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1. Introduction

A Costas array of order n is a permutation z1,...,z, of {1,2,... ,n} such that
the (g) vectors (j—i,2;—x;), i # j, are all distinct. Costas arrays were first studied
by John P. Costas for their applications in sonar and radar [3,4]. Several algebraic
constructions of Costas arrays exist for special orders n, such as Welch, Logarithmic
Welch, and Lempel constructions [8,9,10]. Through exhaustive computer searches,
all Costas arrays of order n < 29 have been found [5]. However, the problem of
finding Costas arrays for larger orders becomes computationally very difficult. The
weaker notion of DDP permutation requires only the consecutive distinct difference
property i.e., xi11—x; # xj41—x; forall 1 <i < j < n. By recursive constructions,
an abundance of DDP permutations can be found, at least 2", of order n [1].

In this paper, we are interested in a notion slightly stronger than DDP.

Definition 1.1. A DDP sequence mod a positive integer n is a permutation xy, .. .,
Zn—1 of the elements of Z, = Z/nZ such that g = 0 and ;41 — x; #Z 11 — 25
(mod n) forall 0 <i<j<n-—1.

The first example of a DDP sequence mod 12 was introduced by F. H. Klein in

1925 as the all-interval twelve-tone row, series, or chord

F,E,C,A,G,D,Ab, Db, Eb,Gb, Bb, Ch,
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named the Mutterakkord (Mother chord) [12]. In integers mod 12, this sequence
reads
0,11,7,4,2,9,3,8,10,1,5,6,

and the sequence of consecutive differences mod 12 is given by 11, 8, 9, 10,7, 6, 5, 2,
3, 4, 1, which are all distinct. By 1952, there were 18 known examples of all-interval
series [6]. In 1965, IBM 7094 listed all of the 3856 examples of all-interval rows [2].
Another example of an eleven-interval, twelve-tone row is the Grandmother chord,
invented by Nicolas Slonimsky in 1938 [13].
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FIGURE 1. An image of the Mother chord and Grandmother chord in
Slonimsky’s Thesaurus of Scales and Melodic Patterns (p. 185).

The Grandmother chord has the additional property that the intervals are odd
and even alternately, and the odd intervals decrease by one whole-tone, while the
even intervals increase by one whole-tone. In integers mod 12, the grandmother
chord is

0,11,1,10,2,9,3,8,4,7,5,6,
where the sequence of consecutive differences mod 12 is given by 11, 2,9, 4, 7, 6, 5,
8, 3, 10, 1. Inspired by Slonimsky’s Grandmother chord, we define the Slonimsky
sequence modulo n by letting
i/2 if 7 is even;

si= (12 ={" o 1)
n—(i+1)/2 ifiis odd.

Then the sequence sg, ..., s,—1 is a DDP sequence modulo n if and only if n is
even. If xq,...,x,_1 is a DDP sequence modulo n, then the sequence rxg, ..., 7x,_1
is also a DDP sequence modulo n for each r with ged(r,n) = 1. Therefore, there
are at least ¢(n) DDP sequences mod an even integer n. The numbers of DDP

sequences mod even integers are given by the sequence [7,11]
https : //oeis.org/A141599A141599 : 1,2, 4,24, 288, 3856, 89328, 2755968, 103653120, . . . .

There are no DDP sequences modulo n for odd values of n (see Lemma 4.1).
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In our next definition, we generalize Definition 1.1, which pertains to the group

(Zp,+), to any finite group G.

Definition 1.2. Let G be a finite group with n elements. We say a permutation
9o, - - -, gn—1 of elements of G has the distinct divisor property (DDP) or gg, ..., gn—1
is a DDP sequence, if g9 = 1¢ and g[lgiﬂ # gjﬂgjﬂ forall 0 <i<j<n-—1
The set of all DDP sequences in G is denoted by Og. We say G is a DDP group if
O¢ # 0.

For odd values of n, instead of distinct consecutive differences, the sequence (1)

has distinct consecutive signed differences. This motivates the following definition.

