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Abstract: The existence of a quantum [[28, 12, 6]] code was one of the few cases for codes of length n ≤ 30 that
was left open in the seminal paper by Calderbank, Rains, Shor, and Sloane [2]. The main result of
this paper is the construction of the first optimal linear quaternary [28, 20, 6] code which contains its
Hermitian dual code and yields the first optimal quantum [[28, 12, 6]] code.
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1. Introduction

We assume familiarity with the basics of classical and quantum error-correcting codes [2], [5].

The Hermitian inner product in GF (4)n is defined as

(x, y)H =

n∑
i=1

xiy
2
i , (1)

while the trace inner product in GF (4)n is defined as

(x, y)T =

n∑
i=1

(xiy
2
i + x2

i yi). (2)

A code C is self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥. A linear code C ⊆ GF (4)n is self-
orthogonal with respect to the trace product (2) if and only if it is self-orthogonal with respect to the
Hermitian product (1) [2].
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An additive (n, 2k) code C over GF (4) is a subset of GF (4)n consisting of 2k vectors which is closed
under addition. An additive code is even if the weight of every codeword is even, and otherwise odd.
Note that an even additive code is trace self-orthogonal, and a linear self-orthogonal code is even [2]. If
C is an (n, 2k) additive code with weight enumerator

W (x, y) =

n∑
j=0

Ajx
n−jyj , (3)

the weight enumerator of the trace-dual code C⊥ is given by

W⊥ = 2−kW (x+ 3y, x− y) (4)

In their seminal paper [2], Calderbank, Rains, Shor and Sloane described a method for the construc-
tion of quantum error-correcting codes from additive codes that are self-orthogonal with respect to the
trace product (2).

Theorem 1.1. [2] An additive trace self-orthogonal (n, 2n−k) code C such that there are no vectors of
weight < d in C⊥ \ C yields a quantum code with parameters [[n, k, d]].

A quantum code associated with an additive code C is pure if the minimum distance of C⊥ is d;
otherwise, the code is called impure. A quantum code is called linear if the associated additive code C is
linear.

A table with lower and upper bounds on the minimum distance d for quantum [[n, k, d]] codes of
length n ≤ 30 is given in the paper by Calderbank, Rains, Shor and Sloane [2]. In particular, according
to Table III on page 1382 in [2], the largest minimum distance d of a known quantum [[28, 12]] code is
d = 5, while the best upper bound is d ≤ 6. In the next section, we describe a simple construction of
quaternary Hermitian self-orthogonal codes with parameters [2n + 1, k + 1] and [2n + 2, k + 2] from a
given pair of Hermitian self-orthogonal [n, k] codes. As an application of this construction, we find the
first optimal quaternary linear [28, 20, 6] which contains its dual code and hence yields the first optimal
[[28, 12, 6]] quantum code.

An extended version of Calderbank-Rains-Shor-Sloane table for quantum codes [2, Table III], as well
as tables with bounds on the minimum distance of linear codes, was compiled by Grassl [4].

2. A doubling construction

Lemma 2.1. Suppose that Ci (i = 1, 2) is a linear Hermitian self-orthogonal [n, k] code over GF (4)
with generator matrix Gi, and x(i) ∈ C⊥i is a vector of odd weight.

(a) The code C ′ with generator matrix

G′ =


0

G1 G2 . . .
0

x(1) 0 . . . 0 1

 (5)

is a Hermitian self-orthogonal [2n+ 1, k + 1] code with dual distance

d(C ′)⊥ ≤ min(d(C⊥11), d(C
⊥
2 )), (6)

where C11 is the code spanned by the rows of G11 given by (7):

G11 =


0

G1 . . .

0

x(1) 1

 . (7)

14



V. D. Tonchev

(b) The code C ′′ with generator matrix

G′′ =


0 0

G1 G2 . . .

0 0

x(1) 0 . . . 0 1 0

0 . . . 0 x(2) 0 1

 (8)

is a Hermitian self-orthogonal [2n+ 2, k + 2] code with dual distance

d(C ′′)⊥ ≤ min(d(C⊥11), d(C
⊥
22)), (9)

where C22 is the code spanned by the rows of G22 given by (10):

G22 =


0

G2 . . .

0

x(2) 1

 . (10)

Proof. The self-orthogonality of C ′ and C ′′ follows from the fact that all rows of G′ and G′′ have
even weights, and every pair of rows of G′, as well as every pair of rows of G′′, are pairwise orthogonal.
Since the weight of x(1) (resp. x(2)) is odd, x(1) does not belong to C1, and x(2) does not belong to C2,
and that implies the dimensions of C ′ and C ′′. The bounds (6), (9) on the dual distance follow trivially
by the observation that every codeword of C⊥11 (resp. C⊥22) extends to a codeword of (C ′)⊥ (resp (C ′′)⊥)
by filling in all remaining coordinates with zeros. �

It is worth mentioning that since C1 and C2 are self-orthogonal, their minimum distances are trivial
upper bounds on the minimum dual distances d(C ′)⊥ and d(C ′′)⊥. For example, if d(C1) = 2 then
d(C ′)⊥ ≤ 2.

