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Abstract

In 1994, Llinares introduced mc-spaces and began to study KKM theoretic results on them. Since 1998, he
became an L-space theorist and repeated to claim that his mc-spaces generalize G-convex spaces without any
justi�cations. Later he insisted that his mc-spaces are the same as L-spaces. Hence his study on mc-spaces
is useless now as the L-space case shown by our previous works. The present article is a continuation of our
previous works on L-spaces and concerns with the rise and fall of mc-spaces. This paper will be an important
record for the history of the KKM theory.
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1. Introduction

Since we introduced generalized convex spaces or G-convex spaces in the KKM theory initiated by
ourselves, a large number of their imitations, modi�cations, and fake generalizations were appeared. In order
to destroy or improve them, we introduced abstract convex spaces and (partial) KKM spaces. See [22], [23],
[26]. One of them is the so-called L-spaces.

The present article is a continuation of our previous works [34], [35] on the rise and fall of the L-spaces
due to Ben-El-Mechaiekh, Chebbi, Florenzano, and Llinares [1] in 1998. Since then there have appeared
some people concentrating mainly on L-spaces and they can be adequately called L-space theorists.

In [34], we showed that our KKM theory on abstract convex spaces improved typical results on L-spaces.
Main topics there were related to extensions of the Himmelberg �xed point theorem. Since such studies were
beyond of L-spaces, we cordially claimed that it was the proper time to quit the useless study on L-spaces
and their variants FC-spaces.
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In [35], various types of coercing families initiated by Ben-El-Mechaiekh, Chebbi, and Florenzano [2]
are uni�ed by a single coercivity condition. We showed that better forms of results using several coercing
families can be deduced from a general KKM theorem on abstract convex spaces in our previous works.
Consequently, all of known KKM theoretic results on L-spaces related coercing families were extended to
corresponding better forms on abstract convex spaces.

On the other hand, in 1994, Llinares [8] introduced mc-spaces and began to study KKM theoretic results
on them. In 1998, he became an L-space theorist and began to claim that his mc-spaces generalize G-convex
spaces without any justi�cations. Later he insisted that his mc-spaces are same to L-spaces. Hence his study
on mc-spaces are useless now as the L-spaces case as shown by our previous works.

The present article is a continuation of our previous [34], [35] and concerns with the rise and fall of
mc-spaces. This will be an important record for the history of KKM theory.

This article is organized as follows: In Section 2, we recall origins of generalized convex (G-convex) spaces,
mc-spaces, and L-spaces. Section 3 devotes why G-convex spaces were extended to the so called ϕA-spaces
and the abstract convex spaces with their subclasses called (partial) KKM spaces. In Section 4, we give
theorems on generalized KKM maps showing how to improve or destroy some typical results on mc-spaces.
In Section 5, we extend a general result in [38] on the non-emptiness of choice functions. Section 6 devotes
the history of mc-spaces in order to clarify the related authors' incorrect claims for reader's convenience.
Finally, in Section 7, we clarify some other authors' misconceptions related to our subject.

2. G-convex spaces, mc-spaces and L-spaces

The KKM theory is �rst named by ourselves in 1992 as the study of applications of extensions or
equivalents of the KKM theorem due to Knaster-Kuratowski-Mazurkiewicz in 1929. The KKM theory was
�rst devoted to convex subsets of topological vector spaces mainly by Ky Fan and Granas, and later to the
so-called convex spaces by Lassonde, to H-spaces by Horvath and others, to G-convex spaces mainly by the
present author. Since then a large number of works appeared by many authors on G-convex spaces and their
imitations, modi�cations, or fake generalizations. In order to destroy them, in 2006-10, we proposed new
concepts of abstract convex spaces and the partial KKM spaces which are proper generalizations of G-convex
spaces and adequate to establish the KKM theory. Now the KKM theory becomes the study on abstract
convex spaces including partial KKM spaces and we obtained a large number of new results in such frame;
see the references at the end of this article.

The generalized convex spaces �rst appeared in the following:

[PK] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur.
Sci. SNU 18 (1993) 1�21.

