

temperature sensor in coolers, heaters and air conditioners 

where measurement of the temperature is needed [1]. 

 

Fig. 1. A T–type thermocouple 

On the other hand, TEGs are formed by connecting 

electrically in series and thermally in parallel. In the 

produced voltage, thermoelements is higher than 

thermocouples as depending on the temperature difference. 

For example, Seebeck coefficient of a thermoelement 

fabricating from Bi2Te3 semiconductor is 560–640 µV/°C 

and its structure is very different than a thermocouple 

[19,20]. The structure of a thermoelement is given in Figure 

2. The thermoelement forms from connection of an end of p– 

and n–type semiconductors.  When a temperature difference 

between surfaces is created, a voltage V is produced between 

its open ends. The value of the voltage depends on the 

temperature difference between two surfaces and Seebeck 

constant. The voltage value is given following equation by: 

),( CH TTV                (1) 

where V is the voltage of the thermoelement, TH is the hot 

side temperature of thermoelement, TC is the cold side 

temperature of the thermoelement and the α is the Seebeck 

coefficient of the thermoelement [3]. 

 

Fig. 2. The structure of a thermoelement 

A TEM consists of a large number of thermoelements 

[21–22]. The structure of a TEM in the generator mode is 

given, in Figure 3. 

 

Fig. 3. A TEM in the generator mode 

Otherwise, a TEG system consists of three parts; a heater 

block, a colder block, and a TEM [16,23]. When the high 

temperature is applied to one side of the TEG, the other side 

is kept at the lower temperature. As a result of the difference 

in the temperature between the two sides, the end of the TEG 

generates an electrical voltage V. When the end of the TEG is 

connected to an external load RL, a current I flows through 

the load. The electrical power P and the current obtained 

from the TEG depend on the temperature difference ∆T, the 

properties of the semiconductor materials and the values of 

the external load resistance RL [24].
 

2.2. TEG Efficiency 

The efficiency of a thermoelectric generator is given by 

following equation [3]: 

,
JunctionHotatAbsorbedEnergyHeat

LoadthetoSuppliedEnergy
           (2) 

where the energy supplied to the load is the output power of 

the TEG and the heat energy absorbed at the hot junction is 

the input power of the TEG.  

A semiconductor power measurement used in a TEG is 

given as the figure of merit (ZT). The semiconductor power 

measurement of the figure of merit ZT is given by: 

,
2

T
KR
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

               (3) 

where T is the temperature (Kelvin), α (α = αpn = |αp| + |αn|) is 

the Seebeck coefficient (V/°C), K is the thermal conductivity 

(W/mK) and R is the electrical resistance (Ω) [19].  In 

addition, the efficiency is given as a function of the ZT and 

the temperature difference between the surfaces ΔT (TH – TC) 

in the TEG.  In recent years, ZT of the produced TEGs is 

higher. Therefore, it has been a significant increase in 

efficiency [25,26]. 

The TEG efficiency is also expressed in terms of Carnot 

efficiency. Carnot efficiency is given by following equation: 
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where TM is the average TEG temperature (TH + TC) / 2, TH is 

the TEG hot side temperature and TC is the TEG cold side 

temperature [25,27,28]. 

Further, the efficiency is a function of the TEG hot side 

temperature TH, the TEG cold side temperature TC, the 

temperature difference between hot and cold surfaces ∆T, the 

quality factor of materials (Z), and the ratio of resistance Rin 

of the TEG with added the load resistance RL at the same 

time. It is given by: 

,
]}5.0)5.0[()1{( 2

CH TTmZm
TmZ


           (5) 

where, m is the resistance ratio between the load RL and the 

internal resistance Rin ( inL RRm  ) [15].
 

The highest value of the voltage produced by the TEG is 

when the TEGs ends open. The open circuit voltage VOC is 

expressed as following equation:  

).)(( CHnpOC TTNV               (6) 

The TEG open circuit voltage VOC is proportional 

directly with the number of thermoelements N, the 

temperature difference (TH - TC) between hot side 

temperature and cold side temperature of the TEG, p-type 

(αp) and n-type (αn) material Seebeck coefficients [25].
 

