
JACODESMATH / ISSN 2148-838X

J. Algebra Comb. Discrete Appl.
2(1) • 39-63

Received: 20 October 2014; Accepted: 6 December 2014
DOI 10.13069/jacodesmath.36866

Journal of Algebra Combinatorics Discrete Structures and Applications

Recent progress on weight distributions of cyclic codes
over finite fields∗

Research Article

Hai Q. Dinh1∗∗, Chengju Li2§, Qin Yue2∗ ∗ ∗

1. Departments of Mathematical Sciences, Kent State University, Warren, OH 44484, USA

2. Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, P.R.
China

Abstract: Cyclic codes are an interesting type of linear codes and have wide applications in communication and
storage systems due to their efficient encoding and decoding algorithms. In coding theory it is often
desirable to know the weight distribution of a cyclic code to estimate the error correcting capability
and error probability. In this paper, we present the recent progress on the weight distributions of
cyclic codes over finite fields, which had been determined by exponential sums. The cyclic codes with
few weights which are very useful are discussed and their existence conditions are listed. Furthermore,
we discuss the more general case of constacyclic codes and give some equivalences to characterize their
weight distributions.
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1. Introduction

The classes of cyclic codes play a very significant role in the theory of error-correcting codes. Cyclic
codes can be efficiently encoded using shift registers, and they have rich algebraic structures for efficient
error detection and correction, which explains their preferred role in engineering. Information Theory and
Coding Theory have been widely considered to be born in 1948, when Claude Shannon’s1 landmark paper
[75] on the mathematical theory of communication, showed that good codes exist2. Cyclic codes were

∗ The second and third authors are supported by NNSF of China (No. 11171150)
∗∗ E-mail: hdinh@kent.edu
§ E-mail: lichengju1987@163.com
∗ ∗ ∗ E-mail: yueqin@nuaa.edu.cn
1 Claude Elwood Shannon (April 30, 1916 - February 24, 2001) was an American mathematician, electronic
engineer, and cryptographer, who is refered to as "the father of information theory" [43]. Shannon is also credited
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Weight distributions of cyclic codes over finite fields

introduced as early as 1957, nine years after that, in a series of papers by Prange [67]-[71]. Since then,
cyclic codes have been the most studied of all codes. Many well known codes, such as BCH, Kerdock,
Golay, Reed-Muller, Preparata, Justesen, and binary Hamming codes, are either cyclic codes or can be
constructed from cyclic codes.

In this paper, we survey some results on the weight distributions of cyclic codes over finite fields
that have been recently determined by exponential sums. For a prime p, let Fq be a finite field of
characteristic p with q elements, i.e., q = ps, for some positive integer s. An [n, k, d] linear code C is
a k-dimensional subspace of Fnq with minimum distance d. Hereafter, we always assume that the code
length n and the field characteristic p are coprime 3. The code C is called cyclic if (c0, c1, . . . , cn−1) ∈ C
implies (cn−1, c0, c1, . . . , cn−2) ∈ C. By identifying the vector (c0, c1, . . . , cn−1) ∈ Fnq with

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 ∈ Fq[x]/(xn − 1),

any code C of length n over Fq corresponds to a subset of Fq[x]/(xn−1). Then C is a cyclic code if and only
if the corresponding subset is an ideal of Fq[x]/(xn−1). Note that every ideal of Fq[x]/(xn−1) is principal.
Hence there is a monic polynomial g(x) with least degree such that C = 〈g(x)〉 and g(x) | (xn− 1). Then
g(x) is called the generator polynomial and h(x) = (xn − 1)/g(x) is called the check polynomial of the
cyclic code C. Suppose that h(x) has t irreducible factors over Fq, we call C the dual of the cyclic code
with t zeros.

Let Ai be the number of codewords with Hamming weight i in the code C of length n. The weight
enumerator of C is defined by

1 +A1x+A2x
2 + · · ·+Anx

n.

The sequence (1, A1, A2, . . . , An) is called the weight distribution of the code C. In coding theory it is
often desirable to know the weight distributions of the codes because they can be used to estimate the
error correcting capability and the error probability of error detection and correction with respect to
some decoding algorithms. This is quite useful in practice. Unfortunately, it is a very hard problem in
general and remains open for most cyclic codes.

Let r = qm for a positive integer m and α a generator of F∗r . Let h(x) = h1(x)h2(x) · · ·ht(x), where
hj(x) (1 ≤ j ≤ t) are distinct monic irreducible polynomials over Fq. Let gj = α−sj be a root of hj(x) and

as the founder of both digital computer and digital circuit design theory, when, in 1937, as a 21-year-old master’s
student at MIT, he wrote a thesis establishing that electrical application of Boolean algebra could construct and
resolve any logical, numerical relationship. It has been claimed that this has been the most important master’s
thesis of all time. Shannon contributed to the field of cryptanalysis during World War II and afterwards, including
basic work on code breaking.
2 Shannon’s theorem ensures that our hopes of getting the correct messages to the users will be fulfilled a certain
percentage of the time. Based on the characteristics of the communication channel, it is possible to build the right
encoders and decoders so that this percentage, although not 100%, can be made as high as we desire. However,
the proof of Shannon’s theorem is probabilistic and only guarantees the exixtence of such good codes. No specific
codes were constructed in the proof that provides the desired accuracy for a given channel. The main goal of
Coding Theory is to establish good codes that fulfill the assertions of Shannon’s theorem. During the last 50
years, while many good codes have been constructed, but only from 1993, with the introduction of turbo codes
[7], the rediscoveries of LDPC codes, and the study of related codes and associated iterative decoding algorithms,
researchers started to see codes that approach the expectation of Shannon’s theorem in practice.
3 The case when the code length n is divisible by the characteristic p of the field yields the so-called repeated-root
codes, which were first studied since 1967 by Berman [5], and then in the 1970s and 1980s by several authors
such as Massey et al. [61], Falkner et al. [33], Roth and Seroussi [72]. However, repeated-root codes were first
investigated in the most generality in the 1990s by Castagnoli et al. [16], and van Lint [77], where they showed
that repeated-root cyclic codes have a concatenated construction, and are asymptotically bad. To distinguish the
two cases, codes when the code-length is not divisible by the characteristic p of the field are called simple-root
codes.
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nj the order of gj for 0 ≤ sj ≤ r − 2 (1 ≤ j ≤ t). Let mj be the least positive integer such that qmj ≡ 1
(mod nj). In fact, we have deg(hj(x)) = mj for j = 1, 2, . . . , t. Denote δ = gcd(r − 1, s1, s2, . . . , st) and
n = r−1

δ . A cyclic code C can be defined by

C = {c(a1, a2, . . . , at) : aj ∈ Fqmj }, (1)

where

c(a1, a2, . . . , at) = (

t∑
j=1

Trqmj /q(aj),
t∑

j=1

Trqmj /q(ajgj), . . . ,
t∑

j=1

Trqmj /q(ajg
n−1
j )) (2)

and Trqmj /q denotes the trace function from Fqmj to Fq. It follows from Delsarte’s Theorem [22] that the
code C is an [n, k] cyclic code over Fq with the check polynomial h(x), where k = m1 +m2 + · · ·+mt.

In the rest of this paper, we use gi to denote the corresponding cyclic code. If we only give g1 and
g2, we mean that the dual of cyclic code has two zeros and the product of the minimal polynomials of
g1 and g2 over Fq is the check polynomial of such cyclic code. It is similar for cyclic codes whose duals
have more zeros. In most cases, we also only list the cyclic codes whose weight distributions are known
because they may have many nonzero weights. The reader can get the details on weight distributions in
the corresponding references which are given.

For any a1, a2, . . . , at ∈ Fr, the Hamming weight of c(a1, a2, . . . , at) is equal to

WH(c(a1, a2, . . . , at)) = n− Z(r, t),

where

Z(r, t) = |{0 ≤ i ≤ n− 1 :

t∑
j=1

Trqmj /q(ajgij) = 0}|.

Let φ be the canonical additive character of Fq. Then ψj = φ ◦ Trqmj /q is the canonical additive
character of Fr. By the orthogonal property of additive characters we have

Z(r, t) =

n−1∑
i=0

1

q

∑
y∈Fq

φ(y

t∑
j=1

Trqmj /q(ajgij))

=
1

q

t∑
j=1

n−1∑
i=0

∑
y∈Fq

ψj(yajg
i
j). (3)

Hence determining the weight distribution of cyclic code is equivalent to determining the multiset

{Z(r, t) : aj ∈ Fqmj for j = 1, 2, . . . t}.

