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Abstract- A new theory is proposed and investigated by using intermediate bands within the energy gap of the semiconductor, 

in order to increase the efficiency of solar cells. Thus, the photons with energy less than the band gap could contribute to the 

output device by using the intermediate band or bands, in order to jump to the conduction band. Such a problem is reduced to 

the solution of non-linear integral equations and for their solution an innovative and groundbreaking numerical method is 

proposed. Generally, in solar cells low energy photons can not excite electrons to the conduction band and then to the external 

circuit. In addition, intermediate bands get advantage of the lower energy photons by allowing the electrons to be promoted to 

levels in the usually forbidden energy gap. Consequently, through such a multi-step approach, then the efficiency of the solar 

cell is increasing. In the current investigation we will show that the maximum efficiency of an ideal solar cell containing one 

and two intermediate bands will be 63 % and 75 %, respectively. 

Keywords- Solar Cell, Semiconductor, Intermediate Band, Conduction Band, Valence Band, Non-linear Integral Equations, 

Photons, Electrons. 

 

1. Introduction 

Production of solar energy is done when in the solar core 
of the sun thermonuclear fusion reactions occur unceasingly 
at millions of degrees and then they release huge quantities 
of energy in the form of electromagnetic radiations. So, some 
part of this solar energy reaches the outer area of the Earth’s 
atmosphere with an average irradiance (solar constant) of 
about 1367 W/m2, a value which varies as a function of the 
Earth-to-Sun distance and the solar activity. 

In addition, by solar irradiance is meant the intensity of 
the solar electromagnetic radiation incident on a surface of 
one square meter [kW/m2]. The above intensity is equal to 
the integral of the power associated to each value of the 
frequency of the solar radiation spectrum. Consequently, 
when passing through the atmosphere, the solar radiation 
diminishes in intensity because it is partially reflected and 
absorbed. The radiation which passes through is partially 
diffused by the air and by the solid particles suspended in the 
air. 

When the sunlight is absorbed in the solar cell, 
depending on the material, then electrons can excite to higher 
energy levels and in this case they can move freely. In 
addition, the extreme case is when the electron can 
completely escape the surface of the metal after absorbing 
blue or ultraviolet light, known as the photoelectric effect. In 
the semiconductor, which has a band gap usually ranging 
between 0.5 eV to 3.0 eV, an electron can be promoted to the 
conduction band if the absorbed photon has an energy greater 
than the band gap. After this procedure, the excited electron 
will decay very quickly, at some picoseconds, to the lowest 
available energy state in the conduction band due to the 
abundance of empty levels. The above physical phenomenon 
is called thermalization and happens through collisions with 
the lattice, giving up kinetic energy to produce photons 
during the decay.  

Also, in a much slower process, the electron will decay 
across the band gap to a vacant site in the valence band. 
Then, the solar cell takes advantage of this slow process and 
have some asymmetry built in that pulls the electrons away 
to an external circuit before electrons can relax back down to 
the valence band. As they are pulled away, the extra energy 
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is a potential difference and this allows electrical work to be 
done. 

On the other hand, a big problem occuring in solar cells 
is that low energy photons cannot excite electrons to the 
conduction band and then to the external electrical circuit. 
So, by using intermediate bands in the solar cells, then these 
take advantage of the lower energy photons by allowing the 
electrons to be promoted to levels in the normally forbidden 
energy gap.  Hence, by using the above muli-step approach, 
then the efficiency of the solar cells is increased too much. In 
the current investigation we will show that the maximum 
efficiency of a solar cell using one or two intermediate bands 
is much greater than the single solar cell.  