Definition 1.3. Let pg,...,p,_1 be a permutation of elements of an abelian group
G with po = 0. The sequence of signed differences is defined by hy = 0 and
hi = (=1)"Y(pi_1 —p;) for 1 <i < n. We say po, . ..,DPn_1 is a Slonimsky sequence
if the following conditions hold:
i) hi #hjforall0 <i<j<n.
i) hi +hp—; =0forall 0 <i <n.
iil) p; + pn—i—1 = Pn—1 for all 0 < i < n, where we refer to p,_; as the last

term of the sequence.

For example, the following sequence is a Slonimsky sequence in Zr:
0’ 67 17 57 27 4) 37

and its sequence of signed differences is 0, 1, 2, 3, 4, 5, 6. Slonimsky sequences
in odd abelian groups play an important role in constructing DDP sequences via
group extensions, and we study them in Section 2.

This is how this paper is organized. In Section 2, we show that every odd abelian
group has a Slonimsky sequence. In Section 3, we use the existence of Slonimsky
sequences in odd abelian groups to show that every central extension of an even
DDP group by an odd abelian group is DDP (see Cor. 3.3). We also show that for
every odd nilpotent group G and an even DDP group K, the direct product G x K
is DDP (see Theorem 3.4). In particular, G X Zam is DDP for every odd nilpotent
group G and every integer m > 1.

In Section 4, we show that a finite abelian group is DDP if and only if it has
a unique element of order 2. We also find a lower bound on the number of DDP
sequences in an abelian group G in terms of the prime factorization of its order.
In particular, we will show that if n = 2™kl for m > 1 and relatively prime odd

integers k, [, then there are at least (2k)!~! DDP sequences modulo n (see Cor.
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4.5). Finally, in Section 5, we will show that there are infinitely many non abelian

DDP groups.

2. Slonimsky sequences in abelian groups

In this section, we prove that every abelian odd group has a Slonimsky sequence.
This result will only be needed in the proof of Theorem 3.2 and can be skipped in
a first reading. We begin with the cyclic case.

Lemma 2.1. Ifn is odd, then G = (Zyn,+) has a Slonimsky sequence with the last
term (n —1)/2.

Proof. Let p; = (=1)1[i/2] mod n for 0 <i <n — 1. Then, for 1 <i<n—1, we
have
hi = (=1 (piea —pi) = (1) (D)1 = 1)/2] = (=1)"[i/2])
= [(i—1)/2] + [i/2] =4,
hence property (i) in Definition 1.3 holds. Moreover, h; + h,—; = i+n—1i =0

(mod n) and p; + pu_io1 = (~1)[i/2] + (=" [(n — i = 1)/2] = (n - 1)/2
whether ¢ is even or odd. It follows that pg,...,p,—1 is a Slonimsky sequence. [

Theorem 2.2. Let G = Zy,, X -+ X Ly, be an odd abelian group. Then there

exists a Slonimsky sequence in G with the last term
((m1 = 1)/2,..., (ma — 1)/2).

Proof. Proof is by induction on d. The claim for d = 1 follows from Lemma 2.1.
Ford > 1,let H = Zy, X -+ X Ly, , and mgq = m = 21 — 1. By the inductive
hypothesis for H, there exists a Slonimsky sequence py, . ..,p,—1 in H with signed

differences hg, ..., h,_1 such that
hi+hn—; =0, Vie{l,...,n—l}; (2)
Pi + Pn—i-1 = ((m1 — 1)/2, ey (md_l — 1)/2), Vi € {0, cee,n— 1} (3)

In order to define the Slonimsky sequence Py, ..., Pyp—1 in G = H X Zy,, we first
define its sequence of signed differences g;, 1 < ¢ < mn, in G as follows. For
1<i<mn,writei=qn+7r,where 0 <¢g<m-land0<r<n-1 Ifr=0,
we let g; = (0m,q) € H X Zp,, and if 0 <r < m — 1, we let

gi = (hey (=1)71+2[q/2]) .

