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Abstract- The aims of this study were to determine the amount of input-output energy and exploring a non-parametric data 

envelopment analysis (DEA) technique which permits efficiency estimation to investigate the efficiency of watermelon farms 

under different farming technologies in Hamadan province, Iran. The population investigated was divided into two groups, 

Group II non-owner of land, machinery and low level of farming technology and Group I farms owner of land, machinery and 

high level of farming technology. Technical and pure technical efficiency of watermelon production was estimated 0.82 and 

0.91. Frequency distribution of technical and pure technical efficiency represented farmers in Group II was more efficient. 

Separate analysis of groups and technical efficiency also followed same results for Group II, farms with high farming 

technology are more efficient and waste less source of energy. Present and target use of energy and energy saving of inefficient 

farms calculated. The results reveal that, on an average, in Group I and II about 68% and 28% of the total input energy could 

be saved respectively if the farmers follow the input package recommended by the study and farms with high technology can 

decrease waste of energy and costs and increase productive efficiency. 

Keywords- Watermelon; productive efficiency; data envelopment analysis; farming technologies. 

 

1. Introduction 

1.1. Energy in agricultural production 

Energy in agriculture is important in terms of 

crop production and agro processing for value 

adding. Human, animal and machinery is 

extensively used for crop production in agriculture. 

Energy use depends on mechanization level, the 

quantity of active agricultural worker and 

cultivable land. Efficient use and study impacts of 

these energies on crop production help to achieve 

increased production and productivity and help the 

economy, profitability and competitiveness of 

agricultural sustainability of rural communities 

[10].Nowadays, utilization of integrated 

production methods are considered as a sustainable 

way to reduce production costs, to efficient use of 

human labour and to protect the energy budgets for 

agricultural production [8]. Agricultural 

production relies on finite and scarce resources; 

therefore the use of input oriented DEA models is 

more appropriate to reduce inputs consumed in the 

production process [23]. Here DEA is used for the 

estimation of resource use efficiency and ranking 

of farms or production units on the basis of their 

performances. The present study explores Data 

Envelopment Analysis (DEA) technique which 

permits efficiency estimation of watermelon farms 

without assuming an a priori functional form for 

frontier production.  
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1.2. Overview of watermelon production in Iran 

Watermelon (Citrullus lanatus) is a member of 

the cucurbit family (Cucurbitaceae). The crop is 

grown commercially in areas with long frost-free 

warm periods [12]. Watermelon is utilized for the 

production of juices, nectars and fruit cocktails, 

etc. [3]. Management of plant pests is essential 

during the production period. The fruit are 

harvested by hand, with the most experienced 

workers doing the cutting (removal of the fruit 

from the vine) and the others loading the bins or 

trucks. The watermelon fruit is 93% water, with 

small amounts of protein, fat, minerals, and 

vitamins. The major nutritional components of the 

fruit are carbohydrates, vitamin A, and lycopene, 

an anticarcinogenic compound found in red flesh 

watermelon. Lycopene may help reduce the risk of 

certain cancers, such as prostate, pancreas, and 

stomach [12]. Iran is the 3th largest producer of 

watermelon in the world after China and Turkey, 

respectively [7]. In 2008, Iran produced about 

3,400,000 tones of watermelon in 135000 hectares. 

Hamadan province is a one of important 

watermelon producers in Iran. The province is 

located in the west of Iran, within 59° 33' and 49° 

35' north latitude and 34° 47' and 34° 49' east 

longitude. In 2008, for example, the crop was 

planted in 13717 ha in this province [4]. 

2. Material and Method 

2.1. Model specification 

The current paper uses the DEA approach to 

analyze the data. DEA optimizes the performance 

measure of each production unit or decision-

making unit (DMU) [1]. It results in a revealed 

understanding about each DMU instead of 

depicting the features of a mythical ‘‘average’’ 

DMU as in parametric analysis. In other words, the 

focus of DEA is on the individual observations as 

represented by optimizations (one for each DMU) 

in contrast to the focus on the average and the 

estimation of parameters that are associated with 

single optimization statistical approaches in 

parametric analysis. 

In parametric analysis, a single regression 

equation is assumed to be applicable to all DMU. 