Here Coll. stands for College and SNU for Seoul National University, Seoul, Korea. This journal had very
restricted distribution and short life. There we de�ned:

A generalized convex space or a G-convex space (X,D; Γ) consists of a topological space X, a nonempty
subset D of X and a nonempty map Γ : ⟨D⟩ → 2X \ {∅} such that

(1) for each A, B ∈ ⟨D⟩, A ⊂ B implies Γ(A) ⊂ Γ(B); and
(2) for each A ∈ ⟨D⟩ with the cardinality |A| = n+1, there exist a continuous function ϕA : ∆n → Γ(A)

such that J ∈ ⟨A⟩ implies ϕA(∆J) ⊂ Γ(J).
Here, ∆J denotes the face of ∆n corresponding to J ∈ ⟨A⟩. [For example, ⟨D⟩ denotes the class of

nonempty �nite subsets of D.] The monotonicity condition (1) was removed in 1998 [18]. Since then
hundreds of articles appeared on G-convex spaces.

From the introduction of [PK] (without citations):

Recently the �rst author introduced certain general classes of upper semicontinuous multimaps de�ned on
convex spaces which were shown to be adequate to establish theories on �xed points, coincidence points, KKM
maps, variational inequalities, best approximations, and many others.
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Our admissible classes of multimaps (maps) include composites of important maps which appear in non-
linear analysis or algebraic topology. Examples of such maps are continuous functions, Kakutani maps, acyclic
maps, Fan-Browder type maps, admissible maps in the sense of Górniewicz, permissible maps of Dzedzej,
approachable maps, and many others.

Later we found that, in certain cases, the convex spaces can be replaced by new classes of more general
spaces. Actually, our new concept of generalized convex spaces is a generalization of the usual convexity in a
topological vector space, Michael's convex structure, Pasicki's S-contractible spaces, Komiya's convex spaces,
Lassonde's convex spaces, Horvath's pseudoconvex spaces and c-structure or H-spaces, Bielawski's simplicial
convexity, Joó's pseudoconvexity, and many others. Those general convexities were developed in connection
mainly with the �xed point theory and the KKM theory.

In this paper we investigate fundamental properties of many examples of such classes of multimaps and
generalized convex spaces.

In his Ph.D. Thesis [8] in 1994, the fourth L-space theorist Llinares introduced mc-spaces as follows:

De�nition 1. A topological space X is an mc-space (or has an mc-structure) if for any non-empty �nite

subset of X, A ⊂ X, there exists an ordering on it, namely A = {a0, a1, . . . , an}, a family of elements

{b0, b1, . . . , bn} ⊂ X, and a family of functions PA
i : X × [0, 1] → X, such that for i = 0, 1, . . . , n,

1. PA
i (x, 0) = x, PA

i (x, 1) = bi, for all x ∈ X.
2. The following function GA : [0, 1]n → X given by

GA(t0, t1, . . . , tn−1) = PA
0 (. . . (PA

n−1(P
A
n (bn, 1), tn−1), . . . ), t0),

is a continuous function.

After that he repeatedly stated that his mc-spaces generalize our G-convex spaces in [10], [13], [14], [38]
without any justi�cation and quoted our [PK].

Recall that L-spaces are originated from our generalized convex (G-convex) spaces. In 1998, apparently
motivated by [PK], Ben-El-Mechaiekh, Chebbi, Florenzano, and Llinares [1] stated:

De�nition 2. An L-structure on E is given by a nonempty set-valued map Γ : ⟨E⟩ → E verifying:

(*) For every A ∈ ⟨E⟩, say A = {x0, x1, . . . , xn}, there exists a continuous function fA : ∆n → Γ(A)
such that for all J ⊂ {0, 1, . . . , n}, fA(∆J) ⊂ Γ({xj , j ∈ J}).

The pair (E,Γ) is then called an L-space and X ⊂ E is said to be L-convex if ∀A ∈ ⟨X⟩, Γ(A) ⊂ X.

In particular, if Γ, as in De�nition 2, veri�es the additional condition

(**) For each A,B ∈ ⟨E⟩, A ⊂ B implies Γ(A) ⊂ Γ(B),

then the pair (E,Γ) is what is called by Park and Kim [PK], a G-convex space.

This statement is incorrect. Our G-convex space is a triple (X,D; Γ) and L-space is a pair (E,Γ). This
statement leads many naive peoples to think L-spaces generalize G-convex spaces without checking [PK],
[18] and hundreds of later works on G-convex spaces by ourselves and many followers.

Note that the L-spaces are motivated by [PK]: In fact, [1] states

�As noted by Park and Kim [PK], it follows from Theorem 1, Section 1 of Horvath [5] that if Γ de�nes an
H-structure, then (X,Γ) is an L-space.�

In [1], the original L-space theorists could give only B'- and B-simplicial convexities and H-spaces as
examples of L-convexity comparing to the large number of examples of G-convex spaces in [PK]. Moreover
they could fail to give a proper example of L-spaces not satisfying the so-called monotonicity. See also [25].