We first show that go,...,gmn—1 IS a permutation of elements of G. Suppose

9; = gj, where i = gn+r and j = pn+t. If r = 0, then g; = ¢; = (0u,q)
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which implies that ¢ = 0, hence g; = (Og,p), and so p = ¢ = ¢ = j. Thus,
suppose that r, ¢t # 0. It follows from g; = g; that h, = hs, and so r = ¢. It also
follows from g; = g; that (—1)% + 2[¢/2] = (=1)?1 + 2[p/2]. If p — ¢ is odd, we
conclude that |2[q/2]—2[p/2]| = 2l, which is a contradiction, since 2[p/2],2[q/2] €
{0,2,...,2l —2}. If p— q is even, we conclude that 2[q/2] = 2[p/2], which implies
that p = ¢ = i = j. Therefore, gq, ..., gmn—1 i a permutation of elements of G.
Next, we define P; = 22:0(—1)k9k and show that Py, ..., Pp,_1 is a Slonimsky
sequence in G. A simple induction shows that for i = gn +r with 0 < ¢ <m -1

and 0 <r <n—1, we have

(pr,q/2) if ¢ is even and 7 is even;
P (pr,—1—q/2) if ¢ is even and r is odd;
(Pn—r-1,—(q+1)/2) if ¢ is odd and r is even;
(Prn—r—1,—1l+ (g +1)/2) if ¢ is odd and r is odd.
We need to show that Py, ..., Pph._1 is a permutation of elements of G. Suppose

that P; = P; for i = gn+r and j = pn+t. If r,t are both even or both odd, from
P; = Pj, we conclude that p = ¢. Thus, without loss of generality, suppose that p
is even and ¢ is odd. Then p; = p,_,_1 and so t = n — r — 1 which implies that ¢
and r are both even or both odd. If they are both odd, then p/2 = -1+ (¢+1)/2
modulo m, and if they are both even, then — — p/2 = —(¢ + 1)/2 modulo m. In
either case we gave p/2 — (¢ + 1)/2 = —I (mod m), which is a contradiction since
1-1i<p/2—(¢g+1)/2<1-2.

Next, we show that g; + gmn—; =0 for all 1 <i <mn—1. Let ¢ = gn+r, where
0<g<n—-land0<r<m-—1. Sowecan write mn—i=(m—q—1)n+n—r.
Suppose r # 0. Then

9i + Gmn—i = (hr, (=1)7+2[q/2]) + (hp—r, (=1)" "1 4+ 2[(m — g = 1)/2])..
Since h, + h,_, = 0 and m — 1 is even, this simplifies to
gi + Imn—i = (07 (_1)q21 + 2|—Q/2-| + 2|—(_q/2ﬂ - 1) = (070) € H x Zm-

If r = 0, then g; = (0,¢) and one writes mn — i = (m — ¢)n. Therefore, gmn—; =
(0, m — g) which again leads to g; + gmn—: = (0,0).

Finally, we claim that P; + Ppp_i—1 = ((m1 — 1)/2,...,(mg — 1)/2) for all
i € {0,...,mn —1}. We have p, + pp—p—1 = ((m1 — 1)/2,...,(mg—1 — 1)/2)
for all » = 0,...,m — 1 by the inductive hypothesis. Let ¢ = gn + r, and so
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mn—i—1=(m—qg—1n+n—r—1. 1If ¢gis even and r is odd, then

Pi + Pmnfifl = (pr + Pn—r—1, (m - 1)/2)
=((m1—1)/2,...,(mg—1 — 1)/2,(m — 1)/2).

The claim in other cases follows similarly. (]

3. Central extensions

In this section, we describe a construction of DDP sequences via group exten-
sions. Let G be a group extension of H by N i.e., suppose that 1 - N — G 5
H — 1 is a short exact sequence. We will describe an algorithm to lift a DDP
sequence in H to G. By a lift of the DDP sequence hi,...,hjg| in H to G, we
mean a DDP sequence g1, ..., g|¢| such that 7(g;) = h; fori=1,...,|H|.

It turns out that in order for our algorithm of lifting a DDP sequence from H
to G work, the group N = ker(7) must contain no real elements of G except the

identity.

Definition 3.1. An element h € G is said to be a real element of G if there exists
g € G such that g~*hg = h=!. We denote the set of real elements of G by R(G).

Let N be a normal subgroup of G. If the only real element of G in N is 1¢ i.e.,
NNR(G) ={l¢}, then
Vh € N\{lg} Vg € G : hgh # g, (4)
or equivalently, for abelian N,
Vg € G Vhi,ha € N : hy # hy = highy # haghs.
If N is contained in the center of G, then the condition N N R(G) = {1g} is

equivalent to N having odd order.

