
 

Journal of Energy Systems 

 

2021, 5(1) 

 

2602-2052 DOI: 10.30521/jes.854669 Research Article 

 

46 

 

Modeling of doubly fed induction generator based wind energy 

conversion system and speed controller 

 
Endalew Ayenew Haile  

Adama Science and Technology University, School of Electrical Engineering and Computing, Electrical 

Power and Control Engineering, Adama, Ethiopia, endalewayenew@gmail.com 

Getachew Biru Worku  
Adama Science and Technology University, School of Electrical Engineering and Computing, Electrical 

Power and Control Engineering, Adama, Ethiopia, gbiru@yahoo.co.uk 

Asrat Mulatu Beyene  

Addis Ababa Science and Technology University, Center of Excellence for Sustainable Energy, Addis Ababa, 

Ethiopia, asrat.mulatu@aastu.edu.et 

Milkias Berhanu Tuka  

Adama Science and Technology University, School of Electrical Engineering and Computing, Electrical 

Power and Control Engineering, Adama, Ethiopia, milkiasber@gmail.com 
 

Submitted: 09.01.2021 

 

Accepted: 07.03.2021 

Published: 31.03.2021 
 

Abstract: In this paper, modeling of doubly fed induction generator (DFIG) based wind energy conversion 

system (WECS) and generator speed controller are presented. The System Identification Toolbox 

of MatLab is used to develop the linear model of the WECS by considering the wind speed as 

input and speed of the generator as output. Two models, namely Auto Regressive with eXogenous 

Input (ARX) and Auto-Regressive Moving Average with eXogenous Input (ARMAX), are 

estimated. We used the ARX221 model structure with the best fit of 84.31%, Final Prediction 

Error (FPE) of 0.0433 and Mean Square Error (MSE) of 0.0432. The Ziegler-Nichols (Z-N) 

method and the fuzzy logic technique are employed in the proportional integral derivative (PID) 

controller design to control the speed of the generator. The classical Z-N PID used for the 

responses of the system is observed to be insufficient for both uniform and variable inputs, hence, 

a better response has been obtained by applying the fuzzy logic-based PID controller. The present 

study proves that the fuzzy logic based control enhances the speed regulation of generator in the 

WECS by overcoming the effect of varying wind speed. 
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1. INTRODUCTION 

Wind energy is an abundantly available renewable energy source. Comprehensive knowledge about the 

wind features is required for an efficient energy generation. The conversion of energy from wind is 

stochastic due to variations in wind speed. The mathematical model of Wind Energy Conversion System 

(WECS) is highly affected by the wind conditions. This begs for an appropriate model estimation 

technique to characterize the phenomenon of WECSs. A double-fed induction generator (DFIG) based 

an upward oriented horizontal axis wind turbine is dominantly applicable to convert the mechanical 

energy to the electrical one in WECSs. By controlling the speed of DFIGs through controlling the pitch 

angle of wind turbine blades, it is possible to regulate the output power of the wind turbine generator to 

a rated value even for higher wind speeds.  

Naturally, the mathematical model of WECSs is nonlinear. Higher order nonlinear and linearized 

mathematical models of WECSs was discussed in Ref. [1]. From the literature, nonlinear Auto-

Regressive Moving Average with eXogenous input (NARMAX) structure based mathematical model 

of WECSs was presented in [2] and [3]. In [4] applying interpolation of NARMAX was expressed as 

ARMAX structure. The ARMAX model shown in [5] was simpler than the NARMAX model depicted 

in [2] and [3] for the practical implementations. These models were well-validated by using best-fit 

percentage, final prediction error (FPE), and mean square error (MSE) values as the evaluation criteria 

[2,3,4,5,6,7]. The estimated models should have high fit percent, very small FPE and MSE. ARX model 

structure for the temperature process plant got model validation criteria of best fit of 99.19%, FPE of 

1.002, and MSE of 0.05 as discussed in Ref. [8]. However, the model quality was not acceptable for the 

practical implementations due to its large FPE value. In MatLab documentations to resolve fit value 

difference in model identification and retire initial ARMAX model, simulation fits of their models were 

found as 70.56% to 76.44 % and 72.4 % to 81.25 %, respectively. Indeed, they were considered as the 

indicators of model quality [9]. The linear models used in the heating system were ARX, ARMAX and 

Box-Jenkins (BJ) with the estimated model simulations output fit to measured data are 69.64 %, 75.23 

% and 91.03 %. These results were ideal. However, even if the BJ model structure was the best fit, it 

contained four polynomials of different orders, hence its implementation was limited due to its 

complexity [10].   