In general, it is very difficult and remains open for most cases. However, the weight distributions of cyclic
codes had been determined in a few cases by using mathematical tools, such as Gauss periods, Gauss
sums, quadratic forms, and the numbers of the solutions of equations over finite fields.

In view of the trace representation (2) of C, it is natural to study the weight distributions of irreducible
cyclic codes (i.e., t = 1) and the duals of cyclic codes with two or three zeros (i.e., t = 2 or 3). There are
few results [53, 90] on weight distributions of cyclic codes with arbitrary zeros. Moreover, Ding and Yang
[27] used Gauss periods to give an excellent survey on weight distributions of irreducible cyclic codes.
In this paper, we mainly investigate the weight distributions of reducible cyclic codes which had been
determined by exponential sums. The cyclic codes with few weights which are very useful are discussed
and their existence conditions are listed.

The rest of this paper is organized as follows. In Section 2, we study the weight distributions of cyclic
codes whose duals have two or three zeros. In Section 3, we present the results on weight distributions
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of cyclic codes whose duals have arbitrary zeros. In Section 4, we investigate the cyclic codes with Niho
exponents. In Section 5, the cyclic codes with few weights are discussed and their existence conditions are
listed. Section 6 discusses the more general case of constacyclic codes, we present some methods to study
the equivalence classes of constacyclic codes. All constacyclic codes that are in the same equivalence class
of cyclic codes share the same weight distributions and all results from previous sections hold for such
constacyclic codes.

It is impractical to mention all recent work on weight distributions of cyclic codes in this paper. We
focus on the weight distributions determined by exponential sums and some results may be omitted. An
apparent omission is the weight distributions determined by combinatorial methods. However, we hope
that this paper will show that weight distributions of cyclic codes which are determined by exponential
sums in general.

2. Weights of the duals of cyclic codes with two or three zeros

We begin with the weight distributions of cyclic codes whose duals have two or three zeros because
Ding and Yang had given an elegant survey on irreducible cyclic codes. For details we refer the readers
to [27] and the references therein. Below we consider the cyclic codes whose duals have two zeros. The
weight distributions of such codes are settled for a few special cases and is quite complex in general [17].

Let g1, g2, and g3 be three zeros of h1(x), h2(x), and h3(x), respectively, and C the cyclic code as
(1) with the check polynomial h(x) = h1(x)h2(x)h3(x). Now we assume that m1 = m2 = m3 = m if we
do not give a special statement and α is a primitive element of Fqm . The weights of C were first studied
in [14, 18, 81] by using exponential sums and combinatorial methods. Yuan et al. [91] used exponential
sums to present the weight distributions of cyclic codes from perfect nonlinear functions. We refer the
reader to [15] for a survey of highly nonlinear functions. Feng and Luo [34] presented a unified way to
determine the weight distributions of cylic codes defined by perfect nonlinear functions.

Theorem 2.1. The weight distributions of the following cyclic codes defined by perfect nonlinear functions
are known:

1. g1 = α−1, g2 = α−(pl+1), where q = p, l ≥ 0 is an integer, and m/ gcd(m, l) is odd [35, 91];

2. g1 = α−1, g2 = α−
3l+1

2 , where q = 3, l is odd, and gcd(m, l) = 1 [35].

Remark 2.2. Let the assumptions and the notations be as above theorem. Then f(x) = xp
l+1 is called

Dembowski-Ostrom function [23] and f(x) = x
3l+1

2 is called Coulter-Matthews function [21].

2.1. Quadratic forms and weight distributions

Quadratic form is an effective tool to determine the weight distributions of cyclic codes. Below we
recall some results on quadratic forms. We refer the readers to [54] for more details on quadratic forms.
Let H be an m×m symmetric matrix over Fp. By identifying Fpm with Fmp , a function Q(x) from Fpm
to Fp is called a quadratic form over Fp if

Q(x) = XHX⊥, where X = (x1, x2, . . . , xm) ∈ Fmp .

Suppose that r = rank(H). Then there exists M ∈ GLm(Fp) such that H ′ = MHM⊥ is a diagonal
matrix and H ′ = diag(a1, . . . , ar, 0, . . . , 0), where ai ∈ Fp for 1 ≤ i ≤ r. Let ∆ = a1 · · · ar (∆ = 1 if
r = 0). Then we have the following proposition.
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Proposition 2.3. [35, 54] Suppose that p is an odd prime. Let (∆
p ) denote the Legendre symbol and

ζp = e
2π
√
−1
p be a complex p-th root of unity. Then we have

∑
X∈Fmp

ζXHX
⊥

p =

{
(∆
p )pm−

r
2 , if p ≡ 1 (mod 4);

(∆
p )(
√
−1)rpm−

r
2 , if p ≡ 3 (mod 4).

By employing the above proposition, Feng and Luo [35, 55] presented the weight distributions of
several classes of cyclic codes. Since then a series of jobs were motivated by their original idea.

Theorem 2.4. Let l be a positive integer. Then the weight distributions of cyclic codes over Fp (p odd
prime) had been determined by using quadratic forms in the following cases:

1. g1 = α−2, g2 = α−(pl+1), where m ≥ 3 and gcd(m, l) = 1 [35];

2. g1 = α−2, g2 = α−(pl+1), and g3 = α−1, where m ≥ 3 and gcd(m, l) = 1 [35];

3. g1 = α−2, g2 = α−(pl+1), where m ≥ 2 and 1 ≤ l ≤ m− 1 [55];

4. g1 = α−2, g2 = α−(pl+1), and g3 = α−1, where m ≥ 2 and 1 ≤ l ≤ m− 1 [55];

5. g1 = α−1, g2 = α−
pl+1

2 , where l/ gcd(m, l) is odd [58];

6. g1 = α−1, g1 = α−(pl+1), and g3 = α−(p3l+1), where m/ gcd(m, l) is odd [92];

7. g1 = −α−1, g2 = α−
pl+1

2 , where m/ gcd(m, l) ≥ 3 is odd [96];

8. g1 = α−1, g2 = α−
p2l+1

2 , and g3 = α−
p4l+1

2 , where m ≥ 5 is odd and gcd(m, l) = 1 [98];

9. g1 = α−(pl+1), g2 = α−(p3l+1), where m/ gcd(m, l) is even [95];

10. g1 = α−1, g1 = α−(pl+1), and g3 = α−(p3l+1), where m/ gcd(m, l) is even [95];

11. g1 = α−2, g2 = α−(p2l+1), and g3 = α−(p4l+1), where m/ gcd(m, l) is odd [94];

12. g1 = α−1, g2 = −α−1, and g3 = α−
pl+1

2 , where m ≥ 3 is odd and gcd(m, l)=1 [57];

13. g1 = α−2, g2 = α−4, and g3 = α−10, where p = 3 [56].

There is a parallel result on the exponential sums over quadratic forms for even p. Luo et al. [59]
investigated these exponential sums and gave the weight distributions of cyclic codes associated with
generalized Kasami sequences.

Theorem 2.5. [59] For even m, let l be an integer with 1 ≤ l ≤ m − 1 and l 6= m
2 . Then the weight

distributions of binary cyclic codes C are known in the following cases:

1. g1 = α−(2
m
2 +1) and g2 = α−(2l+1);

2. g1 = α−(2
m
2 +1), g2 = α−(2l+1), and g3 = α−1.

Remark 2.6. In the above theorem, m1 = m
2 ,m2 = m and m3 = m.

For the binary cyclic codes whose duals have two zeros, the calculations of their weight distributions
is more important because it is equivalent to determine the value distribution of the cross-correlation
function between two m-sequences and the Walsh transforms of monomials over finite fields. In fact, they
represent the same mathematical problem (i.e., the calculation of exponential sum) in most cases. For
more results of their relationships, cross-correlation function between two m-sequences, and the Walsh
transforms of monomials, we refer the readers to [13, 36, 38, 40, 41, 44, 51, 65, 93] and references therein.
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2.2. Gauss periods and weight distributions

There is another useful tool which is called Gauss periods to determine the weight distributions of
cyclic codes. Now we recall the definition of Gauss period.

Let r − 1 = nN and α be a fixed primitive element of Fr, where r = qm = psm. We define
C

(N,r)
i = αi〈αN 〉 for i = 0, 1, . . . , N − 1, where 〈αN 〉 denotes the subgroup of F∗r generated by αN . The

Gauss periods of order N are given by

η
(N,r)
i =

∑
x∈C(N,r)

i

ψ(x),

where ψ is the canonical additive character of Fr and η(N,r)
i = η

(N,r)
i (mod N) if i ≥ N . In general, the explicit

evaluation of Gauss periods is a very difficult problem. However, they can be computed in a few cases:
N = 2, 3, 4, semi-primitive case, and index 2 case [27, 64]. By using these known Gauss periods, the
weight distributions of some classes of cyclic codes were determined.