Theorem 3.2. Let m : G — H be an epimorphism such that ker(m) is an abelian
group of odd order m with ker(m) N R(G) = {1g}. If H is an even DDP group,
then G is an even DDP group. More precisely, let py, ...,pn—1 be a DDP sequence
in H. Then there exist at least (2m)"~1=¢)/2 DDP sequences Py, ..., Pmn_1 in G
such that w(P;) = p; for alli=0,...,n— 1, where e is the number of elements of

order 2 in H. In particular
|0c| > |Ox| x (2m)"—1=9)/2,

Proof. Let pg,...,pn—1 be a DDP sequence in H. We define hg = 1y and h, =
ptip, for 1 <r <n—1. We define a bijection o : {0,...,n —1} = {0,...,n — 1}
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by letting o(r) to be the unique number in {0,...,n — 1} such that h, () = hit.
Let

I={0<r<n-—1l:o(r)=r},

and let A be a set obtained by including exactly one of r or o(r) for every r €
{0,...,n—1}\I, and define B = {0,...,n — 1}\(AUI). Clearly, 0 € I and there
are 2("~111/2 choices for A.

Let also ag, a1, . .., a;,—1 be a Slonimsky sequence in N = ker(); such a special
DDP sequence exists by Theorem 2.2, since N has odd order. Let Sy, ..., 8mn_1 be
the sequence of signed differences. Let us denote the element o, 1 by yny. By the

definition of Slonimsky sequence, one has

Q01— = YN ZOém_l,ViE {O,...,m—l}, (5)
ﬂlﬂm,ile,ViG{1,...,m—1}, (6)

where 1y denotes the identity element of N. In order to define the sequence
Py, ..., Ppn_1, we first define its sequence of consecutive differences go, - .., gmn—1
as follows. For each r € A, we let g, be an arbitrary element of 7= (h,.). For r € B,
by our choice of A and I, there exists a unique s € A such that r = o(s); then, we
let

gt if s+ o(s) is odd;
9r = 9o(s) = S Yngs ‘yn  if s and o(s) are both odd; (7)
y&lgs_ly&l if s and o(s) are both even.

To define g, for r € I, choose f. € 7~!(h,) to be arbitrary. Then one can show
that

7 (h,) = {aifra; | i€ {l,...,m} and a; € N},

and hence there exists v, € N such that f! = v, fv,, since 7(f 1) = h,. = n(f,).
r4+1
Then, choose w, € N such that w? = vryg\,_l) ’ , and let g, = w, f,w,. It follows

from this definition that

1 yngryn  if r €1 is even;
" y;,lgryg,l if r € I is odd.

Next, we define g; for all n < i < mn—1. The idea is to present gg, ..., gmn_1 as
a union of m blocks each containing n elements so that m maps each block onto H,
alternating in increasing (for even blocks) or decreasing (for odd blocks) order of

indices. To be more precise, by the Euclidean algorithm, there exist unique integers
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0<r<n—-land0<g<m-—1suchthati=ng+r. Ifr=20,let g; =3, If
r>1,let
Qadnt g if ¢ is odd and r is odd;
g = ozq_lg;,lraq_l if ¢ is odd and r is even; ®)
oy tgrag ! if ¢ is even and r is odd;

QqGrQyq if ¢ is even and r is even.

We claim that the sequence P; = HZ:O gr, 0 < i <mn —1, is a DDP sequence.

We prove by induction on 0 < ¢ < mn — 1 that for ¢ = ng + r, we have

P,_,_1a4 if ¢ is odd and 7 is odd;
P,_,_i10;t if g is odd and r is even;
P = ! (9)
P.a;? if ¢ is even and r is odd;
P.a, if ¢ is even and r is even.

The claim is clearly true for all 0 < ¢ < n — 1. Suppose the claim is true for
i = ng + r. Suppose that ¢ and r are both odd. The proof in all other cases is

similar. If » =n — 1 then
Piy1 = Pigiv1 = (Poag)Ber1 = Pocgin
as claimed. If 0 <r <n—1. Then i +1=ng+ (r + 1) and we have
Piyy = Pigisy = (P, -l 47l =p -1
i+1 = Ligit1 = ( n*’“flaq)(aq In—r—1%q ) = In—r—2Qy

as claimed. It follows from (9) that P; # P; for 0 < i < j < mn — 1. To see this,
suppose P; = P; for ¢ = ng; + 1 and j = nga 4+ r2. Suppose that g; and ¢y are
even. The proof in other cases is similar. Then p,, = n(P;) = 7(P;) = pr, which
implies that 71 = ro = r. But then a,, = (P, 1P)* = (P71P)*! = ay,, and so
q1 = ¢2, hence i = j.