The WECS mathematical models described above were complex and demanded complex controllers. 

To overcome this limitation, the identification technique used in this work enables the design of lower-

order models. We have used a doubly-fed induction generator based the WECS Model. Considering the 

subsystem model for low wind speed, the estimated ARX model of turbine torque is fitted to 73.72%, 

and for medium wind speed, it is fitted to 65.79 % with large FPE and MSE in both cases [11].  

In Ref. [12], a speed controller was proposed to extract the maximum power from wind turbines. 

Regulating the speed of the generator in the WECSs by using a robust speed controller was presented in 

[13]. It improved the power capturing ability of wind turbines by using a slide mode speed controller. 

As described in Ref. [14], WECSs were classified as either power control or speed control. Variable 

speed WECSs have also been used due to their decoupling ability of power generating system from grid 

frequency and rotational speed adaptability according to recent literature. Hala and co-workers [15] 
designed a PI controller to control the speed of DFIG based WECS [15]. However, they did not consider 

wind speed variations in their model. Many researchers proposed speed controller of generator as it 

improved the generator output power and system frequency [1,16,17]. The simulation results of wind 

turbine maximum power point tracking controlled by a deep neural network technique indicated 33% 

overshoot with a better final value [18]. Comparative analyses of such controllers and fuzzy logic based 

controllers for the maximum power point tracking were presented in Ref. [19]. The simulation results 

of direct field oriented control of DFIG speed resulted in variations between 100 - 200 rad/s, which 

showed high oscillation, and less reliability [20]. In addition, the responses under the wind turbine rotor 

speed between 1000 – 1450 rpm were explored in Ref. [21]. 
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The present work aims to estimate a suitable model of DFIG based WECS and design generator speed 

control for the wind energy plant operating in standard conditions. For the WECS model representation, 

the simplest model structure called Auto Regressive with eXogenous inputs (ARX) is considered. For 

this model, a soft computing-based PID controller is designed. Its simulation results are compared with 

that of a classically designed PID controller. 

 

2. MODELING THE WIND ENERGY CONVERSION SYSTEM 

For the WECS model, the following assumptions are made:  

Upward yaw orientation of variable speed Horizontal Axis Wind Turbine (HAWT) with three blades 

excluding the yaw mechanism.  

One degree of freedom to drive the train of the rotating system. Oscillations of the towers and blades 

are not taken into acccount. 

The power conversion coefficient is empirically estimated. Collective variable pitch mechanism of the 

blade regulates wind speed greater than the rated value. Tip speed ratio of HAWT and detailed dynamics 

of generator is not considered.  

The mathematical model of the DFIG based WECS is presented using Eqs. (1-5). As in Ref. [22], the 

output power of the wind turbine rotor is given by, 

2 3 0.5 ,( )  m p mP R C V    (1) 

where, 

,    0.5176 116 /  –  0.4  5 2( 1/ 0.00( ) ( ) ) 68( )p t tC exp     
 

(2) 

 

 31/  1/ 0.08 – 0.035 / 1  ( )t     
 

(3a) 

 

 
(3b) 

 
1(  0.667  ) –wtan V r  

 
(4) 

Here, Pm is mechanical power, Vw is wind speed, R is a fixed radius of the blade, λ is tip ratio of the wind 

turbine blade, β is pitch angle, Cp(𝜆, β) is wind to mechanical power conversion coefficient, r is the 

fraction of R, ω is turbine rotor speed, α is angle of attack. In a typical WECS, an electrical generator 

with wind turbines through the drive train is mathematically described in [17]. The dynamic motion of 

the generator torque and rotational speed are interrelated by, 

g eg g

g

g

dw
T

t
wJ T

d
  

 

(5) 

where, Tg, Jg, βg, and 𝜔g represent mechanical torque, equivalent inertia reduced to generator side, twist-

rigidity reduced to generator side and generator speed, respectively.  