Recall that any (partial) KKM spaces including L-spaces have a large number of properties as shown in
several works of ourselves, e.g. [26], [30]. But the L-space theorists could �nd only few of them for their
L-spaces. Moreover, in his [14], [38], Llinares agreed that his mc-spaces are equivalent to L-spaces. Therefore,
as we claimed in [34], mc-spaces as well as L-spaces should be destroyed.
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3. Abstract convex spaces and partial KKM spaces

Since the appearance of G-convex spaces, many authors have tried to imitate, modify, or generalize them
and published a large number of papers. In fact, there have appeared authors who introduced spaces of the
form (X, {φA}) having a family {φA} of continuous functions de�ned on simplices. Such examples are L-
spaces, spaces having property (H), FC-spaces, convexity structures satisfying H-condition, pseudo-H-spaces,
another L-spaces, M-spaces, GFC-spaces, simplicial spaces, FWC-spaces, and others; see [24, 25, 27, 28, 32].
Some authors also tried to generalize the KKM principle for their own settings. Some of them tried to rewrite
certain results on G-convex spaces by simply replacing Γ(A) by φA(∆n) everywhere and claimed to obtain
generalizations without giving any justi�cations or proper examples. We found that most of such spaces can
be subsumed in the concept of ϕA-spaces (X,D; {ϕA}A∈⟨D⟩); see [24].

De�nition 3. A space having a family {ϕA}A∈⟨D⟩ or simply a ϕA-space

(X,D; {ϕA}A∈⟨D⟩)

consists of a topological space X, a nonempty set D, and a family of continuous functions ϕA : ∆n → X
(that is, singular n-simplices) for A ∈ ⟨D⟩ with the cardinality |A| = n+ 1.

In 2006 [19], we proposed new concepts of abstract convex spaces and the KKM spaces which are proper
generalizations of G-convex spaces or ϕA-spaces and adequate to establish the KKM theory; see [20], [21].

Recall the following in [22, 23, 26] where we established the foundations of abstract convex space theory:

De�nition 4. An abstract convex space (E,D; Γ) consists of a topological space E, a nonempty set D, and

a multimap Γ : ⟨D⟩ ⊸ E with nonempty values ΓA := Γ(A) for A ∈ ⟨D⟩.
For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and de�ned by

coΓD
′ :=

⋃
{ΓA : A ∈ ⟨D′⟩} ⊂ E.

De�nition 5. . Let (E,D; Γ) be an abstract convex space. If a multimap G : D ⊸ Z satis�es

ΓA ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ ⟨D⟩,

then G is called a KKM map.

De�nition 6. The partial KKM principle for an abstract convex space (E,D; Γ) is the statement that, for

any closed-valued KKM map G : D ⊸ E, the family {G(y)}y∈D has the �nite intersection property. The

KKM principle is the statement that the same property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satis�es the (partial) KKM principle,
respectively.

In our works [22], [23], [26], we studied elements or foundations of the KKM theory on abstract convex
spaces and noticed there that many important results therein are related to the partial KKM principle.

Recall the following well-known diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space

=⇒ Horvath space =⇒ G-convex space =⇒ ϕA-space =⇒ KKM space

=⇒ Partial KKM space =⇒ Abstract convex space.

Horvath spaces are newly de�ned one including c-spaces and H-spaces. Note that L-spaces and mc-spaces
are pairs particular to G-convex spaces.
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4. Generalized KKM maps

One of the topics in the KKM theory is related to generalized KKM maps initiated by Kassay-Kolumbán
in 1990 and Chang-Zhang in 1991. Since then many authors studied generalized KKM maps on various types
of spaces and applied them to extend or re�ne well-known previous results. In fact, it has been followed
by Chang-Ma in 1993, Yuan in 1995, Cheng in 1997, Tan in 1997, Lin-Chang in 1998, Lee-Cho-Yuan in
1999, Kirk-Sims-Yuan in 2000 for various classes of abstract convex spaces; see [33]. All of those authors
applied their results on KKM type theorems and others to extend or re�ne well-known previous results in
the KKM theory; for example, variational or quasi-variational inequalities, �xed point theorems, the Ky
Fan type minimax inequalities, the von Neumann type minimax or saddle point theorems, Nash equilibrium
problems, and others.

