Mechanical Modelling of Wind Turbine: Comparative Study

Waleed K. Ahmed**

*ERU, Faculty of Engineering, United Arab Emirates University

w.ahmed@uaeu.ac.ae

[‡]Corresponding Author; Waleed K. Ahmed, ERU, Faculty of Engineering, United Arab Emirates University, Al Ain, UAE, +971 3 7135328, w.ahmed@uaeu.ac.ae

Received: 09.11.2012 Accepted: 03.12.2012

Abstract- This paper explores the modelling of gear train of the wind turbine and distinguishes the difference in the approaches usually used to establish the mathematical model which is later has a significant impact on the design, characteristic and performance of the modelled system. Mainly two commonly used approached for the gear train systems are analysed and discussed. The main well know mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. This paper elucidates these concerns.

Keywords- Comparative, mathematical, mechanical, modelling, turbine, wind.

1. Introduction

Nowadays, it is well known that the renewable energy industry is accelerating quickly and intensively rising concerns about natural recourses exhaustion and climate change. Renewable energy is seen by many as part of the appropriate response to these concerns and some national Governments have put programs in place to support the wider use of sustainable energy systems [1]. As a consequence, this led to a rapid boost in demand for renewable energy specialists who should be able to design, install and maintain such systems.

Most engineers are not trained to use these renewable energy technologies and most are not aware of the principles of sustainability. There is therefore an urgent need to develop and implement new university courses that prepare engineers, scientists and energy planners to work with renewable to produce sustainable energy generation systems. However, this rapid growth has worsened the problem of a serious shortage of experienced professionals in renewable energy. The type of person in demand includes designers, installers, service and sales representatives, policy analysts, academic scientists, engineers, teachers and researchers. Without them the quality of systems may be compromised and the demand for renewable energy may be adversely affected as a result [2].

Wind turbines produce electricity by using the power of the wind to drive an electrical generator. Wind passes over the blades, generating lift and exerting a turning force. The rotating blades turn a shaft inside the nacelle, which goes into a gearbox. The gearbox increases the rotational speed to that which is appropriate for the generator, which uses magnetic fields to convert the rotational energy into electrical energy. The power output goes to a transformer, which converts the electricity from the generator to the appropriate voltage for the power collection system [3]. The basic components involved in the representation of a typical wind turbine generator are shown in Fig.1.

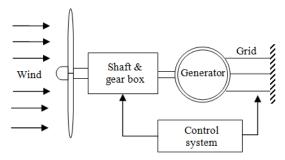


Fig. 1. Components of a typical wind system.

An overall wind energy system can be divided into following components [4]:

- 1. Model of the wind.
- 2. Turbine model.
- 3. Shaft and gearbox model.
- 4. Generator model.
- 5. Control system model.

The mechanical parts of the wind turbine generator are the first three components. Basically, the generator produces the electro-mechanical link between the turbine and the power system and the control system controls the output of the generator. In general, the concept of using the wind energy to obtain the electricity power can be represented by the following diagram, Fig.2.

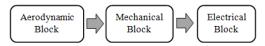


Fig. 2. Wind turbine block diagram.

The mechanical system of the wind turbines plays a big role in the energy transformation. Most of the simple wind turbine gear box consists of two main shafts, the low speed shaft which is basically connected with the wind turbine blades, and the second one which is called the high speed shaft connected directly to the generator and shown in Fig.3.

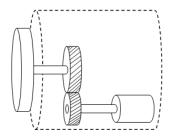


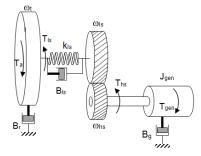
Fig. 3. Typical gear train system of wind turbine

The present paper simply investigates the differences in the mathematical modelling approaches that commonly using to model the actual adopted mechanical system. Mainly two techniques are explained and detailed with the assumptions used in order to distinguish the differences and hence the consequences of the modelling.