For future use, here we also introduce Gauss sums which are closely related to Gauss periods. Let

λ : F∗r → C∗

be a multiplicative character of F∗r . Now we define the Gauss sum over Fr by

G(λ) =
∑
x∈F∗r

λ(x)ψ(x).

It is easy to see that G(λ0) = −1, where λ0 is the trivial multiplicative character, i.e., λ0(x) = 1 for all
x ∈ F∗r . Gauss sums can be viewed as the Fourier coefficients in the Fourier expansion of the restriction
of ψ to F∗r in terms of the multiplicative characters of Fr, i.e.,

ψ(x) =
1

r − 1

∑
λ∈F̂∗r

G(λ)λ(x), for x ∈ F∗r . (4)

By (4), we can obtain

η
(N,r)
i =

1

N

N−1∑
j=0

ζ−ijN G(λj) =
1

N
(−1 +

N−1∑
j=1

ζ−ijN G(λj)),

where λ is a primitive multiplicative character of order N over F∗r . Generally, the explicit determination
of Gauss sums is a difficult problem. However, they can be explicitly evaluated in the following cases
[6, 89]: quadratic Gauss sums, semi-primitive Gauss sums, and index 2 Gauss sums.

Ding [24] used Gauss periods to determine the weight distributions of irreducible cyclic codes. More-
over, a survey on the weight distributions of irreducible cyclic codes determined by Gauss periods was
given by Ding and Yang [27]. Below we consider the weight distributions of reducible cyclic codes.

Let m1 = m2 = m, r = qm, and α a generator of F∗r . Let h be a positive factor of q − 1 and e > 1
an integer such that e | gcd(q − 1, hm). Define

g = α
q−1
h , n =

h(r − 1)

q − 1
, β = α

r−1
e , N = gcd(

r − 1

q − 1
,
e(q − 1)

h
).

We easily see that the order of g is n and (βg)n = 1. It had been proved that the minimal polynomials
of g−1 and (βg)−1 over Fq are distinct except when q = 3, h = 1, e = m = 2 [87]. Hence their product is
a factor of xn − 1.

Let g1 = g−1 and g2 = (βg)−1. In general, we have m1 = m2 = m. Thus the corresponding cyclic
code C is an [n, 2m] code. If F∗r = 〈g1〉 = 〈g2〉, then the weight distribution of the code C which is
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called the dual of primitive cyclic code with two zeros had been studied in [9, 13, 14, 18, 62, 63, 74].
In this subsection, we only consider cyclic codes whose weight distributions are determined by Gauss
periods, so we do not describe the results on primitive cyclic codes here. In fact, to determine the weight
distributions of cyclic codes, more mathematical tools are employed, such as Gauss sums, Jacobi sums,
and elliptic curves.

Theorem 2.7. Let g1 = g−1 and g2 = (βg)−1. Then the weight distribution of cyclic code C were
determined by Gauss periods in the following cases:

1. e > 1 and N = 1 [60];

2. e = 2 and N = 2 [60];

3. e = 2 and N = 3 [26];

4. e = 2 and pj + 1 ≡ 0 (mod N) for some positive integer j [26];

5. e = 3 and N = 2 [82];

6. e = 2, N ≡ 3 (mod 4) is a prime, N−1
2 | sm, and p is of index 2 modulo N which means [Z∗N :

〈p〉] = 2 and −1 6∈ 〈p〉, where 〈p〉 is a subgroup generated by p in Z∗N [37];

7. e = 4 and N = 2 [86];

8. e = 3 and N = 3 [87];

9. e = 2 and pj + 1 ≡ 0 (mod N) for some positive integer j [88].

In [79], Vega presented an extended version for the class of cyclic codes studied by Ma et al. [60]
and gave their weight distributions. Moreover, a general description for such reducible cyclic codes which
generalizes the code C with e = 2 was given by Vega and Morales [80]. The weight distributions of these
general cyclic codes were determined explicitly and the main tool is also Gauss periods.

Theorem 2.8. [80] Suppose that q is odd and sm is even. Let d, a1, a2, and δ be four integers such
that 2d | sm, a1 − a2 = ± r−1

2 , and δ = gcd( r−1
q−1 , a1). Let λ1, λ2 be two divisors of q − 1 such that

gcd(q − 1, aiδ ) = q−1
λi

for i = 1, 2. Fix δ′ = gcd(2, ∆
δ ) and λ = max{λ1, λ2}. Let g1 = α−a1 and

g2 = α−a2 . If δδ′ | (pd + 1) and 2δ < r−1
pd1

, then

1. the corresponding cyclic code C is an [n, 2m] code with n = λ∆
δ and its weight distribution can be

computed explicitly;

2. C is a projective linear code which means the minimum weight of its dual code is at least three if
and only if δ′ = 1 and λ = 2.

In this subsection, we have investigated the weight distributions of cyclic codes in the case m1 =
m2 = m. Now we concentrate on the case m1 6= m2. In [46, 47], the authors used Gauss periods to
express the weight distributions of such cyclic codes. Moreover, a more general result on cyclic codes
whose duals have two zeros was given in [48]. Based on the expression via Gauss periods, the weight
distributions of several classes of cyclic codes were explicitly presented.

Let α be a fixed primitive element of Fr and F∗qmi = 〈αi〉, where αi = α
r−1

qmi−1 for i = 1, 2. Denote
qmi − 1 = niNi, gi = α−Nii , d = gcd(n1, n2), and n = n1n2

d .

Theorem 2.9. [48] If gcd(n1, n2) = d, n1N1 = qm1−1, n2N2 = qm2−1, M1 = qm1−1
q−1 ,M2 = qm2−1

q−1 , d1 =

gcd(M1, N1), d2 = gcd(M2, N2), d3 = gcd(M1dN2

d4
, dN1), and d4 = gcd(M2, dN2), then the weight distri-

bution of the cyclic code C with g1 = α−N1
1 and g2 = α−N2

2 is given by Table 1.
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Table 1. Weight distribution of cyclic code C with g1 = α−N1
1 and g2 = α−N2

2 .

Weight Frequency
0 1

(q−1)n1n2
dq

− (q−1)d1n2
qdN1

η
(d1,q

m1 )
j

qm1−1
d1

(0 ≤ j ≤ d1 − 1)
(q−1)n1n2

dq
− (q−1)d2n1

qdN2
η
(d2,q

m2 )
j

qm2−1
d2

(0 ≤ j ≤ d2 − 1)

(q−1)n1n2
dq

− (q−1)d3d4
qd2N1N2

d−1∑
t=0

dN2
d4
−1∑

i=0

η
(dN2,q

m2 )
N2t+M2i+j

η
(d3,q

m1 )
N1t+M1i+k

(qm1−1)(qm2−1)
dd3N2

(
0 ≤ j ≤ dN2 − 1

0 ≤ k ≤ d3 − 1
)

Table 2. Weight distribution of C from two distinct finite fields.

Weight Frequency
0 1

qm1−1(qm2 − 1) qm1 − 1

qm2−1(qm1 − 1) qm2 − 1

(qm1−1)(qm2−1)
q

− δ
q

δ−1∑
v=0

η
(δ,qm1 )
v+k η

(δ,qm2 )
v+j

(qm1−1)(qm2−1)

δ2
(0 ≤ k, j ≤ δ − 1)

As an application of Theorem 2.9, the weight distribution of cyclic code from two distinct finite fields
(i.e., N1 = N2 = 1) was presented.

Theorem 2.10. [48] Let m1,m2 be two positive divisors of m with gcd(m1,m2) = 1, n1 = qm1 − 1, and
n2 = qm2 −1. If gcd(q−1,m1−m2) = δ, then C is a [ (qm1−1)(qm2−1)

q−1 ,m1 +m2] cyclic code and its weight
distribution is given by Table 2.

If gcd(m1,m2) = 1, then the weight distributions of the cyclic codes C can be explicitly determined
when the Gauss periods of order δ are known.

Corollary 2.11. [48] Let r = qm, m1,m2 be two divisors of m with gcd(m1,m2) = 1.

1. If gcd(q − 1,m1 − m2) = 1, then the corresponding cyclic code C is a [ (qm1−1)(qm2−1)
q−1 ,m1 + m2]

three-weight cyclic code and its weight distribution can be explicitly determined.

2. If gcd(q − 1,m1 − m2) = 2, then the corresponding cyclic code C is a [ (qm1−1)(qm2−1)
q−1 ,m1 + m2]

four-weight cyclic code and its weight distribution can be explicitly determined.