Over the past years, several scientists have studied solar 
cells with intermediate bands, by using several methods. 
Among them we shall mention the following scientists: A. 
Luque and A. Marti [1], M.A. Green [2] - [4], R.P. Corkish, 
A.S. Brown and M.A. Green [5], J. Nelson [6], A. Luque, L. 
Cuadra L. and A. Marti [7], J. McDougall.and E.C. Stoner 
[8], J.S. Blakemore [9] and R.F. Tooper, E.W. Ng and C.J. 
Devine [10]. Furthermore, in order an intermediate band to 
be introduced in the semiconductor, three different ways can 
be used: (a) the direct synthesis of a material with an 
intermediate band, (b) the highly nanoporous materials 
approach, and (c) implementation using quantum dots. Only 
an experimental approach could show which of the above 
three methods would be ideal for using the intermediate band 
and increasing the efficiency of the solar cell.   

In the present research, the problem by using 
intermediate bands in a solar cell, in order to increase its 
efficiency, will be reduced to the solution of non-linear 
integral equations. Consequently, for the numerical solution 
of the above non-linear integral equations a special numerical 
method will be used.  

Thus, the non-linear singular integral equations methods 
which were introduced by E.G.Ladopoulos [11] - [25] and 
were used successfully over the last years for the solution of 
several engineering problems of fluid mechanics, hydraulics, 
aerodynamics, solid mechanics, potential flows, petroleum 
engineering and structural analysis, are further extended in 
the current research for the solution of solar energy 
problems. 

2. Energy and Photon Fluxes Analysis 

Only a portion of sun's radiation is received by the earth, 
as 25 % is reflected by the atmosphere, 18 % is diffused by 
the atmosphere and finally 5 % is absorbed again by the 
atmosphere. Beyond the above, 5 % of sun's radiation is 
reflected by the ground and 27 % is absorbed by the soil 
surface. Thus, a solar cell is receiving only a part of the sun's 
radiation.  

As an introduction to the energy and photon fluxes 
analysis, consider the segment dS of a black body surface 
emitting radiation, with dΩ an element of solid angle around 
the direction of emission. Then, the solid angle can be given 
by the following relation: 

sin
2

dS
d d d

r

θ θ φΩ = =          (2.1) 

In addition, for the determination of sun's radiation as 
seen from earth, then the method which follows can be used. 
Generally, consider planar symmetry and then the radiation 
is determined along the normal n to the surface.  

The angular dependence is calculated by integrating over 
the angular ranges θ and φ, as follows: 

2 2sin sin2 2 2 1cos sin ( )( )
2 12

1 1

R d d R

φ θ θ θ
θ θ θ φ φ φ

φ θ

−
= −∫ ∫  (2.2) 

where  R  denotes the radiation independent of angular 
ranges. For example the radiation passing through a 
hemisphere is equal to πR, by replacing 

/ 2, 0, 2
2 1 2

θ π θ φ π= = = and 0
1
φ =  in eqn (2.2). Usually, 

φ  ranges from 0 to 2π  and 0
1
θ = , which reduces (2.2) to 

2
sin

2
Rθ π . 

Normally, in order to calculate efficiencies in solar cells, 
it is preferred to work with fluxes. Also, in a black body 
cavity the radiation is isotropic and moves with a velocity c. 
Then, photons  dΩ/4π are moving in any direction within an 
element of solid angle dΩ. 

Furthermore, by considering a hole of area dS and 
assuming that the hemisphere penetrates the black body 
cavity at a finite thickness dr, then the area  dS has a solid 

angle 
2

cos /dA rθ  from the volume  
2
sinr d d drθ θ φ . So, 

the total amount of energy arriving per unit area and per unit 
time is as following: 

2 2

1 1

2 2

2 1

2 1

sin sin
cos sin ( )( )

4 4 2

e
cd d

c

φ θ

ε

φ θ

ρ θ θθ θ φ
ρ θ φ φ

π π

−

= −∫ ∫

            (2.3) 

in which  ρε  denotes the energy density as given by the 
radiation law of Planck: 

2

3 3

8

1kTh c e
ε ε

πε ε
ρ =

−

          (2.4) 

where c is the speed of light, ε photon's energy, h 

Planck's constant, T the temperature and k Boltzmann's 
constant. 