2.3. TEG Output Characteristics 

The produced power PL on the load RL connected to a 

single thermoelement is given by:  

,
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)( 22
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       (7) 

where PL is the output power produced on the load of the 

TEG, IL is the electric current flowing through the load, VL is 

the generated voltage on the load by the TEG, α (α = αpn) is 

the Seebeck coefficient difference between αp and αn (α = 

αpn= |αp|+|αn|), ∆T is the temperature difference between TH 

and TC (∆T = TH – TC), Rin is the TEG electrical resistance, RL 

is the TEG load resistance. When the load resistor RL is equal 

to the TEG internal resistor Rin, the TEG is on matched load 

condition generating the maximum output power given by 

[29,30]: 

.
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             (8) 

The voltage-current and calculated power characteristics 

of an Altec-GM-1 TEG simulated in the Matlab/Simulink are 

given as depending on the temperature differences between 

the surfaces of TEG at the temperature difference ∆T = 100 

°C, in Figure 4. The experimental measured values of 

voltage, current, power are given in Figure 5 for the Altec-

GM-1 TEG at the different temperature ranges. In Figure 5, 

the dashed line shows maximum power points located at the 

half of the open circuit voltage VOC. The TEG internal 

resistance Rin is equal to the TEG load resistor RL, in these 

points. When the TEG ends are open circuit, maximum 

voltage VOC is obtained. When its ends are short circuit, 

maximum current ISC is obtained from the TEG. The power P 

obtained from the TEG varies as depending on the connected 

to the load value. Also, when the TEG internal resistor Rin 

and the load resistor RL is equal, maximum power is 

obtained. The TEG current, voltage and power changes are 

given together at different temperature ranges, in Figure 6 

[6,31–33]. 

 

Fig. 4. The voltage-current and calculated power 

characteristics of an Altec-GM-1 TEG simulated in the 

Matlab/Simulink at the temperature difference ∆T = 100 °C 

 

Fig. 5. The experimental measured values of voltage, current, 

power for Altec-GM-1 TEG at the different temperature 

ranges 

 

Fig. 6. Current, voltage, and power curves for Altec-GM-1 

TEG at the various temperature differences 
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A TEG can be modeled the open circuit voltage source 

VOC and the internal resistor Rin obtained from dividing (VOC / 

ISC) the short circuit current ISC of the open circuit voltage 

VOC. In here, the open circuit voltage VOC is proportional to 

the Seebeck constant and the temperature difference (VOC = 

α∆T). The TEG short circuit current ISC is the current when 

the TEG ends are the short circuit at the certain temperature 

difference ∆T. The equivalent electrical circuit associated 

with using as the TEG of a TEM is given in Figure 7. The 

power value obtained from the TEG changes as depending 

on the load resistor value [34–36]. 

 

Fig. 7. The equivalent electrical circuit for the measurement 

voltage and the output power of the TEM 

3. TEG Types and Application Areas 

3.1. TEG Types 

The TE power generation technology aims to convert 

thermal energy into electrical energy. In the production of 

electrical energy, the types of TEGs are (1) large-bulk TEM 

that are preferred for high-power applications and (2) the thin 

film TEG (micro TEG - μTEG) that are preferred for low-

power applications. The μTEGs require less thickness than 

the 50 μm thickness TE elements. Thickness of commercially 

available and widely used the bulks TEGs usually are over 

500 μm. When it is below of this value, the production 

efficiency decreases considerably [13,37,38]. 

The μTEGs is smaller and thinner than the bulk TEGs. 

Therefore, they take up less space. They are seen that μTEGs 

can directly integration industry-standard production 

methods as promising. The thin films in the μTEG are the 

segment layer materials thickness from one nm to a few nm. 

The thin film TE materials can be enlarged with different 

ways [39,40]. The μTEGs mainly consists of several kinds of 

structure such as swiss roll, film and thermopile. On the 

other hand, thermopile has relatively higher power density 

and therefore is more valuable for researching [41]. The bulk 

integrated TEG produces the highest output power and 

voltage. It easily produces sufficient power at a high enough 

voltage to power a variety of low power sensors even when 

harvesting energy from the temperature differences as low as 

5 °C. Also, the μTEGs are more efficient for applications 

used acquisition of electrical energy at the high temperature 

difference [25,42]. 

For the performances of the μTEG and the bulk TEG, 

three factors turn out to be crucial: (1) the increase of the 

thermal resistance of the generator, (2) the decrease of the 

thermal resistance and (3) finally minimizing the electrical 

resistance [37,43].  

TE materials used in the TEMs shows a large variety. 