In particular, if (q − 1) | m1 or (q − 1) | m2, then we have δ = 1 by gcd(m1,m2) = 1. Thus C is
a three-weight cyclic code. Moreover, if q = 2, then the corresponding code C is a three-weight binary
cyclic code which is more interesting in communication and storage systems.

If N1 = N2 = 2, then we have the following theorem.

Theorem 2.12. [48] Let r = qm with q odd, m1,m2 be two divisors of m with gcd(m1,m2) = 1 and
(q − 1) | m1 or (q − 1) | m2, n1 = qm1−1

2 , and n2 = qm2−1
2 . Then the corresponding code C is a

[ (qm1−1)(qm2−1)
2(q−1) ,m1 +m2] cyclic code with five nonzero weights and its weight distribution can be explicitly

determined.

More classes of cyclic codes can be presented by Theorem 2.9 and it is unnecessary to state them
here. We refer the readers to [46–48] for more results.

In fact, the weight distributions of most cyclic codes whose duals have few zeros are open. Moreover,
zeta functions were also employed to determine the weight distributions of the duals of cyclic codes with
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two zeros [9]. It is a good research problem to present the weight distributions of cyclic codes by using
zeta functions, quadratic forms, Gauss periods, or other mathematical tools.

3. Weight distributions of cyclic codes with arbitrary zeros

In this section, we survey the weight distributions of cyclic codes with arbitrary zeros. It is in general
very difficult to compute Z(r, t) if the dual of cyclic code has more zeros. Hence there are few results on
such cyclic codes.

3.1. Hermitian forms graphs and weight distributions

Let G be a finite Abelian group and D a subset of G. The Cayley graph Cay(G,D) on G with
connection set D is the directed graph with vertex set G and edge set {(g, h) : g, h ∈ G, gh−1 ∈ D}.

Let A = (agh) with entries in {0, 1} be a square matrix such that agh = 1 if gh−1 ∈ D and agh = 0
otherwise. We call A the adjacency matrix of Cay(G,D). It is known that each character χ of G
corresponds to an eigenvector of A with eigenvalue χ(D) =

∑
d∈D

χ(d) . Furthermore, the spectrum of

Cay(G,D) is the multiset {χ(D) : χ ∈ Ĝ}, where Ĝ is the character group of G.

In this subsection, we always suppose that m = 2l for some integer l and s = 1, i.e., q = p. A matrix
H over Fp2 is called Hermitian if H = H∗, where H∗ is the conjugate transpose of H. Let H denote the
Abelian group formed by all l× l Hermitian matrices over Fp2 under the matrix addition. The Hermitian
forms graph is the Cayley graph Cay(H,D), where D = {H ∈ H : rank(H) = 1}. Let W = Flp2 . Then
the Hermitian forms graph onW is the Cayley graph Cay(H,D). The eigenvalues of the Hermitian forms
graph were first computed by Stanton [76] and a more accessible formula was given in [10] by using the
Gaussian binomial coefficients. For details and more information on the spectrum of Hermitian forms
graph, we refer the readers to [10].

Li et al. [53] proposed an elegant method to study this problem by building a connection between
the corresponding exponential sums and the spectra of Hermitian forms graphs.

For odd l, we denote t = l−1
2 . Suppose that α is a primitive element of Fr. Let gj = α−(p2i−1+1) for

j = 1, 3, . . . , t and gt+1 = α−(pl+1). Then we have m1 = m2 = · · · = mt = m and mt+1 = m
2 and .

Theorem 3.1. [53] The corresponding code C is a [r− 1, m
2

4 ] cyclic code and its weight distribution can
be exactly determined.

Very recently, Zhou et al. [99] generalized this class of p-ary cyclic codes proposed in [53] and the
weight distributions of the generalized cyclic codes were settled for both even l and odd l along with the
idea of Li, Hu, Feng, and Ge.

Theorem 3.2. [99] Let t = bm2 c. Then the weight distributions of the following cyclic codes over Fq (q
is a prime power here) are known:

1. gj = α−(p2j−1+1) (j = 1, 2, . . . , t), gt+1 = α−(pl+1) for odd m;

2. gj = α−(p2j−1+1) (j = 1, 2, . . . , t), gt+1 = α−(pl+1), and gt+2 = α−1 for odd m;

3. gj = α−(p2j−1+1) (j = 1, 2, . . . , t) for even m;

4. gj = α−(p2j−1+1) (j = 1, 2, . . . , t), gt+1 = α−1 for even m.
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3.2. Yang-Xiong-Ding-Luo cyclic codes

By Yang-Xiong-Ding-Luo cyclic codes we mean a class of cyclic codes with arbitrary number of zeros
proposed in [90]. Now we describe this class of cyclic codes.

Main Assumptions: Let r = qm = psm be a prime power for two integers s,m and let e ≥ t ≥ 2.
Assume that

1. a 6≡ 0 (mod r − 1) and e | (r − 1);

2. aj ≡ a+ r−1
e ∆j (mod r− 1), 1 ≤ j ≤ t, where ∆u 6= ∆v for any u 6= v and gcd(∆2 −∆1, . . . ,∆t −

∆1, e) = 1;

3. gj = α−aj for 1 ≤ j ≤ t, their minimal polynomials over Fq are pairwise distinct, and m1 = m2 =
· · · = mt = m.

Denote

δ = gcd(r − 1, a1, a2, . . . , at), n =
r − 1

δ
,

and

N = gcd(
r − 1

q − 1
, ae).

We easily see that

eδ | N(q − 1).

It follows from Delsarte’s Theorem [22] that the corresponding code C is an [n, tm] cyclic code over Fq.
It was proved that Condition (3) can be met by the following simple criterion.

Criterion: [90] Suppose that for any proper factor ` of m (i.e. ` | m and ` < m) we have

r − 1

q` − 1
- N.

Then Condition (3) in the Main Assumptions holds. In particular, if N ≤
√
r, then Condition (3) in the

Main Assumptions is met.

If t = 2, let a1 = q−1
h and a2 = q−1

h + r−1
e for positive integers e, h such that e | h and h | (q − 1),

the code C had been studied in [26, 37, 60, 82, 86–88]. Hence this class of cyclic codes with arbitrary
zeros can be viewed as the generalization of cyclic codes whose duals have two zeros. The proper choices
of these ai’s is key to compute the weight distribution of the code C. It may be very difficult to find the
weight distribution if the integers ai are not chosen in the right way.

If t = e ≥ 2, the set {∆j : 1 ≤ j ≤ e} is a complete residue system modulo e, so we may take
∆1 = 0,∆2 = 1, . . . ,∆e = e− 1.

Theorem 3.3. [90] Under the Main Assumptions, when N = 1 and t = e ≥ 2, the corresponding code C
is a t-weight cyclic code over Fq and its weight distribution can be explicitly presented.

The Gauss periods are known for N = 2, 3, 4, semi-primitive case, and index 2 case. Hence the
weight distributions of more cyclic codes can be determined.

Theorem 3.4. [90] Suppose that the Gaussian periods η
(N,r)
j of order N have µ distinct values

{η1, η2, . . . , ηµ}, and for each i(1 ≤ i ≤ µ), there are exactly τi distinct js such that η(N,r)
j = ηi. (Note

that τ1 + τ2 + · · · + τµ = N .) Then, the corresponding code C is an [n, em] cyclic code over Fq with at
most

(
µ+e
e

)
−1 nonzero weights and its weight distribution can be explicitly presented when Gauss periods

are known.
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3.3. Cyclic codes from Fl conjugates

Let Fq be a finite field with q = lt and γ a primitive element of Fq, where l is a prime power and t is
a positive integer. Let g be an element in the algebraic closure of Fq and mg(x) its minimal polynomial
over Fq. Suppose that deg(mg(x)) = m and Fqm = Fq(g). Then g = α−N and N | (qm − 1), where α is a
primitive element of Fqm .

Let C be a cyclic code over Fq with check polynomial

h(x) = mg(x)mgl(x) · · ·mglt−1 (x),

where mglu (x) is the minimal polynomial of gl
u

over Fq for u = 0, 1, . . . , t− 1. It follows from Delsarte’s
Theorem [22] that the code C is an [n, tm] cyclic code over Fq, where n = qm−1

N . It is well known that
g(x) = (xn − 1)/h(x) ∈ Fq[x] and every codeword of C is c(x) = a(x)g(x), where a(x) ∈ Fq[x] and
deg(a(x)) ≤ tm − 1. Note that the roots of h(x) are all the conjugates of g with respect to Fl. Then
h(x) ∈ Fl[x] is the minimal polynomial of g over Fl and g(x) ∈ Fl[x]. For a(x) ∈ Fq[x], deg(a(x)) ≤ tm−1,
by Fq = Fl ⊕ γFl ⊕ · · · ⊕ γt−1Fl we have

a(x) = s0(x) + γs1(x) + · · ·+ γt−1st−1(x),

where su(x) ∈ Fl[x] and deg(su(x)) ≤ tm− 1 for u = 0, 1, . . . , t− 1. Then we get

c(x) = a(x)g(x) = s0(x)g(x) + γs1(x)g(x) + · · ·+ γt−1st−1(x)g(x).