Next, we show that g; # g; for all 0 <7 < j < mn—1. On the contrary, suppose
that g; = g; for ¢ = gn 4+ and j = pn+ s where 1 < r,s < n. There are two cases:

Case 1. p = ¢ (mod 2). If p,q are both even, then h, = 7(g;) = 7(g;) = hs,
and if p,q are both odd, then h,,—, = (g;)™" = 7(g;)™" = hn—s. In either case,

we conclude that r = s. If r is even, this implies that apgrap = aggraq (if p,g

-1
q

NNR(G) ={l¢}, we must have p = ¢, and so i = j.

-1 -1 o -1 -1 -1 /- . .
are even) or a, g, .0, = a, g, .« (if p,q are odd). In either case, since

Case 2. Without loss of generality, suppose ¢ is even and p is odd. Then

+1
q

If r=n—s e I, then r and s are both even or both odd. If they are both even,

aFlg.af! = aflg ! af!. By projecting onto H via m, we must have h, = h; ' .
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it follows from g; = g; that agg,0q = a;'g; ot which implies that o = yn,
which is a contradiction, since p and ¢ have different parity. If » and s are both
odd, then aq’lg,aaq*l = apgflap which leads to the same contradiction.

Thus, suppose r € AU B. Without loss of generality, suppose r € A, and so
n—s =o(r) € B. If both 7 and s are odd, according to Eq. (7) we have a 'g,a; ' =
apg;(lr)ap = ozpygfl gry;,lap, which implies o,y = yn, a contradiction. Similarly,

-1 1

if r and s are both even, we have aqg,04 = a;lgg(r)a; = a;lyNgryNazjl, which

again implies apay = yn, a contradiction. If r is odd and o(r) is even, then
ozq_lgrozq_1 = a;lg;(lr)azjl = oz;lgrap_l which implies that a, = 4, a contradiction.
Finally, if r is even and o(r) is odd, then agg,0q = Ong;(lr)oz;,, = apgr0p which
implies that ay = oy, a contradiction.

We have shown that Py,..., Ppn—1 is a DDP sequence in G with 7(P;) = p; for
all 0 < ¢ < n—1. Recall that in constructing the set A, we have two choices per
each pair (r,o(r)). Moreover, for each r € A, we have m choices in defining g,. It
follows that there are at least (2m)l4l = (2m)(™~11)/2 DDP sequences which are
lifts of a given DDP sequence in H. Since I is comprised of 15 and elements of
order 2, each DDP sequence in H has at least (Zm)("_e_l)/2 lifts to GG, where e is

the number of elements of order 2 in H. O

Corollary 3.3. Every central extension of an even DDP group by an odd abelian

group s a DDP group.

Proof. Let N be an odd abelian group and H be an even DDP group. Suppose
that 7 : G — H is an epimorphism with ker(7) = N. We need to show that
G is a DDP group. Since ker(r) is an odd abelian group and, by the definition
of central extension, the normal subgroup ker(7) lies in the center of G, one has
ker(m) N R¢ = {1g}, the conditions of Theorem 3.2 hold, hence G is an even DDP
group. O

Theorem 3.4. Let G be a finite odd nilpotent group and K be an even DDP group.
Then G x K is a DDP group.

Proof. Let Zy <71 <--- < Z,, = G be the upper central series of G. We prove by
a finite reverse induction on 0 < i < n that (G/Z;) x K is a DDP group. The claim
is clearly true for i« = n. Suppose we have proved that (G/Z; 1) x K is DDP for
0 < i < n and we show that (G/Z;) x K is DDP. Consider the epimorphism
G

Tt Z X K — 7t
induced by the inclusion Z; < Z;11. By the inductive hypothesis G/(Z;11) x K
is DDP. Moreover, ker(m;) 2 (Z;41/Z;) x {1k} which is contained in the center of

X K7 Wi(g—f— Zi7 k) = (g + Zi+17 k)
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G/Z; x K. Tt then follows from Corollary 3.3 that (G/Z;) x K is DDP. When i = 0,
we conclude that G x K is DDP. O
4. The abelian case

In this section, we determine all finite abelian DDP groups. We begin with
describing an obstruction to the existence of a DDP sequence in the abelian case.