More recently, we gave a uni�ed account for generalized KKM maps in abstract convex spaces in [36].
There our results include the KKM type theorems and characterizations of generalized KKM maps, and can
be applied to Hadamard manifolds, hyperbolic metric spaces, Riemanian manifolds, CAT(0) spaces, etc. due
to other authors.

In this section, we give generalizations of some results on generalized KKM maps due to Llinares et al.
[14], [38] based on our previous results including the KKM type theorems and characterizations of generalized
KKM maps.

We begin with the following de�nition in [33]:

De�nition 7. Let (X,D; Γ) be an abstract convex space and Y be a nonempty set such that, for each A ∈ ⟨Y ⟩,
there exists a function σA : A → D. Then a new abstract convex space (X,A; ΛA) induced by Γ and A is

de�ned by the following

ΛA(J) := Γ(σA(J)) for each J ⊂ A.

Moreover, a multimap T : Y ⊸ X (called a generalized KKM map) reduces to a KKM map on (X,A; ΛA)
for each A ∈ ⟨Y ⟩ satisfying ΛA(J) ⊂ T (J) for each J ⊂ A.

De�nition 7 was given �rst for G-convex spaces as a uni�cation of previously given ones by several authors,
and in [30] for the present form.

Independently to De�nition 7, Sanchess et al. [38] in 2003 considered below an extension of the concept
of the generalized KKM map:

De�nition 8. ([38]) Let X and Y be topological spaces such that X has an L-structure de�ned by Ψ : ⟨X⟩ ⊸
X and by fB : ∆n → Ψ(B) for each B ∈ ⟨X⟩. A correspondence Γ : Y ⊸ X is said to be a generalized

KKM-correspondence, if for all {y0, y1, . . . , yn} ∈ ⟨Y ⟩, there exists a subset B = {x0, x1, . . . , xn} ∈ ⟨X⟩ such
that for all J ⊆ {0, 1, . . . , n}, it is satis�ed that

fB(∆J) ⊆
⋃
j∈J

Γ(yj).

Note that this de�nition is very particular to De�nition 7.
We recall the following [33, Theorem C] with proof for the completeness:

Theorem 9. Let (X,D; Γ) be a partial KKM space [resp. KKM space], Y a nonempty set, and T : Y ⊸ X
a map with closed [resp. open] values.

(i) If T is a generalized KKM map, then the family of its values has the �nite intersection property.

(ii) The converse holds whenever X = D and Γ{x} = {x} for all x ∈ X.

Proof. (i) Let T : A ⊸ X be a KKM map having closed [resp. open] values on (X,A; ΛA), that is,

ΛA(J) ⊂ T (J) ∀J ⊂ A.
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Let A = {yi}ni=1, zi = σA(yi) ∈ D, and G(zi) = T (yi) for each i = 1, . . . , n. Then

Γ(σA(J)) ⊂ G(σA(J)) ∀J ⊂ A.

Hence G : σA(A) ⊸ X is a KKM map with closed [resp. open] values on (X,A; Γ|⟨σA(A)⟩) which is a (partial)
KKM space. Hence {G(zi)}ni=1 = {T (yi)}ni=1 has the �nite intersection property.

(ii) Suppose that X = D and Γ{x} = {x} for all x ∈ X. For any A ∈ ⟨Y ⟩, by assumption, we have
an x∗ ∈

⋂
y∈A T (y) ̸= ∅. De�ne a function σA : A → D = X by σA(y) = x∗ for all y ∈ A. Then for any

nonempty subset J of A, we have

ΓσA(J) = Γ{x∗} = {x∗} ⊂
⋂
y∈A

T (y) ⊂ T (J).

Therefore, T is a generalized KKM map. 2

Consider the following related four conditions for a map G : D ⊸ X with a topological space X:

(a)
⋂

z∈D G(z) ̸= ∅ implies
⋂

z∈D G(z) ̸= ∅.

(b)
⋂

z∈D G(z) =
⋂

z∈D G(z) (G is intersectionally closed-valued [16]).

(c)
⋂

z∈D G(z) =
⋂

z∈D G(z) (G is transfer closed-valued).

(d) G is closed-valued.

Luc et al. [16] noted that (a) ⇐= (b) ⇐= (c) ⇐= (d).

Theorem 10. Let (X,D; Γ) be an abstract convex space, Y a nonempty set, and T : Y ⊸ X a map with

intersectionally closed values such that there exists y∗ ∈ Y with T (y∗) compact.