It is easy to see that each su(x)g(x) is a codeword of the irreducible cyclic code over Fl whose check
polynomial is h(x) for u = 0, 1, . . . , t − 1. Let T := Trqm/l denote the trace function from Fqm to Fl.
Then by the trace representation of the irreducible cyclic code, the cyclic code C can be expressed by

C = {c(a0, a1, . . . , at−1) : a0, a1, . . . , at−1 ∈ Fqm},

where

c(a0, a1, . . . , at−1) = (

t−1∑
u=0

γuT(au),

t−1∑
u=0

γuT(auα
N ), . . . ,

t−1∑
u=0

γuT(au(αN )n−1)). (5)

When gcd( q
m−1
l−1 , N) = 1, the zeros of the check polynomial of the cyclic code C are α−Nl

u

for
u = 0, 1, . . . , t−1. In [90], Yang et al. also dealt with such problem and the zeros of the check polynomials
of Yang-Xiong-Ding-Luo cyclic codes are α−(a+ qm−1

t u) for u = 0, 1, . . . , t−1, where t | (qm−1) and a 6≡ 0
(mod qm − 1). Hence this class of cyclic codes with arbitrary number of zeros are different from Yang-
Xiong-Ding-Luo cyclic codes.

Theorem 3.5. [49] Let the notations be as above. If gcd( q
m−1
l−1 , N) = 1, then the corresponding code C

is a t-weight cyclic code and its weight distribution can be explicitly determined.

4. Weight distributions of cyclic codes with Niho exponents

In this section, we always assume that q = p, i.e., s = 1. Now we consider the weight distributions
of cyclic codes over Fp with Niho exponents which are due to [65].

A positive integer d is of Niho exponent if d ≡ pi (mod pl − 1), where m = 2l for some integer l.
Without loss of generality, we can assume that d ≡ 1 (mod pl−1). For two Niho exponents d = s(pl−1)+1
and d′ = s′(pl − 1) + 1, we call them equivalent if d′ ≡ pid (mod pm − 1) for some integer i. Moreover,
d ≡ pld (mod pm − 1) if and only if s + s′ ≡ 1 (mod pl + 1). Hence, s can be restricted in the range
1 ≤ s ≤ pl−1 + 1.
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Let g1 = α−d1 and g2 = α−d2 for two Niho exponents d1, d2. Suppose that g1 and g2 are not
conjugates over Fp. To determine the weight distribution of the corresponding cyclic code C, by (3) we
have to deal with the exponential sums

T (a, b) =
∑
x∈Fr

ψ1(a1x
d1)ψ2(a2x

d2) = ζ
Trpm1/p(a1x

d1 )+Trpm2/p(a2x
d2 )

p

for a1, a2 ∈ Fr. If one of d1, d2 is equal to 1 and p = 2, this class of cyclic codes with few nonzero
weights were studied [18]. Li, Feng, and Ge [52] gave some sufficient conditions for these codes to have
few nonzero weights for both p = 2 and odd p.

Some preliminaries are necessary for determining the exponential sums T (a, b). Let Fpm be a finite
field with m = 2l and r = pm. Denote S = {x ∈ Fr : xx̄ = 1}, where x̄ = xp

l

. Then S is a cyclic group
of order pl + 1 and S = 〈η〉 with η = αp

l−1.

Lemma 4.1. [52, 65] For two Niho exponents d1 = s1(pl − 1) + 1 and d2 = s2(pl − 1) + 1, we have

T (a, b) = (N(a, b− 1))pl,

where N(a, b) is the number of z ∈ S satisfying

azs1 + āz1−s1 + bzs2 + b̄z1−s2 = 0.

From the properties of trace function, we easily obtain the following moment identities which is very
important to determine the value distribution of T (a, b).

Lemma 4.2. 1.
∑

a,b∈Fr
T (a, b) = p2m.

2.
∑

a,b∈Fr
T (a, b)2 = p2mN2(d1, d2), where N2(d1, d2) is the number of solutions of the equations

{
xd1 + yd1 = 0

xd2 + yd2 = 0
, x, y ∈ Fr.

3.
∑

a,b∈Fr
T (a, b)3 = p2mN3(d1, d2), where N3(d1, d2) is the number of solutions of the equations

{
xd1 + yd1 + zd1 = 0

xd2 + yd2 + zd2 = 0
, x, y, z ∈ Fr.

From the above two lemmas we see that determining the weight distributions of cyclic codes with
Niho exponents is equivalent to count the number of solutions of the equation and the system of equations
over finite fields. Hence, if cyclic codes with Niho exponents have many nonzero weights, it is very difficult
to determine their weight distributions. Recently, Li, Feng, and Ge [52] presented the weight distributions
of three classes of cyclic codes with Niho exponents.

Theorem 4.3. [52] Let C be a cyclic code defined by g1 = α−d1 and g2 = α−d2 for two Niho exponents
d1, d2. Then the weight distribution of the p-ary cyclic code C with the following Niho exponents are
known:

1. p = 2, d1 = 2l + 1, and d2 = s2(2l − 1) + 1, where s2 6≡ 1
2 (mod 2l + 1);

2. p = 2, l ≥ 2, d1 = s1(2l−1)+1, and d2 = s2(2l−1)+1, where s1 = 2k−1t− t−1
2 and s2 = 2k−1t+ t+1

2

for integers k (1 ≤ k ≤ l) and t (t is odd and 1 ≤ t ≤ 2l+1) satisfying 2k−1t, 2k+1t 6≡ 0 (mod 2l+1)
and m ≡ −1 (mod k) or gcd(k, 2m) = 1;

3. p is odd, d1 = s1(pl − 1) + 1, and d2 = s2(pl − 1) + 1, where s1 = t+2
4 and s2 == 3t+2

4 for integer t
satisfying t ≡ 2 (mod 4) and t 6≡ 0 (mod pl + 1).
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5. Cyclic codes with few weights

Cyclic codes with few weights are of much interest in coding theory due to their applications in
cryptography and combinatorics. In this section, we begin with some definitions.

A linear code is called to be projective if the minimum weight of its dual code is at least three.
Moreover, a linear code is a N -weight code if the number of non-zero weights of this code is N .

A cyclic code of length n over Fq is irreducible if its check polynomial is irreducible (its polynomial
representation is a minimal ideal). It is said to be non-degenerate if its check polynomial is a primitive
divisor of xn − 1 over Fq (that is, the order of this polynomial is n).

5.1. One-weight cyclic codes

Let Fr be a finite field with r = qm elements. When the length of a cyclic code C is r − 1 and the
check polynomial is the minimal polynomial over Fq of a primitive root of Fr (in fact, C is an irreducible
cyclic code), then the code C is called a simplex code or a subfield code. It is easily proved that C is a
1-weight code with (q − 1)qm−1 as its unique non-zero weight.

In [84], Wolfmann first gave some descriptions of one-weight cyclic codes via Pless identities [66].
Furthermore, Vega and Wolfmann [81] presented a better and more simple characterization of one-weight
irreducible cyclic codes.

Theorem 5.1. [81] Let C be an [n, k] irreducible cyclic code over Fq with n = λ r−1
q−1 , where λ divides

q−1. Let ρ be the order of the check polynomial of C, that is, the common order of its roots. The following
assertions are equivalent:

1. C is a one-weight cyclic code;

2. C contains a codeword of weight λqm−1;

3. ρ
gcd(ρ,q−1) = qm−1

q−1 .

5.2. Two-weight cyclic codes

Two-weight linear codes are closely related to strongly regular graphs, partial difference sets, and
finite projective spaces. There is a survey [12] to investigate their relationships.

For two-weight irreducible cyclic codes, Schmidt and White [73] in 2002 gave a classification by
Gauss sums. They presented some necessary and sufficient numerical conditions on the parameters of an
irreducible cyclic code to have at most two nonzero weights. It is conjectured that an irreducible cyclic
code is a two-weight code if and only if it is a semi-primitive code or one of the eleven sporadic examples.
Moreover, they gave a partial proof of this conjecture via generalized Riemann hypothesis.