For an abelian group G, we use Og (or simply 0) to denote its identity element.

Lemma 4.1. If G is an abelian DDP group, then it has a unique element of order

2.
Proof. Let z1,...,x, be a DDP sequence in G. Then we have
k—1
-1 T = Z(—wl +xiq1) = Z g. (10)
i=1 geG

Now let us assume to the contrary that either G has odd order or it has more than
one element of order 2. Firstly, if G has odd order, we have 2 deG g= dea g+
>_gec(—9) = 0g, and (10) implies that ), = z1, which is not allowed. Secondly, if
G has more than one element of order 2, then one can write G = Z,,, X Z,, x H for

even integers m,n, and an abelian group H. But then
Zg = (mn|H/2,mnH|/27mn Z h) = (0z,,,0z,,05) =0g € G,
gea heH
since ) o, i =n(n—1)/2 =n/2 modulo n and 23,y h = 0. Now it follows
again from (10) that
—z1 + 2 = Og,

which contradicts the assumption that x4, ...,z are distinct. (Il
In the next lemma we consider the group (Z,,+) where n = 2™.

Lemma 4.2. Letn = 2™, where m is a positive natural number. Then the following

statements hold.

a) The sequence x; = i(i+1)/2, 0 <i<mn—1, is a DDP sequence modulo n
for allm > 1.
b) The sequence

i(ti+1)/2 ifO<i<2m2 or3.2m72 << 2m,
i(i+1)/24+2m"1 jfam=2<j<3.2m2

Yi =

1s a DDP sequence modulo n for all m > 2.
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Proof. Since z;41—x; = i+1, part (a) is equivalent to the claim that ¢ — i(i41)/2
is a bijection on Z,,. If n = 2™, then the map i — i(i + 1)/2 is a one-to-one map
modulo n. To see this, suppose i(i+1)/2 = j(j+1)/2 (mod 2™) for 0 < ¢ < j < 2™,
and we derive a contradiction. It follows that i(i + 1) = j(j + 1) (mod 2™*1), and
so (j—i)(i+j+1) =0 (mod 2™*1). If j—i is odd, then i+j+1 =0 (mod 2m*1!),
a contradiction with i 4 j < 2™+!. On the other hand, if j —i is even, then i +j +1
is odd, and so j —i = 0 (mod 2™*!), a contradiction with 0 < j —i < 2™. It
follows that ¢ — i(i 4+ 1)/2 is one-to-one, hence a bijection, on Z,.

For part (b), one verifies that the sequence of consecutive differences of yy, .. .,

Yn—1 is given by
0,1,2,...,2m72-1,3.2m=2 9m=241 .  3.2m72_] 9m"2 3.9m"241 ..  2m_1,

which is obtained from the sequence 0,1,...,2™ — 1 by exchanging 2™~ 2 and the

product 3 - 2™~2, hence yo, ..., Yn_1 is a DDP sequence. (I
Corollary 4.3. If n =2™, m > 3, then |0z, | > n.

Proof. For m > 3, the two DDP sequences in Lemma 4.2 are distinct. Moreover,
rTo, ..., "Tp_1, and ryg, ..., Yn—1, are DDP sequences for every odd number r €

Z.,, and the corollary follows. O

Theorem 4.4. Let G be an abelian group. Then G is a DDP group if and only if

G has exactly one element of order 2.

Proof. In light of Lemma 4.1, it is left to show that if G = H X Zgm, where m > 1
and H is an odd abelian group, then G is DDP. Since H is an odd nilpotent group
and Zom is an even DDP group by Lemma 4.2, the claim follows from Theorem
3.4. |

Corollary 4.5. Let ¢y =1, co =2, and ¢, = 2™ form > 3. If G = Zom X Ly, X
<o X Ly, where ny,...,ny are odd integers and m > 1, then

06| > e % (2n1)2" 71 x (200)2" T (22T L

In particular, if an abelian group G has size 2™ kl, where m > 1 and k,l are relatively

prime odd integers, then |Og| > (2k)!~1.

