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Abstract 

 

Many methods have been developed by scientists to find solutions for nonlinear problems.  

In this paper, the general structure of the modified trial equation method (MTEM) is 

introduced, and MTEM is used to find some exact solutions of (2+1)-dimensional Broer-

Kaup-Kupershmidt (BKK), Kolmogorov-Petrovskii-Piskunov (KPP) equations.  Firstly, 

an algebraic equation system is obtained by reducing the nonlinear partial differential 

equation (NLPDE) to the ordinary differential equation under the travelling wave 

transformation.  Travelling wave solutions are found by solving the obtained algebraic 

equation systems. By using Mathematica 9 program, three and two dimensional graphs 

for suitable parameters were plotted to analyze the physical behavior of wave solutions.  

MTEM is of great importance in finding exact solutions of some partial differential 

equations. 
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(2+1)-boyutlu Broer-Kaup-Kupershmidt denklemi ve 

Kolmogorov-Petrovskii-Piskunov denklemine modifiye edilmiş 

deneme denklem metodu 
 

 

Öz 

 

Lineer olmayan problemlerin çözümünü bulmak için bilim insanları tarafından birçok 

yöntem geliştirilmiştir.  Bu yazıda, modifiye edilmiş deneme denklem metodunun 

(MEDDM) genel yapısı tanıtılmış ve (2+1)-boyutlu Broer-Kaup-Kupershmidt (BKK), 

Kolmogorov-Petrovskii-Piskunov (KPP) denklemlerinin bazı tam çözümlerini bulmak 
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için MEDDM kullanılmıştır.  İlk olarak, hareketli dalga dönüşümü altında lineer olmayan 

kısmi diferansiyel denklemin (NLPDE) adi diferansiyel denkleme indirgenmesiyle bir 

cebirsel denklem sistemi elde edilmiştir.  Elde edilen cebirsel denklem sistemleri 

çözülerek hareketli dalga çözümleri bulunur.  Mathematica 9 programı kullanılarak, 

dalga çözümlerinin fiziksel davranışını analiz etmek için uygun parametreler için üç ve 

iki boyutlu grafikler çizilmiştir. MEDDM, bazı kısmi diferansiyel denklemlerin tam 

çözümlerini bulmada büyük önem taşımaktadır.   

 

Anahtar Kelimeler: (2+1)-boyutlu BKK denklemi, KPP denklemi, hareketli dalga 

çözümü. 

 
 

1.Introduction 

 

Partial differential equations are mathematical models of physical events.  Finding 

algebraic calculations of complex nonlinear equations has an important place in soliton 

theory.  Many effective methods have been developed to solve these physical problems 

[1-5].  Studies on (2+1)-dimensional BKK equation have been carried out in many 

application areas of nonlinear optics, mathematics and physics.  In recent years, the many 

scientists have obtained the solutions of the Broer-Kaup-Kupershmidt equation by 

applying different methods.  Some of those, Song et al. obtained several new solutions to 

the (2+1)-dimensional BKK Equation by using the bifurcation method and the qualitative 

theory of dynamic systems [6].  Gurefe et al.  obtained new solutions by using an irrational 

trial equation method method to solve the (2+1)-dimensional BKK Equations [7].  They 

have obtained the solutions by applying the nonlinear (2+1)-dimensional BKK Equation 

to different methods.   

 

Recently, many scientists have used various methods to obtain new solutions of 

Kolmogorov-Petrovskii-Piskunov (KPP) equation.  Rouhparvar has obtained new exact 

solutions by using the integral method to the (KPP) equation [8].  Feng has found 

hyperbolic, trigonometric and rational wave solutions using the (G'/G)-expansion method 

[9].  Since finding the solution of nonlinear problems and obtaining algebraic calculations 

is complex, many methods have been developed not only with a few methods.       

 

Some of those are Hirota's Bilinear method [11, 12], the Jacobi elliptic function method 

[13], the Tanh Method [14-16], Simple Equation Method [17], Generalized Kudryashov 

method [18-21], Exp-Function method [22-23], Homogenous Balance Method [24-26], 

Modified Trial Equation Method [27].  They are effective methods for finding wave 

solutions of nonlinear problems.  In this study, we have applied MTEM to obtain the exact 

solution of (2+1)-dimensional BKK Equation and KPP Equation.  By reducing NLPDE 

to nonlinear ordinary differential equation (NLODE), an algebraic equation system was 

obtained by Mathematica 9.  By solving these system, travelling wave solutions have 

been found.  The purpose of this method is to find the traveling wave solutions of 

NLPDEs.  In the light of these data, it is a suitable method to find the solutions of 

NLPDEs.   