(1) If (X,D; Γ) is a partial KKM space and T is a generalized KKM map, then we have
⋂

y∈Y T (y) ̸= ∅.
(2) Conversely, if

⋂
y∈Y T (y) ̸= ∅, then X can be made into a G-convex space and T can be a generalized

KKM map.

Proof. (1) Since T : Y ⊸ X a map with intersectionally closed values, we have⋂
y∈Y

T (y) =
⋂
y∈Y

T (y).

So, it is su�cient to prove that
⋂

y∈Y T (y) :=
⋂

y∈Y T (y) is nonempty. To do so, we note that the family

{T (y)}y∈Y satis�es the �nite intersection property by Theorem 4.3.(i). But this implies that family {T (y)∩
T (y∗)}y∈Y , which is a family of closed subsets of the compact subset T (y∗), also satis�es this property. So, by
compactness, we can ensure that

⋂
y∈Y {T (y) ∩ T (y∗)} ≠ ∅ and since we can rewrite

⋂
y∈Y {T (y) ∩ T (y∗)} =⋂

y∈Y {T (y)}, we obtain the required conclusion.

(2) Choose a point x∗ ∈
⋂

y∈Y T (y) ̸= ∅. De�ne a new Γ : ⟨X⟩ ⊸ X by Γ(N) = {x∗} for each N ∈ ⟨X⟩
with |N | = n + 1, and ϕN : ∆n → Γ(N) such that ϕN (∆n) = {x∗}. Then (X; Γ) is a G-convex space and
hence a partial KKM space.

Now we show that T : Y ⊸ X is a generalized KKM map. Given A ∈ ⟨Y ⟩, we have σA : A → X such
that σA(a) := x∗ for all a ∈ A. Then

ΛA(J) := Γ(σA(J)) = Γ(x∗) = {x∗} for all J ⊂ A.

Therefore T is a generalized KKM map. 2

The following is [14, Theorem 6] in 2002:
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Corollary 11. ([14]) If X is a topological space and ϕ : X ⊸ X is a nonempty valued correspondence

with closed values, and there exists x0 ∈ X such that ϕ(x0) is compact, then the following statements are

equivalent:

(i)
⋂

x∈X ϕ(x) ̸= ∅;
(ii) X is an mc-space such that, for all �nite subset A = {x0, . . . , xn} of X, it is satis�ed that for any

family {i0, . . . .ik} ⊆ {0, 1, . . . , n} of indices, then GA|{xi0
,...,xik

}([0, 1]
k) ⊆

⋃k
j=1 ϕ(xij ).

All subsequent results in [14] follow this corollary.

The following is [38, Theorem 1] in 2003:

Corollary 12. ([38]) Let X and Y be topological spaces and Γ : Y ⊸ X a transfer closed-valued corre-

spondence on Y such that there exists y∗ ∈ Y with cl[Γ(y∗)] compact. Then, the following conditions are

equivalent:

i) There exists an L-structure on X such that Γ is a generalized KKM correspondence.

ii)
⋂

y∈Y Γ(y) ̸= ∅.

All results in [38] are based on this Corollary. Hence they can be improved by adopting our Theorem 10.

5. Binary and non-binary choice functions

In this section we extend a general result in [38] on the non-emptiness of choice functions, and follow the
notations of [38].

Throughout this section, X denotes a topological space and D a family of non-empty subsets of X that
represents the di�erent feasible sets presented for choice. Given A ∈ D, DA denotes a family of non-empty
subsets of A. A choice function is a correspondence C : D → X such that C(A) ⊆ A for all A ∈ D.

From our Theorem 10, we have the following:

Theorem 13. Let X be a topological space and C : D → X a choice function. If for A ∈ D there exists a

family DA and a multimap ΩA : DA ⊸ A satisfying that:

(i)
⋂

D∈DA
ΩA(D) ⊆ C(A);

(ii) ΩA is intersectionally closed-valued;

(iii) A is a partial KKM space such that ΩA is a generalized KKM map;

(iv) there exists D∗ ∈ DA with clA[ΩA(D
∗)] compact on A.

Then C(A) ̸= ∅.

Proof. It is su�cient to apply Theorem 10(1) to any A ∈ D satisfying all of the hypothesis of Theorem
13, to ensure that ⋂

D∈DA

ΩA(D) ̸= ∅.