Consequently, by assuming, as before,  that φ  ranges 

from 0 to 2π  and 
1

0θ = , then (2.3) reduces to 2

2
sin

4

e
cρ

θ . 

By following a similar method, then the photon (particle) 
density n

e
 can be converted to photon flux, by replacing ρ

e  

with n
e
.. 

The photon flux and the energy flux over the energy 
range E1 and E2 can be given by the following relations, 
respectively: 
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and: 

2
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2 3
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2 sin
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E

E kT
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E
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h c e

π θ
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∫           (2.6) 

As the energy flux is power per unit area, then the power 
density will be used. Consequently, the efficiency of a solar 
cell can be calculated by using the ratio of the power output 
by the cell, to the power density received by the cell.   

Then, from (2.6) follows that the power density from a 
black body is equal to : 

2 4

2
sin

S
E Tσ θ=            (2.7) 

with 
S
σ  Stefan's constant: 

5 4

3 2

2

15
S

k

h c

π

σ =            (2.8) 

Finally, at the surface of the earth's atmosphere follows 
that the power density is equal to 1353 W/m2. The next step 
is the determination of the power output from the solar cell. 

The power density P which is delivered by an electric 
circuit is equal to: 

P J V= ⋅             (2.9) 

in which J  denotes the current density at a certain voltage V.  

Then, the main problem is to find the current density at a 
certain voltage V, which can deliver the maximum power. 

The generalized form of a photon flux for a black body, 
is given by the following non-linear integral equation: 

2

1

2

1 2 3 2 ( )/

2
( , , , )

1

E

E kT

E

E
N E E T dE

h c e
µ

π
µ

−

=

−
∫      (2.10) 

where μ denotes the chemical potential of radiation : 

qVµ =           (2.11) 

with q the magnitude of the charge of an electron.  

In addition, (2.10) will be used in order to determine the 
current density because of the incoming and outgoing photon 

fluxes between the energy levels 
1

E  and 
2

E . Generally, all 

the photons with energy greater than energy gap 
g

E are 

absorbed in the cell and will create an electron-hole. Also, all 
the photons with energy less than the energy gap are not 
absorbed in the cell. Thus, the absorbed photon flux in the 
cell will be equal to the excited electrons in the conduction 
band. Such an absorbed photon flux is denoted by 

( , , ,0)
g sun

N E T∞ , with 
sun

T  the temperature of the sun.  

On the other hand, some of the photons will be emitted 
from the solar cell and thus electrons will recombine with 
some holes in the valence band.  The above electrons will not 
contribute to the current. Furthermore, the power of the 

emitted photons will be equal to ( , , , )
g cell

N E T µ∞ . Then, the 

net electrons (absorbed photons minus emitted photons) will 
be used to the external electrical circuit, in order electricity to 
be produced. 

Thus, the current density produced by the solar cell can 
be given as follows : 

( , , ,0) ( , , ,
g sun g cell

J q N E T N E T qV = ∞ − ∞       (2.12) 

and the output power density is equal to: 

( , ) ( , , ,0) ( , , ,
g g sun g cell

P E V qV N E T N E T qV = ∞ − ∞     (2.13) 

from which finally follows that the output power density is a 

function of 
g

E  and V. 

3. Analysis of Three Band Solar Cell 

In order the efficiency of a solar cell to be increased, 
then some of the low energy photons should be absorbed and 
used in the above cell. In order this to be effected, then an 
intermediate band should be included between the forbidden 
band gap, to give a total number of three bands in the 
semiconductor. So, the new solar cell should have a valence 
band (VB), a conduction band (CB) and the new intermediate 
band (IB).  