 

 

 

 

 



BAUN Fen Bil. Enst. Dergisi, 23(2), 673-684, (2021) 

675 

We consider the following (2+1)-dimensional BKK equation [6-7];  

                         

2( ) 2 0,ty xxy x y xxm m mm s− + + =   

                                                                                                                                          (1) 

2( ) 0.t xx xs s ms+ + =                                                                                    

 

and  the following KPP equation [8-10];              

           
2 3 0.t xxu u u vu u − + + + =                                                                                         (2) 

 

Here, in  , v  and   are real valued constants.   

 

 

2.The Modified Trial Equation Method 

 

Step 1: Consider the NLPDE, 

 

( ), , , ,... 0,=t x xxP u u u u                                                                                                    (3) 

 

wave transform as,  

 

( ) ( ), ( )u x t u u kx wt= = − ,                                                                                          (4) 

 

where w  is a constant.  Applying Eq.(4) to Eq.(3), we can observe the following nonlinear 

ordinary differential equation (NLODE).  

 

( ), , , , , 0,O t x u u u  =                                                                                                   (5) 

 

where .
du

u
d

 =

 
 

Step 2. The first order trial equation, 

 

( )
( )

2

0 0 1 2

2

0 1 2

0

,

n
i

ni

i n

l l
j l

j

j

a u
M u a a u a u a u

u
N u b b u b u b u

b u

=

=

+ + + +
 = = =

+ + + +




                                                       (6) 

and  

 

( ) ( ) ( ) ( ) ( )

( )3
,

M u M u N u M u N u
u

N u

 −   =                                                                     (7) 
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where ( )M u
 
and ( )N u are polynomial of u .  Substituting Eq.(6) and Eq.(7) into Eq.(5), 

we get 

 

( ) 0 1 0.r

ru u u   = + + + =                                                                                    (8) 

 

Step 3. Equating the coefficients of ( )u  to zero, we can obtain 

 

0, 0, , .p p r = =                                                                                                      (9) 

 

Solving the system (9), we can find the values of  0 , , na a  and 0 , , lb b .
 

 

Step 4. Consider Eq. (6), the following integral form can be written 

 

( )
( )0 .

N u
du

M u
 − =                                                                                                       (10) 

 

Using the complete discrimination system with the roots of ( )M u , we obtain exact 

solutions of Eq. (3). 

 

 

3.Application to (2+1)-dimensional BKK equation 

 

Getting transformation as 

 

( ), ( ), ,= = = + +m s kx qy wt                                                                    (11) 

 

Eq.(1) converts to 

 

( )2 22 2 0qw k q kq k      − + + = , 

                                                                                                                                       (12) 

( )2 2 0w k k    + + = .                                                          

  

Then, it becomes the following NLODE,   

             
4 2 3 2 2

12 2 0qk qk qwk qw Z   − − − + = ,                                                              (13) 

 

where 
1Z  is constant. 

 

The from the balancing principle in Eq. (13), n  and l  are determined by as 2n l= + . 
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Case 1: 

 

For 0l =  and 2n =  then  

 
2

0 1 2

0

,
a a u a u

u
b

+ +
 =                                                                                                 (14) 

 

( )( )2

0 1 2 1 2

2

0

2
,

a a u a u a a u
u

b

+ + +
 =                                                                            (15) 

 

where 2 0a  and 
0 0b  .  Then, an algebraic equation system is obtained.  By solving 

these system, the following solutions have been found: 

 

Case 1.1: 

 
2 5

1 1 1 1 1
3 33 3

2 0 02

1 1

255 5
3 , , ,

5 2 4 2

kZ a a Z ak q k q
w a a b

q Z k q Z
= − = − = − =    .                      (16) 

 

When we substitute Eq.(16) into Eq.(10), we get the following trigonometric function 

solution, 

 