These are TEM materials including different material 

systems from semiconductors to ceramic, different crystal 

shapes from mono crystal, polycrystalline to nano-

composites, and different sizes from bulk, film and wire to 

cluster [44,45].  Improving of the figure of merit ZT of the 

TE materials is quite difficult due to the basic properties of 

the materials. In recent years, some studies on improving of 

the figure of merit ZT of the TEM materials is moving 

towards the use of nanostructured materials [46]. The 

nanostructured materials such as quantum wells (QW) [47], 

superlattices
 
[48], nanowires [49,50], and nano grains [51] 

are generally used as nano structured materials in the 

production of new TEGs. The TE conductivity can be quite 

reduced owing to the nanostructured materials [52]. 

The new nano materials called QW are made up of 10 

nm thick silicon and SiGe films. These have contributed to 

improving of the TE figure of merit ZT.   Thermoelements 

with the figure of merit ZT greater than 3 have been obtained 

with the materials at room temperature [48]. This value is a 

significant improvement compared to the bulk TEGs with the 

figure of merit ZT less than 1 [53]. Conversion efficiency of 

TEGs made of the QW materials is approaching up to 20% 

[54]. 

In recent years, development efforts on the nano 

structured TE materials from nanocrystals to nanowires show 

great advantages, compared to the performance of the bulk 

crystal with the same chemical composition on account of 

dramatically reduced thermal conductivity. However, the 

critical gaps still remain. Therefore, this restricts practical 

manufacture, scalable, and wide deployment of the nano TE 

devices [55,56]. 

Energy conversion technology require several conditions 

such as (1) the simplicity of the process and scalability of 

materials, (2) the economical sustainment in the manufacture 

and recycling, (3) the compatibility and integrality with 

existing manufacture infrastructure, and (4) performance 

improvability. These requirements determine the direction of 

future research for the nanostructured TE [55]. 

3.2. TEG Application Areas 

As societies evolve, energy requirements are increasing. 

Environment pollution due to the used fossil energy sources 

has increased people's susceptibility to environmental 

protection. Also, technological advances raised demand for 

energy. As a result of this, the importance of the energy 

efficiency has increased. In addition, the developments 

caused the international energy crisis have been one of the 

hot research topics to use new and clean energy resources 

[57,58]. One of the renewable energy sources is the 

geothermal.  This was a source of renewable geothermal 

energy. One of the devices converting geothermal energy 

into electrical energy is TEG. In generation of electrical 

energy, they do not use greenhouse gas, therefore they are 

environmentally friendly. For this reason, TEGs have been 

increasingly attracting attention because of largely meeting 

on the needs of the people as green and flexible electrical 

power source [59–62]. During temperature difference in the 

Rin 

VOC 

TEM 

RL 
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environment of TEG, they produce electrical energy every 

time. Because of this feature, they are not like solar panels 

(PV), day-night, rain-sunny days do not prevent to the 

production of electricity [63]. 

The energy acquisition from the TEGs has been an 

important part for self-powered or a low-power integrated 

systems. For example, Topal et al. [64], in a conducted study, 

vibration based a μTEG was been developed at Middle East 

Technical University Micro ElectroMechanical Systems 

Laboratories (METU MEMS). As a result of researches, they 

concluded that TE production is conveniently a potential 

energy source in the conversion of waste heat into electricity.  

Some examples including studies in areas of use TEGs 

can be given as follows; for the self-powered wireless 

sensors, it can replace the battery in the areas where no 

electricity is [65–67], the conversion of solar energy directly 

into electricity and grid on/off systems [68,69], the 

biomedical systems using the difference between human 

body temperature and the ambient temperature [70–72], 

telemetry systems that require less energy needs [64,73,74], 

waste heat recovery in the internal combustion engines [75–

77], electrical energy generation from overheated roads in 

the areas where no electric lines are, and use of warning 

systems [78], self-powered sensors [79,80], the acquisition of 

grid off energy [81,82], in aerospace [83], and geothermal 

waste heat recovery [20]. TEGs are also used extensively 

instead of batteries to provide power in the small electronic 

circuits powerful applications [84]. 

Torfs et al. [70], in a conducted study, a wearable, 

wireless 2–channel electroencephalography (EEG) system 

had been realized which functions fully autonomously, 

without any batteries. It was fully powered by human body 

heat using a TEG which can produce over 2 mW at 23 °C. At 

the same time, the solar panel energy strengthen had been 

added as the hybrid system. 