Let q = p be a prime, and let u,m be positive integers such that u divides pm−1
p−1 . Let C be an

irreducible cyclic code over Fp defined by g1 = α−u. For a positive integer x, let Sp(x) denote the sum
of the p-digits of x, that is, if

x = l0 + l1p+ · · ·+ lvp
v,

where 0 ≤ li ≤ p− 1 and lv 6= 0, then

Sp(x) = l0 + l1 + · · ·+ lv.

Denote f =: ordu(p) (i.e., the least positive integer such that pf ≡ 1 (mod u)) and

θ = θ(u, p) =:
1

p− 1
min{Sp(

j(pf − 1)

u
) : 1 ≤ j < u}.
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Table 3. Eleven sporadic examples with u ≤ 100000

u p s f θ κ ε

11 3 1 5 2 5 +1
19 5 1 9 4 9 +1
35 3 1 12 5 17 +1
37 7 1 9 4 9 +1
43 11 1 7 3 21 +1
67 17 1 33 16 33 +1
107 3 1 53 25 53 +1
133 5 1 18 8 33 -1
163 41 1 81 40 81 +1
323 3 1 144 70 161 +1
499 5 1 249 123 249 +1

Then we have the following theorem.

Theorem 5.2. [73] Let the notations be as above. If m = fl for some integer l, then C is a two-weight
code if and only if there exists a positive integer κ satisfying

κ | (u− 1),

κplθ ≡ ε (mod u),

κ(u− κ) = (u− 1)pl(f−2θ),

where ε = ±1. Moreover, the two nonzero weights are

w1 = (p− 1)plθ−1(pl(f−θ) − εκ)/u,

w2 = w1 + ε(p− 1)plθ−1.

Conjecture 5.3. [73] An irreducible cyclic code is a two-weight code if and only if it is a semi-primitive
code or one of the eleven sporadic examples in Table 3.

In [85], Wolfmann gave a characterization of projective two-weight linear codes. Furthermore, a
family of projective 2-weight irreducible cyclic codes were presented.

Theorem 5.4. [85] Let C be a non-degenerate irreducible cyclic code of length n over Fq with gcd(n, q) =
1. Let Fqm be the splitting field of xn − 1 over Fq and let nN = qm − 1. If :

1. gcd(n, q − 1) = 1,

2. m = 2fl such that (q − 1)(qf + 1) ≡ 0 (mod N),

3. N 6= q − 1 and d 6= (q − 1)(qfl + 1),

then C is a projective two-weight code.

Similarly, a conjecture on projective two-weight non-degenerate irreducible cyclic codes was proposed
in [85].
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Conjecture 5.5. [85] Any projective two-weight non-degenerate irreducible cyclic code is a code satisfying
conditions (1)-(3) of Theorem 5.4 except for eleven special cases deduced from Table 3.

Wolfmann [84] also characterized projective two-weight cyclic codes and proved that if a linear code
C is a two-weight projective cyclic code of dimension m over Fq, then either:

(1) C is irreducible, or

(2) if q 6= 2, C is the direct sum of two one-weight irreducible cyclic codes of length n = λ q
m−1
q−1 ,

where λ divides q − 1 and λ 6= 1 and direct sum means direct sum as vector spaces.

It is clear that the code C is reducible in case (2) of Wolfmann’s characterization [84]. Two-weight
reducible cyclic codes had also been presented in [39] and [81]. Motivated by these results, in 2008, Vega
[78] presented a family of two-weight reducible cyclic codes which were constructed as the direct sum
of two one-weight cyclic codes and obtained their weight distributions. Moreover, this new family gives
a unified explanation for all these two-weight cyclic codes that were presented in [39] and [81]. To get
Vega’s result, Gauss sum introduced in Section 2 is a necessary tool.

Theorem 5.6. [78] Let p, q, and m be defined as before. Denote ∆ = qm−1
q−1 . Let a1, a2 and v be integers

such that a1q
i 6≡ a2 (mod qm − 1), for all i ≥ 0, v = gcd(a1 − a2, q − 1), and a2 ∈ Z∗∆. For some

integer ` satisfying ` | gcd(a1, a2, q − 1), we set λ = (q−1)`
gcd(a1,a2,q−1) , n = λ∆, µ = q−1

∆ , and ξ = q−1
v . Let

h1(x), h2(x) ∈ Fq[x] be the minimal polynomials of α−a1 and α−a2 , respectively. Suppose that at least
one of the following two conditions holds:

1. p = 2, k = 2, v = 1, and a1 is a unit in the ring Z∆, or

2. for some integer j , with 1 ≤ pj < qm , we have

(1 + ã2(a1 − a2))pj ≡ 1 (mod ∆v),

where ã2 is the inverse of a2 in Z∆. Then the following four assertions are true:

(a) h1(x) and h2(x) are the check polynomials for two different one-weight cyclic codes of length n
and dimension m.

(b) µ | v and λ > v
µ .

(c) If C is the cyclic code with check polynomial h1(x)h2(x), then C is an [n, 2m] two-weight cyclic
code with weight enumerator polynomial

A(x) = 1 +
µ

v
n(q − 1)z(λ− vµ )qm−1

+ (q2m − 1− µ

v
n(q − 1)zλq

m−1

.

(d) C is a projective code if and only if µ = v.

5.3. Three-weight cyclic codes

Cyclic codes with three nonzero weights have been applied in association schemes [11] and secret
sharing schemes [97]. Hence constructing three-weight cyclic codes is a good research problem. Recently,
perfect nonlinear (or planar) and almost perfect nonlinear functions are employed to find three weight
cyclic codes.

In [91], Yuan, Ding, and Carlet used planar functions to get two classes of three-weight cyclic codes.
Feng and Luo [34] presented a unified way to investigate the weight distributions of cyclic codes from
planar functions.

Theorem 5.7. Let m ≥ 3 be odd and let q be an odd prime. Then the corresponding cyclic code C is a
three-weight [qm − 1, 2m] cyclic code in the following cases:
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Table 4. Weight distribution of cyclic code from planar functions.

Weight Frequency
0 1

(q − 1)qm−1 − q
m−1

2
(q−1)(qm−1)(qm−1+q

m−1
2

)

2

(q − 1)qm−1 (qm − 1)(qm−1 + 1)

(q − 1)qm−1 + q
m−1

2
(q−1)(qm−1)(qm−1−q

m−1
2

)

2

Table 5. Weight distribution of cyclic code in [34].

Weight Frequency
0 1

(q − 1)qm−1 − q−1
2
q
m−1

2 (qm − 1)(qm−1 + q
m−1

2 )

(q − 1)qm−1 (qm − 1)(qm − 2qm−1 + 1)

(q − 1)qm−1 + q−1
2
q
m−1

2 (qm − 1)(qm−1 − q
m−1

2 )

1. g1 = α−1 and g2 = α−(ql+1) [91];

2. g1 = α−1 and g2 = α−
ql+1

2 , where q = 3, gcd(m, l) = 1, and h is odd [34, 91].

Moreover, its weight distribution is presented in Table 4.

Luo and Feng [58] extended the second construction in Theorem 5.7.

Theorem 5.8. [58] Let m ≥ 3 be odd and let q be an odd prime. Then the code C over Fq defined by
g1 = α−1 and g2 = α−v is a three-weight [qm − 1, 2m] cyclic code with the weight distribution in Table 5
if v = ql+1

2 , where l is a positive integer satisfying gcd(2m, l) = 1.

We remark that Table 4 and Table 5 are same when p = 3. Additionally, Ding, Gao, and Zhou [25, 96]
presented several classes of three-weight cyclic codes over F3 from almost perfect nonlinear functions.

Theorem 5.9. Let q = 3 and C be the ternary cyclic code defined by g1 = α−1 and g2 = α−v. Then C is
a [qm − 1, 2m] three-weight cyclic code with weight distribution depicted in Table 4 or 5 in the following
cases:

1. m is odd and v = 3m+1−1
4 [25];

2. m is odd and v = 3
m+1

2 − 1 [97];

3. m ≡ 3 (mod 4) and v = 3
m+1

2 −1
2 [97];

4. m ≡ 1 (mod 4) and v = 3
m+1

2 −1
2 + 3m−1

2 [97];

5. m ≡ 3 (mod 4) and v = 3m+1−1
8 [97];

6. m ≡ 1 (mod 4) and v = 3m+1−1
8 + 3m−1

2 [97];

7. m ≡ 3 (mod 4) and v = (3
m+1

4 − 1)(3
m+1

2 + 1) [97];

8. m ≡ 7 (mod 8) and v = (3
m+1

8 − 1)(3
m+1

4 + 1)(3
m+1

2 + 1) [25].
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Table 6. Weight distribution of three classes of cyclic code in [25].