2 2 2
4 21 1 1 1 36 63 3

02 4 2 2 2

27 27
( , , ) tan 3 10

5 200 200 5

Z Z k Z Zq
u x y t x y t k q

k q k q q k k q


  
= −  + −   

   

 .            (17) 

 

Case 2: 

 

For 1l =   and 3n =  then   

 
2 3

0 1 2 3

0 1

,
a a u a u a u

u
b b u

+ + +
 =

+
                                                                                               (18) 

 

and    

 

( ) ( )( ) ( )( )
( )

2 3 2 2 3

0 1 2 3 0 1 1 2 3 1 0 1 2 3

3

0 1

2 3
,

a a u a u a u b bu a a u a u b a a u a u a u
u

b bu

+ + + + + + − + + +
 =

+
        (19) 

 

Where 3 0a .  Then, an algebraic equation system is obtained.  By solving these system, 

the following solutions have been found: 

 

 

 

 

 



TULUCE DEMIRAY S., DUMAN S.  

678 

Case 2.1: 

  

( ) ( ) ( )5 2 3 7 3

3 1 3 1 3 1

1 2 02 4 2 3 6

0 0 0

159 82 6 18 11 6 394 13 6
, , ,

200 20 800

i a Z i a Z i a Z
a a a

q b qb q b

− − − − +
= = =

                 

 

                                                                                                                                       (20) 

( ) ( ) ( )3 3

0 0 0

1 2 2

3 1 3 1 3

2 14 3 6 2 14 3 6 3 2 6
, ,

25 25 5

i qb i qb i i b
b k w

a Z a Z a

+ − − +
= = = , 

 

Substituting Eq.(20) into Eq.(10), we get the following trigonometric function solution, 

( ) 3
2

0 3 3 73 1
1 3 1 02 5 3

0 3 1 3

28 6 67923 2046 6 6 3 6
( , , ) tan 800 [1]

200 25 5

i qba Z i
u x y t x qy ta Z q b C

q b a Z a


  +− + −  = + + +
  

  

, (21) 

 

where ( )
2

3 1

2

0

2 4 6 6(23 4 6) .
20

a Z
i

qb
 = − + − +

 
 

 

4.Application to KPP Equation

   

Getting transformation as 

                       

( ) ( ), ( )u x t u u kx wt= = −  ,                                                                                       (22) 

 

Eq.(2) converts to 

 
2 2 3 0.wu k u u vu u   − − + + + =                                                                            (23) 

 

The from the balancing principle in Eq.(23), n  and l  are determined by as 2n l= + . 

 

Case 1: 

 

For 0l =  and 2n =  then  

 
2

0 1 2

0

,
a a u a u

u
b

+ +
 =                                                                                                    (24) 

 

( )( )2

0 1 2 1 2

2

0

2
,

a a u a u a a u
u

b

+ + +
 =                                                                             (25) 

 

where 2 0a   and  0 0b  .  Then, an algebraic equation system is obtained.  By solving 

these system, the following solutions have been found: 
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Case 1.1: 

 

1 1 1
0 2 0

2
, , ,

2

a a kakv
a w a b

v v v

  


= = − = =   .                                                (26) 

 

when we substitute Eq. (26) into Eq. (10), we the following trigonometric function 

solution, 

 

( ) ( )0 1 1 0 1

0

1 0

4 4
( , ) tan [1] .

2 2 2 2

 − + − +  
 = − − − + 
   

v a a a a av v
u x t kx t vb C

a b v

 

  
                  

(27) 

 

Case 1.2:  

  

( ) ( ) ( )2 2 2 4 2 2 4 2 2 2 4 2 2 4

1 1 1 1

0 2 02 2

1

4 2 4
0, ,

2

k v a k v v a k v a k v v a
a a b

k v a

  

 

+ − − + −
= = =  .        (28)

 
 

when we substitute Eq. (28) into Eq. (10), we get the following exp-function solution, 

 

( )

2
21

2 3
2 2 2 2 1

1

2
( , )

exp 2 4 [1]
4

2 4

u x t

a
kx t v v C

k a
k v v v a






 
 


 

=
  

−  
  + − + + −
  

− + −   
  

, (29) 

 

where  ( ) ( )( )2 2 2 4 2 2 4

1 16 4 .k v a k v v a  = − + −
 

 

Case 2: 

 