Transitions can occur between the valence and 
conduction bands, the valence and intermediate bands and 
the intermediate and conduction bands. Furthermore, 
consider that each band has constant quasi-Fermi levels 

,

,
FV FIn FC

ε ε ε  [1]. Then, the same method will be followed as 

for the two band solar cell analysis, as described in the 
previous section. 

Hence, the current density produced by the three band 
solar cell can be given as follows: 

( , , ,0) ( , , ,

( , , ,0) ( , , ,

g sun g cell

C g sun C g cell CIn

g C V

CV FC FV

CIn FC FIn

InV FIn FV

J q N E T N E T qV

q N E E T N E E T

E E E

µ

µ ε ε

µ ε ε

µ ε ε

 = ∞ − ∞ + 
 − 

= −
= −
= −
= −

   (3.1) 

where 
C

E  and 
V

E  denote the energy in the conduction and 

valence band, respectively. 

Furthermore, the chemical potential of radiation between 
the valence and the conduction bands is equal to: 

CV
qVµ =            (3.2) 

and further 
CV

µ  can be given by the following relation: 

CV CIn InV
µ µ µ= +            (3.3) 

As could be seen from (3.1) the total current is the sum 
of the current generated from the electrons which are excited 
from the valence to the conduction band and the current 
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generated from the electrons excited from the intermediate to 
the conduction band. 

On the contrary, as there is no current extracted from the 
intermediate band, then the flux has to be balanced and then 
the following relation should be satisfied:  

( , , ,0) ( , , , )

( , , ,0) ( , , , )
C g sun C g cell CIn

In C sun In C cell InV

N E E T N E E T

N E E T N E E T

µ

µ

− =

−

         (3.4) 

Hence, by using eqs (3.1) to (3.3), then the maximum 

efficiency can be calculated, by selecting an energy gap 
g

E , 

and then check through values of 
C

E  in order the power to 

be maximized. 

4. Analysis of Four Band Solar Cell 

In order the efficiency of a solar cell to be more 
increased, then a four band cell could be used, by putting two 
intermediate bands between the energy gap, instead of one, 
as in the previous studied case of a three band cell. 
Consequently, the new solar cell should have a valence band 
(VB), a conduction band (CB) and the two new intermediate 
bands (IB1 and IB2).  

Transitions can occur between the valence and 
conduction bands, the valence and intermediate bands and 
the intermediate and conduction bands. Also, consider that 

each band has constant quasi-Fermi levels 
1, 2,

,
FV FIn FIn FC

ε ε ε ε  

[1]. Then, the same method will be followed as for the three 
band solar cell analysis, as described in the previous section. 

So, the current density produced by the four band solar 
cell is equal to: 

1

2

( , , ,0) ( , , , )

( , , ,0) ( , , ,

( , , ,0) ( , , , )

g sun g cell
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µ

µ
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         (4.1) 

in which 
C

E  and 
V

E  denote the energy in the conduction 

and valence band, respectively. 

The chemical potential of radiation between the valence 
and the conduction bands is equal to: 

CV
qVµ =             (4.2) 

and 
CV

µ  can be further given by the following formula: 

2 2 1 1CV CIn In In In V
µ µ µ µ= + +           (4.3) 

In addition, following relations should exist: 

2 1 1 2

1 1 2 2

VIn VIn In In

In C In In In C

µ µ µ

µ µ µ

= +

= +
           (4.4) 

Thus, as could be seen from (4.1) the total current is the 
sum of the current generated from the electrons which are 
excited from the valence to the conduction band and the 
current generated from the electrons excited from the two 
intermediate bands to the conduction band. 

On the other hand, as there is no current extracted from 
the two intermediate bands, then the current entering band 1 
must be equal to the current leaving band  

(
1 1 2 1VIn In In In C

J J J= + ) and the current entering band 2 must 

be equal to the current leaving band (
2 1 2 2In C In In VIn

J J J= + ). 