Then, by applying (i), the conclusion is obtained. 2

The following is the main result of [38, Theorem 2]:

Corollary 14. ([38]) Let X be a topological space and C : D → X a choice function. If for A ∈ D there

exists a family DA and a correspondence ΩA : DA → A satisfying that:

(i)
⋂

D∈DA
ΩA(D) ⊆ C(A);

(ii) ΩA is transfer closed-valued;

(iii) A is an L-space such that ΩA is a generalized KKM-correspondence;

(iv) there exists D∗ ∈ DA with clA[ΩA(D
∗)] compact on A.

Then C(A) ̸= ∅.
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In order to show in [38] that this result generalizes some results on the non-emptiness of usual choice
functions (maximal elements, top cycle, uncovered set, non-binary choice functions,...), the authors consider
the family DA = ⟨A⟩ for every A ∈ D and, given the choice function C : D → X, they de�ne correspondence
ΩA : ⟨A⟩ → A as follows:

ΩA(T ) = {a ∈ A | a ∈ C(T ∪ {a})} for all T ∈ ⟨A⟩.

In order to present the results in a clear way, the authors analyze the case of binary and that of non-binary
choice functions in two di�erent subsections in [38].

6. The rise and fall of mc-spaces

From 1994 Llinarez began to study the so-called mc-spaces and, in 1998, became the fourth member of
the original L-space theorists in [1]. In this section, we follow the history of mc-spaces from their birth to
fall.

[I] In his 1994 Ph.D. Thesis [8], Llinarezs began to study the convexity in linear topological spaces and
several extensions given by other authors. Then he introduced the K-convex structure with several examples,
and stated that the contractibility condition and the condition of having a K-convex continuous structure
are equivalent. He also de�ned mc-spaces as extensions of K-convex continuous structures. He noted that
c-spaces due to Horvath are mc-spaces, and that mc-spaces have K-convex structure. And then some �xed
point theorems, KKM type theorems, and applications of �xed point point theorems are added as routine in
the KKM theory. Note that plenty of previously obtained results are introduced in this thesis.

[II] In 1995 [9], from his K-convex structure replacing the linear segments with a family of previously
�xed paths joining up each two points, the author introduced a family of sets which generalizes the usual
convex sets. In this context the author extends Sonnenschein's theorem on the existence of maximal elements
and Browder's �xed point theorem.

[III] In 1998 [10], Llinares introduced mc-spaces that generalizes the notion of usual convexity. In
Abstract:

�It is presented as a powerful tool that allows many problems that have only been analyzed (previously)
under convexity conditions to be solved.�

[IV] Abstract of [11] in 1998:

We analyze the existence of equilibrium in generalized games in a framework without any linear structure
(where the usual convexity notion can not be de�ned) by using an abstract convexity structure called mc-
spaces. In particular we replace the convexity condition on the strategy spaces and the images of preference
and constraint correspondences by the notion of mc-set (which generalizes the notion of convex set). Among
others, our results generalize those of Borglin and Keiding, Shafer and Sonnenschein, Border and Tulcea.

Comments: In Introduction, the author stated that �mc-spaces (see Llinares [10]) which generalizes
usual convexity as well as other abstract convexity structures [as simplicial convexity (Bielawski), c-spaces
(Horvath), or G-convex spaces (Park and Kim [PK])].�

His statement on G-convex spaces in [PK] is de�nitely false without any justi�cation. Moreover, his false
statement appears again p.3 with �see Llinares [8].� Note that [8] is his Ph.D. Thesis in 1994. However,
nothing can be found there about G-convex spaces.

[V] In 1998 [12], LLinares stated that

Although there are more abstract convexities (in connection to the �eld of �xed point theory) than the ones
we are going to present (for instance, Michael's convex structure, Komiya convex spaces, etc.), most of them
are particular cases of c-spaces or simplicial convexity (see Bielawski, or Park and Kim [PK]) and we will only
focus on those that are more intuitive.
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Furthermore it is immediate that the notion of G-convex spaces used by Park and Kim [PK], is a particular
case of L-spaces since they require moreover (of de�nition ??) a monotone condition on the set-valued map Γ.

Comments: This last part is exactly appeared with ?? in Page 7 of [12]. Here again the author repeats
false statement and gives examples of L-spaces which are already given in [PK] as G-convex spaces.