For 1l =   and 3n =  then    

 
2 3

0 1 2 3

0 1

,
a a u a u a u

u
b b u

+ + +
 =

+
                                                                                               (30) 

and    

 

( ) ( )( ) ( )( )
( )

2 3 2 2 3

0 1 2 3 0 1 1 2 3 1 0 1 2 3

3

0 1

2 3
,

a a u a u a u b bu a a u a u b a a u a u a u
u

b bu

+ + + + + + − + + +
 =

+
        (31) 

 

where 3 0a .  Then, an algebraic equation system is obtained. By solving these system, 

the following solutions have been found: 
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Case 2.1: 

 

( )0 0 1 0 01
0 0 1 0 2

0 0 00

, , , ,
22

a b vb b v bbv
a a a a a k w

b b aa

  

  

+ 
= = + = = − = − 

 
 .                          (32) 

 

Substituting Eq. (32) into Eq. (10), we get the following trigonometric function solution,  
 

2 2

0 0

00

4 4
( , ) tan 2

2 2 24 2

v v v b v b
u x t x t

ak a

    

  

  − + − + − +
= − + −   

   
 .                    (33) 

 

 
 

Figure 1. The 3D and 2D surfaces of real values of Eq.(21) for 3 0.2a = , 1.3q = , 0 6b = ,

1 1Z = , 15 15x−   , 10 10t−    and 0.01y = , 0.03t =  for 2D. 

 

   
 

Figure 2. The 3D and 2D surfaces of imaginary values of Eq.(21) for 3 3a = , 0 1b = , 7q = ,

1 1Z = , 60 60x−   , 30 30t−   , and 0.05y = , 0.03t =  for 2D. 
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Figure 3. The 3D and 2D surfaces of real values of Eq.(29) for 3v = , 10 = − , 5 = ,

1 7a = − , 0 10b = , 1k = , 90 90x−   , 50 50t−   , and 0.08t =  for 2D. 

 

  
 

Figure 4. The 3D and 2D surfaces of imaginary values of Eq.(29) for 1 3a = − , 0 7b = ,

2v = , 5 = − 2 = , 1k = , 80 80x−   , 20 20t−   , and 0.08t =  for 2D. 

 

 
 

Figure 5. The 3D and 2D surfaces of real values of Eq.(33) for 0 10a = − , 0 5b = − , 3v = ,

8 = , 2 = , 1k = , 80 80x−   , 40 40t−   , and 0.02t =  for 2D. 
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Figure 6. The 3D and 2D surfaces of imaginary values of Eq.(33) for 0 7a = , 0 2b = − ,

5v = − , 3 = − , 9 = , 3k =  , 30 30x−    , 45 45t−   , and 0.06t =  for 2D. 

 

 

In Figs. 1-2, we plot 3D and 2D surfaces of real and imaginary values of 1( , , )u x y t   in 

Eq.(21), which explain the vitality of solutions with appropriate parameters.  Also, in 

Figs. 3-4, we draw 3D and 2D surfaces of real and imaginary values of ( , )u x t in Eq.(29), 

which demonstrate the dynamics of solutions with proper parameters.  Finally, in Figs. 5-

6, we plot 3D and 2D surfaces of real and imaginary values of ( , )u x t in Eq.(33), which 

show the vitality of solutions with appropriate parameters.  

 

 

Remark  

 

In this study, travelling wave solutions of Eq. (1) and Eq. (2) are obtained by using 

MTEM.  Also, these solutions were checked in Mathematica 9. The solutions of Eq. (1) 

are new.  Our (33) solution of Eq. (2) is similar to the 
5u , 

6u , solutions given by 

Rouhparvar.  According to our research, other solutions of Eq. (2) are not given before 

and are new. 

 

 

5. Conclusions 

 

In this article, travelling wave solutions of (2+1)-dimensional BKK equation and KPP 

equation are obtained by using MTEM.  Exp-function, trigonometric wave solutions were 

found by applying this method to the submitted problems.  Three and two-dimensional 

graphs were drawn for appropriate parameters by using Mathematica 9.  Physical 

behaviors were examined by demonstrating three and two dimensional graphics for some 

values of the parameters.  It can be said that MTEM is an effective for finding exact 

solutions of NLPDEs and it is an important method for obtaining travelling wave 

solutions.  Also, this is a very significiant method for solving nonlinear problems. 
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