Weight Frequency
0 1

(q − 1)(qm−1 − q
m−1

2 ) 1
2
(qm − 1)(qm−1 + q

m−1
2 )

(q − 1)qm−1 (qm − 1)(qm − qm−1 + 1)

(q − 1)(qm−1 + q
m−1

2 ) 1
2
(qm − 1)(qm−1 − q

m−1
2 )

Table 7. Case: v ≡ 1 + q−1
2

(mod q − 1).

Weight Frequency
0 1

(q − 1)qm−1 − q−1
2
q
m+d−2

2 (qm − 1)(qm−d + q
m−d

2 )

(q − 1)qm−1 (qm − 1)(qm − 2qm−d + 1)

(q − 1)qm−1 + q−1
2
q
m+d−2

2 (qm − 1)(qm−d − q
m−d

2 )

Remark 5.10. For q = 3, xv is an almost perfect nonlinear function over Fqm for the following v:

1. v = 3
m+1

2 − 1;

2. v = 3
m+1

2 −1
2 if m ≡ 3 (mod 4);

3. v = 3
m+1

2 −1
2 + 3m−1

2 if m ≡ 1 (mod 4);

4. v = 3m+1−1
8 if m ≡ 3 (mod 4);

5. v = 3m+1−1
8 + 3m−1

2 if m ≡ 1 (mod 4).

There are another three classes of three-weight cyclic codes whose weight distributions are given in
Table 6 and are different from the one in Table 4 or 5.

Theorem 5.11. [25] Let q = 3 and C be the ternary cyclic code defined by g1 = α−1 and g2 = α−v.
Then C is a [qm − 1, 2m] three-weight cyclic code with weight distribution depicted in Table 6 if

1. v = 3m+1−1
3h+1

+ 3m−1
2 , where m+1

h is even; or

2. v = (3
m+1

8 − 1)(3
m+1

4 + 1)(3
m+1

2 + 1) + 3m−1
2 , where m ≡ 7 (mod 8); or

3. v = (3
m+1

4 − 1)(3
m+1

2 + 1) + 3m−1
2 , where m ≡ 3 (mod 4).

In 2014, Li et al. [50] gave a more general description of three-weight cyclic codes defined by g1 = α−1

and g2 = α−v.

Theorem 5.12. [50] Let m ≥ 3 be odd. Let q be any odd prime. If v is an integer satisfying (ql+1)v ≡ 2
(mod qm− 1) for some positive integer v with gcd(m, l) = d, then C is a [qm− 1, 2m] cyclic code with the
weight distribution in Table 7 if v ≡ 1 + q−1

2 (mod q − 1) and Table 8 when v ≡ 1 (mod q − 1).

There are more classes of three-weight cyclic codes presented in the literature. Three-weight cyclic
codes were also constructed from Niho exponents [52] and two distinct finite fields [48]. It is unnecessary
to list all the results on three-weight cyclic codes and we have to omit some results here. In [35, 96], the
cyclic codes were proved to be three-weight by using quadratic forms.
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Table 8. Case: v ≡ 1 (mod q − 1).

Weight Frequency
0 1

(q − 1)(qm−1 − q
m+d−2

2 ) 1
2
(qm − 1)(qm−d + q

m−d
2 )

(q − 1)qm−1 (qm − 1)(qm − qm−d + 1)

(q − 1)(qm−1 + q
m+d−2

2 ) 1
2
(qm − 1)(qm−d − q

m−d
2 )

Theorem 5.13. Let q be a prime and C a cyclic code over Fq defined by g1 = α−v1 and g2 = α−v2 . Then
C is a [qm − 1, 2m] three-weight cyclic codes in the following cases:

1. v1 = 2 and v2 = pl + 1, where m ≥ 3 is odd and gcd(m, l) = 1 [35];

2. v1 = qm+1
2 and v2 = ql+1

2 , where gcd(m, l) = 1 [96].

6. Generalization to constacyclic codes

The concept of cyclic codes was extended naturally to negacyclic codes,4 and then to constacyclic
codes. Given a nonzero element λ of Fq, a linear code C of length n over Fq is called λ-constacyclic if
(λcn−1, c0, · · · , cn−2) ∈ C for every (c0, c1, · · · , cn−1) ∈ C. Just like cyclic codes, λ-constacyclic codes
of length n over Fq are classified as the ideals 〈g(X)〉 of the quotient ring Fq[X]/〈Xn − λ〉, where the
generator polynomial g(X) is the unique monic polynimial of minimum degree in the code, which is a
divisor of Xn−λ. When λ =1, λ-constacyclic codes are just cyclic codes and when λ = −1, λ-constacyclic
codes are negacyclic codes. In general, the dual of a λ-constacyclic code of length n is a λ−1-constacyclic
code of length n.

There are cases when one code can be mapped onto another by means of a map which preserves the
Hamming distances. Two codes C1, C2 are considered to be of the same quality if there exists a mapping
ϕ : Fnq −→ Fnq with ϕ(C1) = C2 which preserves the Hamming distance, i.e. dH

(
ϕ(a), ϕ(a′)

)
=

dH(a,a′), for any a,a′ ∈ Fnq . Mappings with the latter property are called isometries, and such codes are
naturally called equivalent. There are various ways in which such an equivalence relation can be defined.
For example, if C1, C2 are linear codes, then we can naturally assume furthermore that the isometry ϕ is
a linear map (e.g., [8]).

Since each λ-constacyclic code is an ideal of Fq[X]/〈Xn − λ〉, it is natural to assume that isome-
tries between constacyclic codes preserve the algebraic structures and Hamming distances. It turns out
that if we can classify all the equivalence classes of constacyclic codes, we then only have to study the
represtentative of those equivalence classes. In particular, if we can determine all constacyclic codes that
are equivalent to cyclic codes, then all our results about Hamming weight and weight distributions of
cyclic codes in previous sections hold true for those constacyclic codes. We devote this section to consider
two type of equivalences, and for each type, we give the necessary and sufficient conditions for λ- and
µ-constacyclic codes to be equivalent.

4 As mentioned before, cyclic codes were introduced in 1957. Just about 11 years after that, negacyclic codes
over finite fields Fp were initiated by Berlekamp in 1968 [3, 4], where he showed that these codes are more useful
for correcting errors measured relative to the Lee metric. Berlekamp also designed a decoding algorithm that can
correct errors with Lee weight at most p−1

2
. A couple of years after that, in 1971, Kelsch and Green [45] were

sucessful to provide non-binary negacyclic codes exceeding Berlekamp’s p−1
2

bound. They constructed 2-error-
correcting negacyclic codes of length 3m−1

2
with redundancy 2m over F3, and all negacyclic codes of length pm−1

2

with redundancy mt over Fp.
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First of all, some special results have been obtained in the literature.

Lemma 6.1. [42, Lemma 3.1] or [1, Corollary 2.1] Let n be a positive integer, and λ ∈ F∗q . If µnλ = 1
for some µ ∈ F∗q , then

Fq[X]/〈Xn − λ〉 −→ Fq[X]/〈Xn − 1〉, X 7→ µX

is an Fq-algebra isomorphism which is Hamming distance preserving.

In particular, in case n is odd, for λ = −1, it is obvious that µ = −1 satisfies the hypothesis of the
above lemma. That means that negacyclic codes of odd length are scalar equivalent to cyclic codes of
the same length, which is a well known result that was proven to be true for the more general case when
the alphabet is a finite commutative ring.

Noting this fact, Dinh [29] established a one-to-one correspondence between negacyclic and cyclic
codes, carrying results on negacyclic codes to cyclic codes accordingly.

Proposition 6.2. [29, Proposition 6.1] Let p be an odd prime and q a power of p. Then the map
ξ :

Fq [X]

〈Xps+1〉 7→
Fq [X]

〈Xps−1〉 , given by f(X) 7→ f(−X), is an Fq-algebra isomorphism. In particular, for

A ⊆ Fq [X]

〈Xps+1〉 , B ⊆
Fq [X]

〈Xps−1〉 such that ξ(A) = B, then A is an ideal of Fq [X]

〈Xps+1〉 if and only if B is an ideal

of Fq [X]

〈Xps−1〉 . Equivalently, A is a negacyclic code of length ps over Fq if and only if B is a cyclic code of
length ps over Fq.

Later on, Dinh in [30] showed that all constacyclic codes of length ps over Fq are scalar equivalent
to negacyclic codes.