The approach requires the imposition of a specific 

functional form (i.e., regression equation, 

production function, etc.) relating the independent 

variables to the dependent variable. The selection 

of functional form also requires specific 

assumptions about the distribution of errors 

(independently and normally distributed) and 

many other restrictions. In contrast, DEA does not 

require any assumption about the functional form. 

It calculates a maximum performance measure for 

each DMU relative to all other units in the 

observed population with the sole requirement that 

each farmer lies on or below an external frontier. 

Each DMU that is not on the frontier is scaled 

against a convex combination of the DMUs on the 

frontier side closest to it. In addition, DEA can 

also analyze problems having multiple outputs 

with different units of measure. 

The concepts used in the parametric and DEA 

approaches are demonstrated in Figure 1 where the 

case of seven DMUs with single inputs and single 

outputs is considered. The input and output are 

shown on the x and y axes, respectively. The filled 

rhombuses represent different DMUs in the data 

set. The dotted line represents the linear regression 

line in the parametric approach, depicting the trend 

in the data points. This approach implicitly 

recognizes all DMUs on or above this line as 

efficient. 

 

Fig. 1. Comparison of DEA approach and parametric 

approach (Regression Analysis) 

In the case of DEA, however, one draws the 

envelope (or frontier) of the data set by joining the 

boundary points by straight lines. In Figure 1, P1, 

P2, P3 and P4 are the boundary points. The solid 

line joining these points forms the envelope for the 

data set. The DMUs lying on the boundary and 

represented by points P1, P2, P3 and P4 are 

considered as efficient DMUs. 
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A unit can be made efficient either by reducing the input levels and getting the same output (input 

orientation) or by increasing the output level with 

the same input level (output orientation). The input 

oriented analysis is becoming more common in 

DEA applications because profitability depends on 

the efficiency of the operations. Further, on a 

tentative basis, it has been suggested in the 

literatures that inputs are generally more 

predictable and credible compared to the output 

oriented DEA models [13]. In the present study, 

we have adopted an input oriented DEA approach 

for efficiency estimation. 

It is evident in Figure 1 that many DMUs that 

were considered efficient in the parametric 

analysis are not considered efficient in the DEA 

approach. Further, this approach can spell out the 

degree of inefficiency for each DMU and, thus, 

pinpoint the source of inefficiency. The DEA 

approach can even help rank the efficient DMUs 

and isolate the truly efficient DMUs from the 

others. Thus, the practices followed by the truly 

efficient DMUs can form a benchmark as the best 

operating practices for the inefficient farmers. 

 

2.2. Estimation of various efficiencies 

 

DEA defines efficiency in three different forms: 

technical efficiency, pure technical efficiency and 

scale efficiency. Technical efficiency is basically a 

measure by which DMUs are evaluated for their 

performance relative to other DMUs. Its value is, 

however, influenced by scale efficiency, which 

quantifies the effect of the presence of variable 

returns to scale in the DMUs. Pure technical 

efficiency is, thus, technical efficiency that has the 

effect of scale efficiency removed. The concept of 

these efficiencies is illustrated in Figure 2. 

In Figure 1, we drew an envelope of the data set 

for the DMUs considering variable returns to scale. 

In Figure 2, the line MN represents the envelope of 

the data set with constant returns to scale. It is a 

straight line that passes through the origin and the 

extreme data points. DMUs lying on this line are 

considered efficient. The DMU P1, the only point 

lying on this line, is, thus, efficient under the 

assumption of constant returns to scale, but due to 

the onset of decreasing returns to scale; the other 

DMUs do not lie on this line. So, the scale 

efficiency for P1 is unity, whereas for the other 

DMUs, it is less than unity. 

 

Fig. 2. Demonstration of various efficiencies 

Let us consider DMU P6. Its input and output are 

given by AD and MA, respectively. B and C are the 

points of intersection of the line AD with the line 

MN and the line segment of the envelope of the 

data set. One can interpret AB as the ideal input 

required to produce the output B on MN, if 

constant returns to scale were to prevail. However, 

considering decreasing returns to scale to be a 

realistic phenomenon, one can relax the input 

requirement to be equal to AC to be able to 

produce the output B on MN. One can now define 

the various efficiencies as follows: 

Pure Technical Efficiency = AC/AD; 

Technical Efficiency =AB/AD; 

Scale Efficiency =AB/AC. 