Proof. Proof is by induction on k. If &k = 0, the claim follows from Lemma 4.2.

For the inductive step, let G = Z x H, where by the inductive hypothesis

MNk+1

2m,—l 2m—1

nimp_1—1

|OH| = ¢ X (2711)2771_171 X (2ng) el (2ny)
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By Theorem 3.2, we have
0c| > (2n141) 171792 0y,

where e is the number of elements of order 2. It follows from G = Zom X Zy, X
-+« X L, that one has e = 1, and the claim follows. The last claim of the Corollary
4.5 follows from G = Zom X Zy, X Z;. O

5. The non abelian case

Computer searches show that the smallest non abelian DDP group is the dihedral
group D5, which has 320 DDP sequences. If we present Ds in terms of generators

and relations as
Ds = (a,b| a® =b* =1, aba =),
an example of a DDP sequence in Ds is
1,a,a®,ba® a?,b,a*, ba*, ba?, ba,
with the corresponding sequence of distinct divisors

1,a,a?,ba,b,ba?, ba*, ba®, a®, a*.

The group Dg has 3072 DDP sequences, and the alternating group on four elements
Ay has 2304 DDP sequences.

Computer searches also confirm that D7 is a DDP group, and we conjecture that
D,, is a DDP group for all n > 5. As we noted in Lemma 4.1, an abelian group of
odd order is not DDP. However, the next example shows that in the non abelian

case, DDP groups of odd order do exist.

Example 5.1. Let G = Z; X Z3 be the non abelian group of order 21. G is the

smallest non abelian group of odd order. In generators and relations, G is given by
G={a,b|a" =b>=1, a®b = ba).
The following sequence is a DDP sequence in G:
1,a,ba®, ba?, a®,a®, b, b%a*, ba*, b%a?, ba®, ba®, a®, b%a®, ba, b2, b%a®, a?, b%a, b%a®, a*,
where the sequence of distinct divisors is given by
1,a,ba?, a®,b%a®, a?, ba, ba*, b%a®, b, b%a, a®, b2, b%a®, b%a?, ba®, a8, ba®, b%at, a*, ba®.
The next lemma provides a construction of DDP groups via semidirect products.

Consider for example the semidirect product G = Zg x4 Z¢, where ¢ : Zg — Aut(Zg)
is defined by
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j ift=0 (mod 3);
Ge(j) =445 ift=1 (mod 3);
7j ift=2 (mod 3).
Then G is a DDP group by the following lemma.

Lemma 5.2. Let ¢ : Z,, — Aut(Zy,) be a group homomorphism such that 1+ ¢4(1)
is a generator of Z., for all s € Zy,,. If m is odd and n is even, then Zy, X ¢ Zy, is a
DDP group.

Proof. Consider the projection 7 : Z,, X4 Z,, — Z,, with ker(m) = Z,, x {0}.
The claim follows from Theorem 3.2 if we show that aga = ¢ = «a = 0 for all
o € Zy, x {0} and g € Zyy, ¥y Zy,. Let g = (r,s) and o = (k,0). Then

aga = (k,0)(r, s)(k,0) = (r + k + ¢s(k), s) # (r, ),
since k + ¢5(k) # 0 for all k # 0; otherwise, k(1 + ¢5(1)) = 0 which contradicts the

assumption. O
Finally, we show that there exist infinitely many non abelian DDP groups.

Theorem 5.3. Let p be a prime with p = 3 (mod 4) and let t be a primitive root
modulo p. Then Z,, Xy Zp_1 is a DDP group, where ¢ : Zy_1 — Aut(Zy) is given

by ¢s(x) = t2*x. In particular, there exist infinitely many non abelian DDP groups.

Proof. We first show that ¢** is not congruent to —1 modulo p for every s € Z,_1.

2 = —1 (mod p), we have 4s = 0 (mod p — 1), which implies

If on the contrary,
that 2s = 0 (mod p — 1) since p = 3 (mod 4). But then t** =1 (mod p), which is
a contradiction. It follows that 1+ ¢4(1) # 0 for all s € Z,_1, and the claim follows

from Lemma 5.2. O
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