[VI] Abstract of [13] in 2000:

The aim of this paper is to prove the existence of equilibrium for generalized games or abstract economies
in contexts where the convexity conditions on strategy spaces and preference correspondences are relaxed
and an arbitrary number of agents is considered. The results are based on a �xed-point theorem in which the
convexity condition on sets and images of correspondences is replaced by a general notion of abstract convexity,
called mc-spaces, generalizing the notions of simplicial convexity, H-spaces, and G-convex spaces.

Comments: As in the preceding paper, the author stated that

�mc-spaces (see Llinares, Ref. 6), generalizing the usual convexity structure as well as other abstract convexity
structures that already exist in the literature: simplicial convexity (Ref. 7), H-spaces (Ref. 5), G-convex
spaces (Ref. 8), and so on�

in Page 150, and

�Other abstract convexity structures that are generalized by the notion of mc-structure are simplicial convexity,
H-spaces, and G-convex spaces (see Ref. 9)�

in Page 152. Moreover, the author stated in Page 159 that

"Furthermore, since mc-spaces generalize the notions of simplicial convexity, H-spaces, and G-convex spaces
(among others), the previous results generalize also the corresponding ones in these structures."

All of these statements on G-convex are groundless false ones. Further, the author listed in References:

8. PARK, S., and KIM, H., Admissible Classes of Multifunctions on Generalized Convex Spaces, Proceedings
of the Colloquium on Natural Sciences, Seoul National University, Vol. 18, pp.1�21, 1993.

9. LLINARES, J. V., Abstract Convexity, Some Relations, and Applications, CEPREMAP Report 98-03,
1998.

Note that �Colloquium on� should be �College of� as in [PK]. This is the evidence that the L-space theorist
like others did not read or check [PK]. It is against ordinary scholastic behavior and academic justice.

[VII] Later in 2002 [14], Llinares recognized the following:

Proposition 7. ([14]) If X is an L-space, then X is an mc-space such that L-convex sets are mc-sets.

The author repeated again the following false statement:

Furthermore, it is obvious that the notion of G-convex spaces, used in [PK], is a particular case of L-spaces
since, to de�ne the G-convex spaces, it is required that all of the conditions of De�nition 9 [on L-spaces] be
satis�ed, together with a monotonicity condition on the set-valued map.

Comments: This is de�nitely false. Actually, in a diagram in [14], Llinares expressed the equivalence
of mc-spaces and L-spaces. Consequently, mc-spaces are pairs and particular to triples of G-convex spaces,
and hence their mc-spaces should be discarded as well as L-spaces.

[VIII] From Summary of Sanchez et al. [38] in 2003:

By generalizing the classical KKM Theorem, we obtain a result that provides su�cient conditions to
ensure the non-emptiness of several kinds of choice functions. This result generalizes well-known results on the
existence of maximal elements for binary relations, on the non-emptiness of non-binary choice functions, and
on the non-emptiness of some classical solutions for tournaments (top cycle and uncovered set) on non-�nite
sets.

In Section 2, the authors stated that
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We are going to present our generalized KKM result by making use of a general abstract convexity structure
called L-structure. This notion is equivalent to that of an mc-structure (see Llinares [12]), which generalizes
the notion of usual convexity as well as other abstract convexity structures.

Our Conclusion: Since the main result of this paper can be extended to abstract convex spaces as in
Section 4, as like as L-spaces, all results on mc-spaces should be discarded.

7. Comments on some related articles

Here we give some comments on papers related to L-spaces not treated in [34], [35].

Horvath and Llinares Ciscar 1996 [6]

A semilattice is a partially ordered set X, with the partial ordering denoted by ≤, for which any pair
(x, x′) of elements has a least upper bound, denoted by x ∨ x′. It is easy to see that any nonempty �nite
subset A of X has a least upper bound, denoted by sup A.

The following is [6, Theorem 2]:

Theorem 15. ([6]) Let X be a topological semilattice with path-connected intervals, let X0 ⊆ X be a nonempty

subset of X, and let R ⊆ X0 ×X be a binary relation such that

(i) For each x ∈ X0, the set R(x) = {y ∈ X : (x, y) ∈ R} is not empty and closed in R(X0).
(ii) There exists x0 ∈ X0 such that the set R(x0) is compact.

(iii) For any nonempty �nite subset A ⊆ X0,⋃
x∈A

[x, supA] ⊆
⋃
x∈A

R(x).

Then the set
⋂

x∈X0
R(x) is not empty.