The relationship among these forms of efficiency 

is given as [24]: 

Technical Efficiency = [Pure Technical 

Efficiency] × [Scale Efficiency]. 

It may be noted here that the technical efficiency 

combines the effects of both pure technical 

efficiency and scale efficiency. Determining these 

efficiencies of DMUs facilitates planners 

pinpointing the sources of inefficiencies. 

Awareness about the sources of inefficiencies is 

crucial to policy planners, especially for planning 

the strategies that are meant to improve 

performance [6]. 
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In Figure 2, P'6 is a hypothetical DMU having 

input equal to AC and acts as a benchmark for the 

inefficient DMU P6. One may notice that P'6 is 

represented as a convex combination of the 

efficient DMUs P2 and P3. Thus, a DMU is said to 

be inefficient in producing the output from a given 

input if any other DMU or combination of DMUs 

can produce a larger output for the same or less 

amount of inputs or if any other DMU or 

combination of DMUs can reduce amount of 

inputs without reducing the output [5]. Such a 

DMU will always lie inside the envelope rather 

than on it. 

It is easy to graph and visualize the case of 

DMUs having single inputs and single outputs. 

However, in the multiple inputs, multiple outputs 

case; we cannot always visualize the efficient units 

graphically. We need to resort to analytical means 

to identify these efficient units. 

The usual measure of efficiency (i.e., Efficiency 

= Output/Input) is often inadequate due to the 

existence of multiple inputs and outputs. The 

measurement of pure technical efficiency, where 

there are multiple and incommensurate inputs and 

outputs, was first addressed by Farrell [19] and 

developed by Farrell and Field house [18]. It 

focuses on the concept of a hypothetically efficient 

DMU, defined as a weighted average of efficient 

DMUs, to act as a comparator for an inefficient 

DMU. This hypothetically efficient DMU is 

known as a virtual DMU and acts as a benchmark 

for an inefficient DMU. A common measure of 

efficiency is: 

Efficiency = Weighted sum of outputs/Weighted 

sum of inputs. 

2.3. Sample selection and data description 

Sample farms were randomly selected from the 

Hamadan province. The size of each sample was 

determined using Eq. (1) [9]: 

])()1/[(])([ 222 tsdNtsNn   (1) 

where n is the required sample size; N is the 

number of holdings in target population; s is the 

standard deviation; t is the t value at 95% 

confidence limit (1.96); and d is the acceptable 

error (permissible error 5%). Thus calculated 

sample size in this study was 85. The population 

investigated was divided into two strata based on 

land, tractor and farm machinery ownership and 

levels of farming technology. Group I was 

consisted of 36 farms which were non-owners of 

machinery and exercised low level of farming 

technology. Group II was consisted of 49 farms 

which were the owners of machinery and practiced 

high level of farming technology. 

Firstly, the amounts of inputs (chemicals, human 

labor, machinery, seed, manure, fertilizers, fuel 

and irrigation water) used in the production of 

watermelon was specified in order to calculate the 

energy equivalences in the study. The units in 

Table 1 were used to find the input amounts. The 

amounts of input were calculated per hectare and 

then, these input data were multiplied with the

Table 1. Energy equivalent of inputs in agricultural production 

Inputs Unit Energy equivalent 

(MJ unit) 

References 

1. Human labor h 1.96 [11] 

2. Machinery h 62.7 [11] 

3. Diesel fuel L 56.31 [17] 

4. Chemical fertilizers kg   

(a) Nitrogen (N)  66.14 [20] 

(b) Phosphate (P2O5)  12.44 [20] 

(c) Potassium (K2O)  11.15 [14] 

(d) Sulphur (S)  1.12 [2] 

5. Farmyard manure kg 0.30 [25] 

6. Chemicals kg 120 [2] 

7. Water for irrigation m
3
 1.02 [15] 

8. Seeds (potato) kg 1.9 [16] 
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coefficient of energy equivalent. The previous 

studies were used to determine the energy 

equivalents’ coefficients. These sources are given 

in Table 1. The energy equivalences of unit inputs 

are given in mega joule (MJ) unit. The total input 

equivalent can be calculated by adding up the 

energy equivalences of all inputs in mega joule 

(MJ). 