We note also that using codes C1, C2 with large minimum distances is a necessary, but not always
sufficient condition for large dual distances d(C ′)⊥ and d(C ′′)⊥. For example, if G1 = G2 and x(1) is the
all-one vector, then for every 1 ≤ i ≤ n, the columns of (5) with indices i, i+ n and 2n+ 1 determine a
codeword of weight 3 in (C ′)⊥.

These simple observations illustrate that one cannot expect a good general lower bound on d(C ′)⊥

or d(C ′′)⊥, and finding codes C1, C2 with appropriate generator matrices G1, G2 and vectors x(1), x(2)

which lead to optimal dual distances d(C ′)⊥ and d(C ′′)⊥ is not a trivial task.

Using the connection to quantum codes described in Theorem 1.1, Lemma 2.1 implies the following.

Corollary 2.2. The existence of quaternary Hermitian self-orthogonal [n, k] codes Ci (i = 1, 2) satisfying
the assumptions of Lemma 2.1 implies the existence of a pure quantum linear [[2n + 1, 2n − 2k − 1, d′]]
code with d′ ≤ min(d(C⊥11), d(C

⊥
2 )), and a pure quantum linear [[2n + 2, 2n − 2k − 2, d′′]] code with

d′′ ≤ min(d(C⊥11), d(C
⊥
22)).

We will apply Lemma 2.1 and Corollary 2.2 to some self-orthogonal codes of length n = 2k + 1
being shortened codes of extremal self-dual [2k+2, k+1] codes, that is, self-dual codes having maximum
possible minimum distance for the given code length.

Example 2.3. The matrix

G1 =

(
1 0 1 ω ω

0 1 ω ω 1

)

is the generator matrix of a self-orthogonal [5, 2, 4] code C1 over GF (4) = {0, 1, ω, ω2}. The code C1

is a shortened code of the unique (up to equivalence) self-dual [6, 3, 4] code. Applying Lemma 2.1 with
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C2 = C1, G2 = G1, and x(1) = x(2) being the all-one vector of length 5, gives a self-orthogonal [11, 3] code
C ′ with dual distance 3 and a self-orthogonal [12, 4] code C ′′ with dual distance 4, which gives optimal
quantum [[11, 5, 3]] and [[12, 4, 4]] codes respectively via Corollary 2.2.

Example 2.4. A pair of self-orthogonal [7, 3] codes obtained as shortened codes of the unique (up to
equivalence) self-dual [8, 4, 4] code can be used to obtain optimal quantum [[15, 7, 3]] and [[16, 6, 4]] codes.

3. An optimal quantum [[28, 12, 6]] code

The smallest parameters of a self-dual quaternary linear code that yields a quantum code with
minimum distance d ≥ 5 via Corollary 2.2 are [14, 7, 6]. The only such code, up to equivalence, is the
quaternary extended quadratic residue code q14 [6, page 340]. We apply Lemma 2.1 using the pair of
self-orthogonal [13, 6] codes C1, C2 generated by the following matrices:

G1 =



0000100210233

3000010021023

3300001002102

2330000100210

0233000010021

1023300001002


, G2 =



0000113023002

2000011302300

0200001130230

0020000113023

3002000011302

2300200001130


,

where for convenience, the elements ω and ω2 of GF (4) are written as 2 and 3 respectively. The matrices
G1, G2 are circulant. The codes C1, C2 are cyclic and equivalent to a shortened code of q14.

Choosing x(1) = x(2) to be the all-one vector of length 13, we obtain the generator matrix G′ (5) of a
self-orthogonal [27, 7] code C ′ with dual distance 5, and the generator matrix G′′ (8) of a self-orthogonal
[28, 8] code with dual distance 6. The matrix G′′ is available on line at

http://www.math.mtu.edu/~tonchev/gm28-8.html

By Corollary 2.2, C ′ gives a pure optimal quantum [[27, 13, 5]] code, while C ′′ gives a pure optimal
quantum [[28, 12, 6]] code.

An alternative geometric construction of a quantum code with the first parameters, [[27, 13, 5]], was
given by the author in [7]. To the best of our knowledge, the quantum code with the second parameters,
[[28, 12, 6]], is the first known quantum code with these parameters (a quantum [[28, 12, 5]] code was listed
in [2]).

The weight distribution of the [28, 8] code C ′′ is given in Table 1.

The weight enumerator of the dual [28, 20] code (C ′′)⊥ is

1 + 6240y6 + 37128y7 + 314223y8 + 2044848y9 + 11883768y10 + . . .

We note that the code (C ′′)⊥ is an optimal linear [28, 20, 6] quaternary code: 6 is the best theoretical
upper bound on the minimum distance of a quaternary linear [28, 20] code. The largest minimum distance
of any previously known [28, 20] code was 5 [3], [4].
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Table 1.

w Aw

12 39
14 6
16 3198
18 9204
20 18213
22 22854
24 10569
26 1248
28 204
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