5. Non-linear Flux Integral Equations Numerical 

Solution 

For the numerical solution of the non-linear flux integral 
equation, a special method will be used. This numerical 
method will be based on the Bose-Einstein integrals. 

Hence, consider the following integral equation: 

0

1
( )

( 1) 1

u

u F y

F dF
f y

u e

∞

−

=
Γ + −

∫          (5.1) 

in which  Γ(u) denotes the gamma function. 

Then, we will show that when  y<0, eqn (5.1) can be 
approximated by the relation: 

1

1

( )
ry

u u

r

e
f y

r

∞

+

=

=∑            (5.2) 

The above series can be calculated by using only a finite 
number of terms and bounding the error: [4] 

1

1

1

( )
rym

u u

r

e
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+

=

= + ∆∑           (5.3)  
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e

m

m e
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          (5.4) 

Furthermore, by using a similar method, then the 
integral equation: 

1
( , )

( 1) 1

u

u F y

F dF
G y

u e
ε

ε

∞

−

=
Γ + −

∫           (5.5) 

can be approximated by the function: 

( ) 1 2

2 3
1

( 1)
( , ) ...........

( 1)

r y u u u

u

r

e u u u
G y

u r r r

ε

ε ε ε

ε

− − −∞
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 −
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∑

            (5.6) 

Also, eqn (5.5) can be written as follows: 

0

( )
( , )

( )!

u ku

k

u

k

f y
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u k

ε ε
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−

=

−
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−
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where ( )
k
f y ε−  is given by (5.3). 

On the contrary, if both limits are finite, which is the 

usual case of the integrals under study, then the above 

summation can be extended by the formula: 

2

1

1 2

0

( )
( , , ) ( 1)

( )!

u ku

l l k l

u

l k

f y
G y

u k

ε ε

ε ε

−

+

=

−

= −

−

∑∑         (5.8) 

The above outlined numerical method will be used for 

the calculation of the integral equations used in two- three - 

and four - band solar cell analysis.  

Thus, the application of the new numerical method to a 

two-band solar cell analysis, for 6000
o

sun
T K=  and  

300
o

cell
T K= , shows that the maximum efficiency occurs 

when there is a band gap of 1.1 eV at about 40 % (Figure 1). 

 

Fig. 1. Efficiency of a single solar cell (in eV) at full 

concentration. 

In addition, the application of the new numerical method 

to a three-band solar cell analysis, shows that the maximum 

efficiency occurs when there is a band gap of 1.95 eV at 

around 63 % (Figure 2). 

 

Fig. 2. Efficiency of a three-band solar cell (in eV) at full 

concentration. 

Finally, for a four-band solar cell the maximum 

efficiency occurs for a band gap of 2.40 eV at around 75 %. 

6. Conclusion 

An innovative and groundbreaking theory has been 

proposed by using intermediate bands within the energy gap 

of the semiconductor in order to increase the efficiency of 

solar cells. So, photons with energy less than the band gap 

can contribute to the output device by using the intermediate 

band or bands, in order to jump to the conduction band. Such 

a problem was reduced to the solution of non-linear integral 

equations and for their evaluation a special numerical method 

has been proposed.  

It was therefore shown, that for a three-band solar cell 

the efficiency is increased to 63 %, while for a four-band 

solar cell the efficiency is increased to 75 %. As future 

research, we propose the determination of the absolute 

maximum efficiency of a multi-band solar cell, for n bands. 

Thus, a ceiling can be put to the determination of the 

maximum efficiency of a multi-band ideal solar cell. This 

will help the future plans of the international solar cells 

industry.   

Finally, the proposed method was based on the idea, that 

in solar cells low energy photons can not excite electrons to 

the conduction band and then to the external circuit. So, the 

use of intermediate bands is giving advantage of the lower 

energy photons by allowing the electrons to be promoted to 

levels in the usually forbidden energy gap. As a result, 

through the above multi-step approach, then the efficiency of 

the solar cell is increasing.  
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