The data (for eight Inputs MJ ha
-1

 and 0ne output 

tone ha
-1

) analysis was carried out with the help of 

the DEA solver software, Version7.1. The 

software was used to calculate constant and 

variable returns to scale with radial distances to the 

efficient frontier. 

 

3. Results and discussion 

 

3.1. Analysis of input energy in watermelon 

 

Table 2 shows the basic statistics of watermelon 

output and major inputs used. The most energy 

consuming inputs for watermelon production in 

the different farming technologies investigated 

were fertilizers (28566MJ ha
-1

) water (9274 MJ ha
-

1
) and Diesel fuel (3025MJ ha

-1
). 

 

3.2. Energy efficiency estimation using Data 

Envelopment Analysis (DEA) technique 

 

Frequency distribution of technical and pure 

technical efficiency represented farmers in Group I 

had less efficiency than Group II (Table 3). The 

data of pure technical efficiency showed farmers in 

Group II were more BCC-efficient as well, and 34 

farms of 49 could shift on BCC frontier. It means, 

except 15 inefficient farmers, all farmers 

technologically had efficiency. The data of pure 

technical efficiency showed just 25 farmers of 

Group I were efficient. In other words, farmers in 

Group I (non-owner of land, machinery and low 

level of farming technology) had considerable use 

of energy and production in the yield. Technical 

and pure technical efficiency of watermelon 

production was estimated 0.8 and 0.97. 

Separate analysis of groups and technical 

efficiency also followed same results for Group II, 

farms with high farming technology are more 

efficient and waste less source of energy. The 

average technical efficiency (resource use) 

provides information about the potential resource 

savings that could be achieved while maintaining 

the same output level, Average technical efficiency 

score were calculated 67% for group I and 89% for 

group II. 

 

3.3. Scale efficiency  

 

Using BCC model, the pure technical efficiency 

of a DMU is measured relative to an efficient 

frontier at the same scale size. BCC is modeled by 

setting the convexity constraint. In this case, the 

scale efficiency is determined by measuring the 

divergence between the actual scale size and the 

most productive scale size. 

The scale efficiency of farms showed that farms 

in group II are more efficient.

Table 2. Basic statistics of watermelon output and major inputs used 

Item Max Min Average Standard Deviation 

Inputs(MJ ha
-1

)     

Human labor 3047.8 765.38 1281.60 480.50 

Machinery 1755.6 1034.55 1311.05 158.70 

Diesel fuel 4896.80 1903.80 3025.77 615.75 

Fertilizer 52642 11739.3 28566.22 9200.715 

Farmyard manure 3000 1800 2598 139.78 

Seed 5.7 1.9 2.72 1.07 

Water 18800.64 4847.04 9274.29 3196.91 

Chemicals 720 120 289.2 139.78 

Output(tone ha
-1

)     

Yield 90 25 49.1 13.84 
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Table 3. Frequency distribution of technical and pure technical efficiency of watermelon farmers under different groups 

Efficiency score 50-60 60-70 70-80 80-90 90  efficient Median of efficiency 

scores 

CCR 

Model 

Technical efficiency        

 Group I 12 8 6 4 4 2 0.67 

 Group II 3 1 5 12 11 17 0.89 

 Total 15 9 11 16 15 19 0.80 

BCC 

Model 

Pure technical 

efficiency 

       

 Group 1 - - 1 5 5 25 0.96 

 Group 2 - - - 1 14 34 0.98 

 Total - - - 12 12 26 0.97 

The interpretation of the scale efficiency scores 

allows for some interesting remarks. Mean scale 

efficiency in group II (owner of land, machinery 

and high level of farming technology) is 0.91, 

implying that the average size of these farms is not 

far from the optimal size, although an additional 

9% productivity gain would be feasible – assuming 

no other constraining factors – provided they 

adjusted their farm operation to an optimal scale.  

Mean scale efficiency for watermelon farms 

calculated 0.86. By contrast, Banaeian et al. [21] 

reported a lower (0.76) scale efficiency for 

strawberry greenhouses in Tehran province. 