Leonov et al. [58,85] combined the TEGs with the PV 

cells.  The main purpose of the work was in the devices that 

can be worn PV cells and the TEGs, especially when used on 

clothes. In their study, an optimized TEG generated more 

power than PV cell in the each unit field of human body 

They produced a hybrid energy recovery, as a primary 

objective, to avoid coldness caused by TEGs in the cold 

weathers in 2008. The fulfilled hybrid system brought about 

two parallel electrical circuits; a TEG and a PV cell. 

Ekuakille et al.[71], in their study, a special recovery 

circuit designed and applied for biomedical hearing aid. 

Their target was that a TEG taking the energy from warm 

body tissue produces in order to provide a resource for 

biomedical hearing for people with difficulty hearing. Their 

study was shown the demonstration of a TEG able to extract 

warmth from body tissue to supply a hearing aid. It was not 

convenient to feed directly the hearing aids. However was 

necessary to pass through a conditioning circuit, as regulator, 

by adding batteries for backup. 

Kari et al. [76] were carried out the exhaust energy cycle 

by a TEG for two-state study. They presented predictions of 

generated power and fuel saving by TEG placed in the 

exhaust outlet of a sport vehicle. They obtained for 

generators using either commercially available Bismuth 

Telluride (Bi2Te3) or QW thermoelectric material. The 

increase in power between the QW and Bi2Te3 based TEGs 

was about three times for the sports utility vehicle and seven 

times for the compressed-natural-gas fueled engine generator 

setting generator under the same simulation conditions. 

Ahiska et al. [17] designed a microcontroller controlled 

TEG which transforms geothermal energy, one of the 

renewable energy sources, to directly electrical energy, and 

then they tested the system and its performance analysis was 

examined. In their system, energy transformation was 

provided via the Seebeck effect in the thermoelectric 

modules. Since changeable DC voltage depending on 

temperature difference was obtained by the thermoelectric 

modules. Their studies were given in Figure 8 and 9. 

 

Fig. 8. Microcontroller controlled geothermal TEG 

 

Fig. 9. A portable geothermal TEG of 100W 

3.3. DC-DC Converters for TEGs 

When the temperature difference between the surfaces of 

TEG is changed, the output voltage of the TEG varies 

accordingly. It is required that standard voltage give to the 

loads or the electronic circuits connected to the ends of TEG. 

In order to provide this standard voltage, TEGs need to the 

DC-DC converters.  

TEGs are connected into the serial and parallel to 

achieve sufficient power [86,87]. In a DC-DC converter, a 

power management circuit extracts power as many as 

possible from the TEG system connected into the serial and 
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parallel and it generates the voltage needed by the electronic 

circuit. The open-circuit output voltage VOC of the TEG 

varies depending on the temperature difference ∆T between 

the surfaces of TEG. The voltage Vi, which is at the entrance 

of DC-DC converter, affects the internal impedance Rin of 

TEG. In order to transfer a maximum power to the output, 

the impedance matching is needed. In this case, the input 

voltage Vi of the DC-DC converter is only half of VOC. Vi is 

determined by the output voltage VO and the conversion 

factor. Since the output of DC-DC converter is connected to 

a battery. VO is constant within a short time interval. 

Therefore, the conversion factor of a DC-DC converter can 

be adapted to reach matching for the TEG.  

Maximum Power Point Tracking (MPPT) algorithms 

have been developed to achieve this goal [83]. In addition, 

the controller using in the DC-DC converters requires two 

operation modes; (1) the MPPT, (2) the power comparator 

[88–90]. 

4. Conclusion 

TEGs are the devices converting to the geothermal 

energy into the electrical energy. The electrical energy 

generation from the TEGs is based on Seebeck effect. As 

long as to be the temperature difference between the surfaces 

of the TEG, the TEG generates the electrical energy. 

Moreover, TEGs are environmentally friendly and have no 

moving parts. In addition, they are long-lived and work 

silently, scalable, and no greenhouse gas emissions. On the 

other hand, their biggest disadvantage is the low conversion 

efficiency < 10%. However, the low conversion efficiency 

can be underestimated because of using at the recovery of 

energy of TEGs. The output voltage of TEGs needs the 

regulation because it varies continuously with the 

temperature difference. As long as the energy demand 

increases continuously in the world, the environmental 

concerns in connection with today used energy sources 

continue, the need for renewable energy sources will be 

continuous and the TEGs continue to be one of the hot 

research topics. 
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