Comments: Let Γ : ⟨X0⟩ ⊸ X be de�ned by Γ(A) :=
⋃

x∈A[x, supA] for each A ∈ ⟨X0⟩. Then the
above theorem shows that R : X0 ⊸ X is a KKM map on the partial KKM space (X,X0; Γ). Therefore all
KKM theoretic results in [26], [30] holds for a topological semilattice with path-connected intervals.

Luo 2001 [17]

Abstract: In this paper, we obtain a generalized KKM theorem, a generalized Fan-Browder �xed
theorem, and an existence theorem of Nash equilibria in topological ordered spaces.

Comments: This paper is based on Theorem 2 in the preceding paper. Therefore all results of this
paper follows from the KKM theoretic results in [26], [30].

González et al. 2007 [4]

Based on an incorrectly stated paper of Ding, the authors showed the following;
(1) In De�nition 2, our original G-convex spaces are incorrectly called G-spaces.
(2) Theorem 4 is a particular KKM theorem for G-spaces originated from our work.
(3) De�nitions 5 and 6 on a G-space are originally given by ourselves.
(4) A particular type of G-KKM maps is studied.
(5) L-spaces are de�ned like mc-spaces and a KKM theorem is given.
(6) For their L-spaces, they obtained a Fan type minimax inequality, a Fan-Browder �xed point theorem,

and a Nash equilibrium theorem.
Since these steps are routine for abstract convex spaces, this paper seems to be not useful; see [26], [30].

Cain and González 2008 [3]

(1) From Abstract:
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We have introduced a new abstract convexity structure that generalizes the concept of a metric space with a
convex structure, introduced by E. Michael in [E. Michael, Convex structures and continuous selections, Canad.
J. Math. 11 (1959) 556�575] and called a topological space endowed with this structure an M-space. In an
article by Shie Park and Hoonjoo Kim [S. Park, H. Kim, Coincidence theorems for admissible multifunctions
on generalized convex spaces, J. Math. Anal. Appl. 197 (1996) 173�187], the concepts of G-spaces and metric
spaces with Michael's convex structure, were mentioned together but no kind of relationship was shown. In
this article, we prove that G-spaces and M-spaces are close related. We also introduce here the concept of an
L-space, which is inspired in the MC-spaces of J.V. Llinares [J.V. Llinares, Uni�ed treatment of the problem of
existence of maximal elements in binary relations: A characterization, J. Math. Econom. 29 (1998) 285�302],
and establish relationships between the convexities of these spaces with the spaces previously mentioned.

(2) The authors are wrong: In our more earlier work [PK] in 1993, we clearly stated that a metric space
X with convex structure (of Michael) becomes a G-convex space (X; Γ). (Here we found more people who
did not read [PK].)

(3) In [3], various subclasses of G-convex spaces are compared as in [PK]. All spaces in [3] are triples,
not pairs as for L-spaces.

Kulpa and Szymanski 2008 [7]

In Section 6 of [7], its authors suggested a way of extending their results to a wider class of topological
spaces that contains, in particular, the class of L-spaces due to Ben-El-Mechaiekh et al. [1] and de�ned an
L∗-structure on a topological space X by means of a map L : ⟨X⟩ ⊸ X that satis�es the following condition:

(**) If A ∈ ⟨X⟩ and {Ux | x ∈ A} is an open cover ofX, then there exists B ⊂ A such that L(B)∩{Ux | x ∈
B} ≠ ∅.

Accordingly, the authors call (X,L) an L∗-space, and a non-empty subset Y of X to be L∗-convex if for
each non-empty �nite subset A of Y, L(A) ⊂ Y . See also [31].

We note the following remarks on L∗-spaces.
(1) An L∗-space (X,L) is a particular case of a KKM-space (E,D; Γ) for X = E = D and L = Γ.
(2) Theorem 12 of [7] is a particular case of one of our results on KKM spaces. Therefore, according

to Kulpa and Szymanski, our result enables transferring some results of [7] from simplicial spaces to KKM
spaces.

(3) An example of a KKM space which is not a G-convex space is the extended long line (L∗, D; Γ) with
the ordinal space D := [0,Ω].

Lu 2009 [15]

From Abstract:

the main purpose of this paper is to prove a section theorem, and next, as its applications, a weighted
Nash equilibrium existence theorem and a Pareto equilibrium existence theorem for multi-objective games are
obtained in topological ordered spaces. Our results improve and unify the corresponding results in the recently
existing literatures.

Comments: This is based on the previous [6] and one of our old papers in 1996. This also can be
extended to abstract convex spaces.
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