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Abstract: Let Fq be a finite field of characteristic p having q elements, where q = pk and p ≥ 5. Let SL(2,Z3)
be the special linear group of 2 × 2 matrices with determinant 1 over Z3. In this note we establish
the structure of the unit group of FqSL(2,Z3).

2010 MSC: 16U60, 20C05

Keywords: Group algebra, Unit group, Finite field

1. Introduction

Let FG be a group algebra of a finite group G over a field F and U(FG) be the group of units in
FG. It is a classical problem to study units and their properties in group ring theory. The case, when G
is a finite abelian group, the structure of FG is studied by Perlis and Walker in [14]. In 2006, T. Hurley
introduced a correspondence between group ring and certain ring of matrices (see [6]). As an application
of units of a group ring, T. Hurley gave a method to construct convolutional codes from units in group
ring (see [7]).

A lot of work has been done for finding the algebraic structure of the unit group U(FG) of a group
algebra FG, when G is a finite non-abelian group. Here we are providing some literature survey for the
same. For dihedral groups, the structure of the unit group U(FG) over a finite field F is discussed in
[1, 4, 10, 12]. J. Gildea et.al. (see [3]) and R. K. Sharma et.al. (see [15]) have given the structure of the
unit group U(FG), where G is alternating group A4. Unit group of algebra of circulant matrix has been
discussed in [11, 17]. The unit group of group algebras of some non-abelian groups with small orders are
established in [16, 18, 19]).

In this article, we are interested in studying the structure of the unit group of FqSL(2,Z3) over a
finite field of characteristic greater than 3.
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2. Preliminaries

The following results provide useful information about the decomposition of A/J(A), where A = FG,
J(A) be its Jacobson radical and F being a field of characteristic p. For basic definitions and results, we
refer to [13]. We briefly introduce some definitions and notations those will be needed subsequently.

Definition 2.1. An element g ∈ G is said to be p-regular if p - o(g). Let s be the l.c.m. of the orders of
the p-regular elements of G, ζ be a primitive s-th root of unity over F . Then TG,F be the multiplicative
group consisting of those integers t, taken modulo s, for which ζ 7→ ζt defines an automorphism of F (ζ)
over F . That is, TG,F is Gal(F (ζ)/F ) seen as a subgroup of U(Zs).

Note that if u is a power of a prime such that (u, s) = 1 and c = ords (u) is the multiplicative order
of u modulo s, then

TG,Fu
= {1, u, . . . , uc−1} mod s

and Fu(ζ) ∼= Fuc follow using [8, Theorem 2.21].

Definition 2.2. If g ∈ G is a p-regular element, then the sum of all conjugates of g ∈ G is denoted by
γg and the cyclotomic F -class of g is defined to be the set

SF (γg) = {γgt | t ∈ TG,F }.

Proposition 2.3. [2, Theorem 1.2] The number of simple components of FG/J(FG) is equal to the
number of cyclotomic F -classes in G.

Theorem 2.4. [2, Theorem 1.3] Suppose that Gal(F (ζ)/F ) is cyclic. Let w be the number of cyclotomic
F -classes in G. If K1,K2, . . . ,Kw are the simple components of Z(FG/J(FG)) and S1, S2, . . . , Sw are
the cyclotomic F -classes of G, then with a suitable re-ordering of indices,

| Si |= [Ki : F ].

Lemma 2.5. [9, Observation 2.2.1, p.22] Let B1,B2 be two finite dimensional F -algebras such that B2

is semisimple. If f : B1 → B2 is an onto homomorphism of F -algebras, then there exists a semisimple
F -algebra ` such that

B1/J(B1) ∼= `⊕B2.

Throughout this article, G = SL(2,Z3). Fq is a field of characteristic p, where q = pk and k is a
positive integer. The conjugacy class of g ∈ G is denoted by [g].

3. Main result

We shall use the presentation of G given in [5],

〈a, b | a3, b4, (ab)3 = b2, (a2b)6〉

where a =

[
1 0
1 1

]
and b =

[
0 1
−1 0

]
.

We can see that G has 7 conjugacy classes as follows:
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representative elements in the class order of element

[a] a, (ba)4, (ab)4, b−1ab 3

[a−1] a−1, (ba)2, (ab)2, aba 3

[b] b, b−1, a2ba, aba2, ab−1a2, a2b−1a 4

[b2] b2 2

[ab] ab, ba, a2ba2, ab2 6

[(ab)−1] (ab)−1, a2b−1, ab−1a, a2b2 6

We have (p, |G|) = 1 and so J(FpkG) = 0. Further, we discuss the decomposition of FpkG.