Proposition 6.3. [30, Proposition 3.1] Let p be an odd prime and q a power of p. Let λ ∈ F∗q . Then there
exists a unique element λ0 in F∗q such that λp

s

0 = −λ−1. Let Φ be the map Φ :
Fq [X]

〈Xps+1〉 7→
Fq [X]

〈Xps−λ〉 , given
by Φ(f(X)) = f(λ0X). Then Φ is an Fq-algebra isomorphism, and it is Hamming distance preserving.

For the more general alphabets of finite rings, [83] showed that cyclic and negacyclic codes over Z4

have the same structure for odd code lengths. Dinh and López-Permouth in [28] generalized that to
obtain that this fact holds true for cyclic and negacyclic codes of odd lengths over any finite chain ring.
Batoul et al. in [2, Proposition 3.4] extended this result to a more general setting.

Generalizing the ideas above, Chen et al. in [19] introduced a concept called “isometry” for the
nonzero elements of Fq to classify constacyclic codes over Fq such that the constacyclic codes belonging
to the same isometry class have the same distance structures and the same algebraic structures.

Definition 6.4. [19, Definition 3.1] Let λ, µ ∈ F∗q . We say that an Fq-algebra isomorphism

ϕ : Fq[X]/〈Xn − µ〉 −→ Fq[X]/〈Xn − λ〉

is an isometry if it preserves the Hamming distances on the algebras, i.e.

dH
(
ϕ(a), ϕ(a′)

)
= dH(a,a′), ∀ a,a′ ∈ Fq[X]/〈Xn − µ〉.

And, if there is an isometry between Fq[X]/〈Xn−λ〉 and Fq[X]/〈Xn−µ〉, then we say that λ is n-isometric
to µ in Fq, written λ ∼=n µ.

Clearly, the n-isometry “∼=n” is an equivalence relation on F∗q , hence F∗q is partitioned into n-isometry
classes. If λ ∼=n µ, then the λ-constacyclic codes of length n are in one to one correspondence with the µ-
constacyclic codes of length n such that the corresponding constacyclic codes have the same dimension and
the same distance distribution, specifically, have the same minimum distance; at that case for convenience,
the λ-constacyclic codes of length n are said to be isometric to the µ-constacyclic codes of length n. So,
it is enough to study the n-isometry classes of constacyclic codes.

We have the following result.
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Theorem 6.5. [19, Theorem 3.2] For any λ, µ ∈ F∗q , the following three statements are equivalent to
each other:

(i) λ ∼=n µ.

(ii) 〈λ, ξn〉 = 〈µ, ξn〉, where 〈λ, ξn〉 denotes the subgroup of F∗q generated by λ and ξn.

(iii) There is a positive integer k < n with gcd(k, n) = 1 and an element a ∈ F∗q such that anλ = µk and
the following map

ϕa : Fq[X]/〈Xn − µk〉 −→ Fq[X]/〈Xn − λ〉, (6)

which maps any element f(X) + 〈Xn − µk〉 of Fq[X]/〈Xn − µk〉 to the element f(aX) + 〈Xn − λ〉
of Fq[X]/〈Xn − λ〉, is an isometry.

In particular, the number of n-isometry classes of F∗q is equal to the number of positive divisors of
gcd(n, q − 1).

Taking µ = 1, we see that λ ∼=n 1 implies that there is an isometry ϕa : Fq[X]/〈Xn − 1〉 →
Fq[X]/〈Xn − λ〉 such that ϕ(X) = aX. Thus for the constacyclic codes n-isometric to cyclic codes, the
following consequence is closely related to [42, Lemma 3.1] or [1, Corollary 2.1].

Corollary 6.6. [19, Corollary 3.4] Let n be a positive integer, and λ ∈ F∗q . The λ-constacyclic codes
of length n are isometric to the cyclic codes of length n if and only if anλ = 1 for an element a ∈ F∗q ;
further, in that case the map

ϕa : Fq[X]/〈Xn − 1〉 −→ Fq[X]/〈Xn − λ〉, (7)

which maps f(X) to f(aX), is an isometry, and

Xn − λ = λ ·Mr1(aX)p
s

Mr2(aX)p
s

· · ·Mrρ(aX)p
s

(8)

is an irreducible factorization of Xn − λ in Fq[X], where n = n′ps with s ≥ 0 and p 6 |n′, Mri(X) is the
irreducible factor of Xn′ − 1 over Fq corresponding to the q-cyclotomic coset containing ri. In particular,
any λ-constacyclic code C has a generator polynomial as follows:

ρ∏
i=1

Mηri (aX)ei , 0 ≤ ei ≤ ps, for any i = 1, · · · , ρ. (9)

As an immediate application of Corollary 6.6, the next result can be regarded as a generalization of
Proposition 6.3.

Corollary 6.7. (cf. [19, Corollary 3.5]) If n is a positive integer coprime to q−1, then there is only one
n-isometry class in F∗q ; in particular, for any λ ∈ F∗q the λ-constacyclic codes of length n are isometric
to the cyclic codes of length n, i.e. anλ = 1 for an a ∈ F∗q and all the (7), (8) and (9) hold.

Although λ ∼=n µ means there exists an isometry φ between the rings Fq[X]/〈Xn − λ〉 and
Fq[X]/〈Xn − µ〉, it is not easy to connect the generator polynomial of the λ-constacyclic code C with
the generator polynomial of φ(C), and as a result, it is not easy to describe the relationship between the
duals C⊥ and φ(C)⊥.

To overcome this problem, Chen, Dinh and Liu in [20] considered a more specified relationship
than the isometry “ ∼=n ”, that enabled us to obtain a much more explicit description of the generator
polynomials of all constacyclic codes. This detailed description also allows us to establish the generator
polynomials of the dual codes. A new equivalence relationship “ ∼n ” is introduced on the nonzero
elements of Fq to classify constacyclic codes of length n over Fq. Some necessary and sufficient conditions
for any two nonzero elements of Fq to be equivalent to each other are established. It is shown that,
if λ ∼n µ then there exists a very explicit Fq-algebra isomorphism ϕ between Fq[X]/〈Xn − λ〉 and
Fq[X]/〈Xn − µ〉. Furthermore, the generator polynomial of the λ-constacyclic code C and the generator
polynomial of the µ-constacyclic code ϕ(C) are connected in a very simple way.
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Definition 6.8. [20, Definition 3.1] Let n be a positive integer. For any elements λ, µ of F∗q we say that
λ and µ are n-equivalent in F∗q and denote by λ ∼n µ if the polynomial λXn−µ has a root in Fq. In this
case, we say λ-constacyclic codes are n-equivalent to µ-constacyclic codes.

It is routine to check that ∼n is an equivalence relationship on F∗q . The next result shows that λ and
µ are n-equivalent if and only if they are belonging to the same coset of 〈ξn〉 in 〈ξ〉. In other words, the
cosets of 〈ξn〉 in 〈ξ〉 give all the n-equivalence classes, thus each n-equivalence class contains the same
number of elements.

Theorem 6.9. [20, Theorem 3.2] For any λ, µ ∈ F∗q , the following four statements are equivalent:

(i) There exists an a ∈ F∗q such that

ψ : Fq[X]/〈Xn − µ〉 → Fq[X]/〈Xn − λ〉

f(X) 7→ f(aX),

is an Fq-algebra isomorphism.

(ii) λ and µ are n-equivalent in F∗q .

(iii) λ−1µ ∈ 〈ξn〉.

(iv) (λ−1µ)d = 1, where d = q−1
gcd(n,q−1) .

In particular, the number of the n-equivalence classes in F∗q is gcd(n, q − 1).

Comparing with the equivalence relation “ ∼=n ” mentioned previously, one can easily find that λ ∼n µ
implies λ ∼=n µ. However, the converse of this statement is not true in general. In fact, Theorem 6.5
implies that if λ ∼=n µ then there exists a positive integer k coprime to n such that λ ∼n µk. Therefore,
every isometry class is equal to some unions of n-equivalence classes. We give the following illustrative
example.

Example 6.10. Take q = 24 and n = 6 in Theorem 6.9. Clearly, gcd(6, 24 − 1) = 3 and

F∗24 = 〈ξ〉
⋃
ξ〈ξ〉

⋃
ξ2〈ξ〉.

This implies that ξ and ξ2 are not 6-equivalent. However, it is readily seen that there are just two
6-isometry classes and ξ ∼=n ξ

2.

7. Concluding remarks

In this paper, we investigated the weight distributions of cyclic codes determined by exponential
sums. It is clear that Gauss periods, Gauss sums, and quadratic forms are important tools. The weight
distributions of cyclic codes have been studied for many years and are known in some cases. However, it
remains open for most cyclic codes. Thus there are many challenging problems to be solved.

Acknowledgment: The authors are very grateful to the reviewers and the editor for their valuable
comments and suggestions that improved the quality of this paper.
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