 
Fig. 3. Various distribution of scale efficiency 

 

3.4. Energy saving in inefficient watermelon farms 

 

For each inefficient farm, target input and output 

levels have to be prescribed. These targets are the 

results of respective slack values added to outputs. 

Table 4 shows energy saving from different 

sources if recommendations of study are followed. 

Using the information of Table 4, it is possible to 

advise an inefficient farmer regarding the better 

operating practices followed by his peers in order 

to reduce the input energy level to the target values 

indicated in the analysis while achieving the output 

level presently achieved by him. 

Analysis showed that in Group I, 2 farms were 

efficient and in Group II, 17 farms were efficient. 

The most share of energy saving were in total 

fertilizers 75.03% and water for irrigation 66.95% 

in Group I, water for irrigation 35.21%, fertilizer 

28.1%, 27.26% diesel fuel and 27.25% seed in 

Group II. Contribution share of each input for 

Group I and II is compared in Figure 1. Based on 

Figure 1 considerable waste of energy in Group I 

(low level of technology) demonstrated the good 

potential of energy saving in this part of 

watermelon producers also farmers in high level of 

technology and owners of land and machinery use 

the sources better. 

Table 4. Energy saving (MJ ha
-1

) from different sources if recommendations of study are followed 

Input Present Use 

 (MJ ha
-1

) 

Target Use 

 (MJ ha
-1

) 

Energy Saving 

 (MJ ha
-1

) 

Group I    

Human 1188.99 645.27 543.72 

Machinery 1336.06 771.33 564.72 

Diesel 3073.49 1520.73 1552.76 

Fertilizer 30074.12 7508.62 22565.5 

Farmyard manure 2602.94 1293.89 1309.05 

Seed 2.68 1.18 1.50 

Chemical 261.17 145.10 116.07 

Water 11161.26 3687.96 7473.29 

Total input energy (MJ ha
-1

) 49700.74 15574.11 34126.63 

0

0,2

0,4

0,6

0,8

1

Scale efficiency

Group 1 Group 2 Total
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Group II    

Human 1189.10 994.20 194.90 

Machinery 1306.90 956.35 350.54 

Diesel 3111.92 2263.59 848.32 

Fertilizer 29590.56 21274.68 8315.87 

Farmyard manure 2653.12 2095.26 557.86 

Seed 2.93 2.13 0.8 

Chemical 285 226.98 58.01 

Water 11095.06 7187.41 3907.64 

Total input energy 

(MJ ha
-1

) 

49234.62 35000.64 14233.98 

 

 

 
Fig. 4. Comparison between Group I and II in the case of contribution input to energy saving 

 

4.Conclusions  

 

In this study, the population investigated was 

divided into two strata based on land, tractor and 

farm machinery ownership and levels of farming 

technology. Group I which was non-owners of 

machinery and exercised low level of farming 

technology and Group II which was the owners of 

machinery and practiced high level of farming 

technology. Energy use of inputs and output in 

watermelon production in Hamadan province of 

Iran were determined. The most energy consuming 

inputs for watermelon production in the different 

farming technologies investigated were fertilizers 

(28566MJ ha-1) and water for irrigation (9274MJ 

ha-1). 

Data envelopment analysis was done in order to 

investigate the efficiency of two groups of farms. 

Total data were tested in both CCR and BCC 

models, result showed in different efficiency 

scores, farms in Group II are more efficient. 

Technical and pure technical efficiency of 

watermelon production was estimated 0.82 and 

0.97. 

Technical and scale efficiency, target energy use 

and energy saving of inefficient farms in groups 

calculated separately. Waste energy in group I & II 

determined 68.66% & 28.91% respectively. If 

farmers operate efficient, overall 24180.3 MJ ha
-1

 

will be saved which is mostly by total fertilizers 

and water for irrigation energy. 

Finally result showed that farmers in group II 

(owners of land, machinery and high level of 

technology) were more efficient in using inputs, 

energy and scale. Energy management is an 

important issue in terms of efficient, sustainable 
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and economic use of energy. It can be expected 

that all these measurements would be useful not 

only for reducing negative effects to environment, 

human health, maintaining sustainability and 

decreasing production costs, but also for providing 

higher productive efficiency. 
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