2. Two-Mass Gear Train Approach: Case I

This case of the two mass models is considered the most commonly used to describe a two-mass system [5,6,7]. Mainly, to describe the wind turbine system which is basically includes the blade, gear train and the generator which is shown in Fig.4. As a matter of fact, this model is adopted for further modelling for the turbine control system mathematical model which is established based on this model, and mainly for wind turbine of different sizes.

In particular, most controllers are considered more adapted for high-flexibility wind turbines that cannot be properly modelled with a one mass model [8]. Besides, it is shown that [9] the two-mass model can show flexible modes in the gear train model that cannot be done using the one mass model.



Besides, this model was also used to investigate the linear and the nonlinear controller of the wind turbine [10]. The essential assumptions of the present model are:

- 1. Considering the blade damping effect and the generator damping effect as well.
- Eliminating the impact of the high speed shaft stiffness.
- 3. Cancellation the driving and the driven gears and the shafts moment of inertias.

By applying Newton's second law for rotation system or using energy principles on the rotor, the mathematical model will be:

$$J_r \dot{w}_t + B_r w_t = T_a - T_{ls} \tag{1}$$

Where,

 J_r =rotor moment of inertia.

w_t =rotor angular speed.

B_r=rotor damping effect.

T_a=applied torque on the rotor.

T_{ls}=low speed shaft torque.

Whereas the same technique is applied for the driving gear, which basically its moment of inertia is cancelled, this will yield:

$$J_{ls} \dot{w}_{ls} + B_{ls} (w_t - w_{ls}) + K_{ls} (\theta_t - \theta_{ls}) = T_{ls}$$
 (2)

Where,

J_{ls}=driver moment of inertia (cancelled).

 w_{ls} = angular speed of the low speed shaft.

B_{ls}=low speed damping effect.

K_{ls}=stiffness of low speed shaft.

q_t=rotor angular displacement.

q_{ls}=low speed angular displacement.

This will yield:

$$T_{ls} = B_{ls}(w_t - w_{ls}) + K_{ls}(\theta_t - \theta_{ls})$$
(3)

By the same procedure, the mathematical model for the generator is:

$$J_g \dot{w}_g + B_g w_g = T_{hs} - T_{em}$$

Where

$$J_a \dot{w}_a + B_a w_a = T_{hs} - T_{em} \tag{4}$$

 J_{ls} =generator moment of inertia.

 w_g = angular speed of the high speed shaft.

B_g=high speed damping effect.

T_{hs}=high speed shaft torque.

T_{gen}=generator electromagnetic torque.

The gear train ratio ng is described by:

$$n_g = \frac{T_{ls}}{T_{hs}} = \frac{w_g}{w_{ls}} = \frac{\theta_g}{\theta_{ls}} \tag{5}$$

Where, θ_{g} is the angular displacement of high speed shaft.

By differentiating equation (3) with respect to time and organizing equations (1) and (4) in term of ω_t and ω_g respectively and using equation (5), the matrix form of the variables can be expressed:

$$\begin{bmatrix} \dot{w}_t \\ \dot{w}_g \\ \dot{T}_{ls} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} w_t \\ w_g \\ T_{ls} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} T_a + \begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \end{bmatrix} T_{em}$$
 (6)

Where

$$\begin{aligned} a_{11} &= \frac{-B_r}{J_r}, a_{12} = 0, a_{13} = \frac{-1}{J_r}, a_{21} = 0, a_{22} = \frac{-B_g}{J_g} \\ a_{23} &= \frac{1}{n_g J_g}, a_{31} = \left(K_{ls} - \frac{B_{ls} B_r}{J_r}\right), a_{32} = \frac{1}{n_g} \left(\frac{B_{ls} B_r}{J_g} - K_{ls}\right) \\ a_{33} &= -B_{ls} \left(\frac{J_r + n_g^2 J_g}{n_g^2 J_g J_r}\right), b_{11} = \frac{1}{J_r}, b_{12} = 0, b_{21} = 0 \\ b_{22} &= \frac{-1}{J_g}, b_{31} = \frac{B_{ls}}{J_r}, b_{22} = \frac{B_{ls}}{n_g J_g} \end{aligned}$$

The present mathematical model of the variable can be used for the subsequent stages for the derivation of the controller model [10].