Theorem 3.1. Let Fq be a finite field of characteristic p, where p ≥ 5. Then the Wedderburn decompo-
sition of FqG is given by

condition on k FqG

k is even F3
q ⊕M(2,Fq)

3 ⊕M(3,Fq)

k is odd

p ≡ 1 mod 3 and p ≡ ±1mod 4
F3
q ⊕M(2,Fq)

3 ⊕M(3,Fq)

k is odd

p ≡ −1 mod 3 and p ≡ ±1mod 4
Fq ⊕ Fq2 ⊕M(2,Fq)⊕M(2,Fq2)⊕M(3,Fq)

Proof. Since FqG is semisimple, so it has the Wedderburn decomposition which is given by

FqG ∼= ⊕r
i=1M(ni,Fi),

where for each i, ni ≥ 1and Fi is a finite extension of Fq. By using Lemma 2.5, we have

FqG ∼= Fq ⊕r−1
i=1 M(ni,Fi). (1)

Further, we find ni’s and Fi’s. Since | G |= 24, hence any element g ∈ G is a p- regular element. For
finding cyclotomic Fq - classes of G, first we assume that k is even. We have

pk ≡ 1 mod 4 and pk ≡ 1 mod 3.

Then by Chinese remainder theorem

pk ≡ 1 mod 12.

By using above observation, we have

SFq
(γg) = {γg} and | SFq

(γg) |= 1.

Therefore by using Equation (1), Proposition 2.3 and Theorem 2.4, we have

FqG ∼= Fq ⊕6
i=1 M(ni,Fq)
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for some ni ≥ 1. As dimension of FqG is 24, we get

6∑
i=1

n2i = 23.

Using above equality, 1 ≤ ni ≤ 3. Clearly any ni = nj = 3 for 1 ≤ i 6= j ≤ 3 not possible. So the only
possible choice for ni’s is

n1 = n2 = 1, n3 = n4 = n5 = 2 and n6 = 3.

Therefore the decomposition FqG is given by

FqG ∼= F3
q ⊕M(2,Fq)

3 ⊕M(3,Fq).

Now we consider the case when k is odd. We shall discuss this case into two parts

1. p ≡ 1 mod 3 and p ≡ ±1 mod 4

2. p ≡ −1 mod 3 and p ≡ ±1 mod 4

Case 1. Suppose k is odd with p ≡ 1 mod 3 and p ≡ ±1 mod 4.

Observe that

pk ≡ p mod 4 and pk ≡ p mod 3.

Then by Chinese remainder theorem

pk ≡ p mod 12.

Since [b] = [b−1]. We have

SFq
(γg) = {γg}.

Hence ni’s and Fi’s are same as above. So the decomposition of FqG is given by

FqG ∼= F3
q ⊕M(2,Fq)

3 ⊕M(3,Fq).

Case 2. Suppose k is odd with p ≡ −1 mod 3 and p ≡ ±1 mod 4. Using the observation in case 1, we
have

pk ≡ p mod 12.

SFq(γb) = {γb}, SFq(γb2) = {γb2},

SFq(γa) = {γa, γa−1} and SFq(γab) = {γab, γ(ab)−1}.

Therefore by using Equation (1), Proposition 2.3 and Theorem 2.4, we have

FqG ∼= Fq ⊕M(n1,Fq)⊕M(n2,Fq)⊕M(n3,Fq2)⊕M(n4,Fq2)

for some ni ≥ 1.
As dimension of FqG is 24, we get

n21 + n22 + 2n23 + 2n24 = 23

and hence, 1 ≤ ni ≤ 3, ∀1 ≤ i ≤ 4. Clearly n3 and n4 can not be equal to 3. So the only possible choice
for ni’s is n1 = 2, n2 = 3, n3 = 1, n4 = 2. Therefore the decomposition of FqG is given by

FqG ∼= Fq ⊕ Fq2 ⊕M(2,Fq)⊕M(2,Fq2)⊕M(3,Fq).
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Corollary 3.2. Let q = pk,where p ≥ 5 is a prime. Then the structure of U(FqG) is given by

condition on k U(FqG)

k is even C3q−1 ⊕GL(2,Fq)
3 ⊕GL(3,Fq)

k is odd

p ≡ 1 mod 3 and p ≡ ±1mod 4
C3q−1 ⊕GL(2,Fq)

3 ⊕GL(3,Fq)

k is odd

p ≡ −1 mod 3,±1mod 4
Cq−1 ⊕ Cq2−1 ⊕GL(2,Fq)⊕GL(2,Fq2)⊕GL(3,Fq)

Proof. It follows by the fact that, if R and S are two rings then

U(R⊕ S) = U(R)⊕ U(S).
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