3. Three-Mass Gear Train Approach: Case II

The second approach to find the mathematical model of the mechanical system is based on the idea of establishing the comprehensive mathematical model of the mechanical system by including mainly the effect of the moment of inertias of the gears besides the stiffness of the high speed shaft which was cancelled in the previous technique. The present procedure is called the three-mass model. Accordingly, the developed mathematical model is used to find the equivalent two-mass model as well as the one-mass model.

3.1. Three-Mass Model

The diagram of the three-mass model is shown in Fig.5.

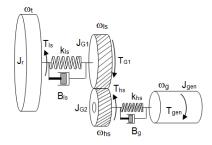


Fig. 5. Three-mass gear train system.(Case II)

By using either the energy method or the Newton's second law for rotational systems, the first mathematical model of the wind turbine rotor can be written as following [11]:

$$T_{ls} = J_r \dot{w}_t + B_{ls} w_t + k_{sl} (\theta_t - \theta_{ls})$$
 (7)

Here, it is important to mention that the effect of the damping on the low speed shaft is only considered on the rotor side one time and the gear one on the second time, whereas in case I, this damping effect was considered as a relative between them.

Since the moment of inertia of gear one is considered, and then the mathematical model of it is calculated as:

$$T_{G1} = J_{G1}\dot{w}_{ls} + B_{ls}w_{ls} + k_{sl}(\theta_{ls} - \theta_t)$$
 (8)

Whereas for gear 2, the dynamic equation is written as:

$$T_{hs} = J_{G2}\dot{w}_{hs} + B_g w_{ls} + k_{hs} (\theta_{hs} - \theta_g)$$

$$\tag{9}$$

Again here, the damping effect of the generator Bg is not considered as relative between gear 2 and the generator.

Finally, for the generator, the differential equation is represented by:

$$-T_{gen} = J_{gen}\dot{w}_g + B_g w_g + k_{hs} (\theta_g - \theta_{hs})$$
 (10)

Where, T_{G1} is the torque on gear one, J_{G1} and J_{G2} are the moment of inertial for both gear one and two respectively.

3.2. Two-Mass Model

Once the tree-mass mathematical model is obtained, the system can be simplified to be two-mass model through reforming the dynamic system with the equivalent stiffness and damping coefficients, k and B respectively. In this context, and in order to utilize the previous mathematical model developed, it is necessary to assume that the moment of inertia of the shafts and the gears are neglected because their impact on the behavior of the system is relatively tiny in comparison with the moment of inertia of the wind turbine or even generator.

As a consequence, the proposed two-mass model is consisting of two main rotors, which represent the wind turbine and the generator and connected by a flexible shaft, so the equivalent developed system is shown in Fig.6.

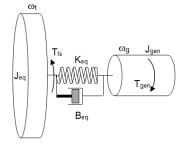


Fig. 6. Two-mass gear train system.(Case II)

In order to build the mathematical model of the new two-mass system, it is important to mention that the influence of the gear ratio must be included, which is represented by:

$$K_{gear} = \frac{w_{hs}}{w_{ls}} = \frac{T_{G1}}{T_{hs}}$$
 (11)

Where K_{gear} is the gearbox ratio

Therefore, the dynamic system can be formulated with respect to the wind turbine rotor one time and the electromagnetic generator in the second time which is connected by the gearbox. For the wind turbine rotor, the mathematical model is written as:

$$T_{ls} = J_{eq2}\dot{w}_t + B_{eq}(w_{ls} - w_g) + k_{eq2}(\theta_t - \theta_g)$$
 (12)

for the wind turbine side, whereas for the generator side, the mathematical model is:

$$-T_g = J_{gen}\dot{w}_g + B_{eq}(w_{g-}w_{ls}) + k_{eq2}(\theta_g - \theta_t)$$
 (13)

Where the equivalent stiffness if specified by:

$$\frac{1}{k_{eq2}} = \frac{1}{\frac{k_{ls}}{k_{gen}^2}} + \frac{1}{k_{gen}} \tag{14}$$

The equivalent moment of inertia is given by:

$$J_{eq2} = \frac{J_r}{k_{gear}^2} \tag{15}$$

3.3. One-Mass Model

Eventually, whenever the shat stiffness and the damping effect are ignored additional reduction of the mathematical model can be obtained. The one-mass model is acquired in this situation, which is described by:

$$J_{eq1}\dot{w}_g = T_{gen} - T_{eq1} \tag{16}$$

Where the equivalent moment of inertia and the torque is represented by the following equations respectively:

$$J_{\text{eq1}} = J_{\text{gen}} + \frac{J_{\text{r}}}{k_{\text{gear}}^2}$$

$$T_{\rm eq1} = \frac{T_{\rm ls}}{k_{\rm gear}^2}$$

4. Conclusion

The present paper shows the differences between two commonly used methodologies which are mainly adopted by the academics, researchers and engineers. Mainly, the differences between the approaches in the modeling are the damping effect of the wind turbine blades besides the impact of the shaft's stiffness. Knowing the details of these differences and the similarities becomes as a helpful guidelines and it makes things easily to those who intend to develop or even start researches and even can be used for teaching in undergraduate and graduate courses as a principle of wind turbine modeling.

Acknowledgements

The author would like to thank the mechanical engineer Mrs. Reem Hamdy for her endless support and invaluable assistant throughout the stages of the research.

References

- [1] Philip Jennings, New directions in renewable energy education, Renewable Energy 34, 435-439, 2009.
- [2] Jennings PJ, Lund CP. Renewable energy education for sustainable development. Renewable Energy, 22:113-8, 2001.
- [3] Olimpo Anaya-Lara, Nick Jenkins, Janaka Ekanayake, Phill Cartwright, Mike Hughes, Wind Energy Generation: Modeling and Control, 2009 John Wiley & Sons, Ltd
- [4] Ramakrishnan, V, Chapter 2" Mathematical Modeling of Wind Energy System", Simulation Study of Wind Energy Conversion Systems, Bharath University, http://hdl.handle.net/10603/30.
- [5] Bongers, P.M.M, Modeling and identification of flexible wind turbines and a factorizational approach to robust control. Ph.D. thesis, Delft University of Technology, June, 1994.
- [6] Novak, P.,Jovik,I., & Schmidtbauer,B., Modeling and identification of drive- system dynamics inavariablespeed wind turbine. In Proceedings of the third IEEE conference on control applications, Vol.1, 1994.
- [7] Sørensen, P., Hansen, A.D., Janosi, L., Bech, J., & Bak-Jensen, B., Simulation of interaction between wind farm and power systems. Risø Report R-1281(EN), Risø National Laboratory, Roskilde, Denmark, 2001.
- [8] Boukhezzar, B., Siguerdidjane, H., & Hand, M., Nonlinear control of variable- speed wind turbines for generator torque limiting and power optimization. ASME Journal of Solar Energy Engineering, 128(4), 516-530, 2006.
- [9] Ma, X., Adaptive extremeum control and wind turbine control. Ph.D. thesis, Denmark, May, 1997.
- [10] B. Boukhezzar, H.Siguerdidjane, Comparison between linear and nonlinear control strategies for variable speed wind turbines, Control Engineering Practice 18, 1357-1368, 2010.
- [11] Shaltout, A. Analysis of torsional torques in starting of large squirrel cage induction motors IEEE Trans. on Energy Conversion, Vol. 9, No. 1, pp. 135-141, March, 1994.
- [12] Florin Iov, Anca Daniela Hansen, Poul Sørensen, Frede Blaabjerg, Report "Wind Turbine Blockset in Matlab/Simulink General Overview and Description of the Models, Aalborg University, March 2004.