/ wR V  
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The nominal model of the WECS is generated by using the model identification toolbox. The nominal 

wind speed is considered as 13 m/s with a variance of 1.2 m/s. Using the specifications in Table 1, Eqs. 

(1-5), and the system identification technique, we have developed the model of the WECS as shown in 

Fig. 1. One of the advantages of using this technique is the ability to determine a linear discrete model 

for an equivalent nonlinear and complex physical system. Fig. 2 shows the input and output of the 

WECS. At a rate of 0.1 seconds per sample, 4000 training and validation data has been produced. This 

data is divided into two forms. Data between 1 and 2000 is used to approximate the model, whereas the 

rest between 2001 and 4000 is studied for the model confirmation.  

Table 1. DFIG based wind energy conversion plant specifications [23]. 

 Specifications Values 

2 MW  Horizontal Axis  Wind Turbine Rotor 

Number of Blades 3 

Cut in speed  (m/s) 4 

Cut out speed (m/s) 25 

Nominal speed (m/s) 13 

Air density (kg/m2) 1.225 

Rated rotor speed (rpm) 14.9 

Dynamic rotor speed range (rpm) 9.6 - 17 

Blade diameter (m) 90 

Drive Train 

Gear ratio 1: 112.8 

Turbine inertia (kg m2) 2x106 

Low speed shaft  twist-rigidity (Nm / rad) 160 x 106 

Low speed shaft twist-damper (Nm s /rad) 1.6x105 

Double Feed Induction  Generator 

Rated power (MW) 2 

Maximum generator speed  (rpm) 1680 

Generator max speed limit (pm)  2900 

Generator terminal voltage (volt) 690 

Rated frequency (Hz) 50 

Generator inertia (kg m2) 60 

Generator torque  (k Nm) 13.4 

 

 
Figure 1. Data for WECS Model Estimation and Confirmation. 

 

Table 2. Mean wind speed at 40 meters above measured in 2018 at Adama wind farm of Ethiopia. All values are 

in m/s. 

Jan Feb Mar Apr May Jun Jul 

11.493 10.729 8.515 8.191 8.530 10.035 10.611 
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A real-time wind speed data is collected and the monthly average value is tabulated in Table 2. This 

data is used to develop the WECS model and final to test the model response for validation.  

 
Figure 2. DFIG based WECS Simulation Model 

Different models that relate the wind speed with the DFIG speed are identified and presented in Table 

3. Model estimation needs acceptable precision to examine the WECS and develop the right speed 

regulator. In this study, best-fit performance (FPE and MSE), and model simplicity (Linear Model 

Representation) are considered as the criteria to choose the better model from the list in Table 3. 

Moreover, a validation test for the selected model is carried out. 

ARMAX4441 is among the most popular models to characterize the WECS. As indicated in Table 3 the 

performances of this model are measured using best-fit, final prediction error, and mean square error. 

The results obtained are 84.91%, 0.0442 and 0.0443, respectively. This is compared with the result in 

[11], which shows better quality. The performance of ARMAX and ARX models are similar but as 

model structure increases the complexity also increases. Hence, it is right to choose ARX221, since it is 

the simpler model. This model can be described as; 

              g wA z z B z V z z  
 

(6) 

Where ωg(z), Vw(z), and ξ(z) are generator speed, wind speed, and disturbances in the discrete-time 

domain, respectively. Considering zero states at the beginning, Eq. (7a) presents the discrete transfer 

function of WECS and Eq. (7b) shows the equivalent continuous-time transfer function.  

 
1 2

1 2

( ) 0.6333 0.004303
  

( ) 1 0.4597 0.01125

g

w

z z z
G z

V z z z

  

 


 

   
(7a) 

 

  2

8.666 347.9

44.87 305

s
G s

s s




   
(7b) 

 



Journal of Energy Systems 

51 

For the linearized WECS models, as shown in Table 3 and plotted in Fig. 3, the corresponding curve fit 

is 84% for all the identified model structures.  

Table 3. Discrete linear model structures for DFIG based WECS relating wind speed with generator speed. 
№ Model Structure Best Fit (%) FPE MSE Linear Model Representation 

1 ARX221 84.31 0.0433 0.0432 
A(z)=1-0.4597z-1+0.01125z-2 

B(z)=0.6333z-1-0.004303z-2 

2 ARX231 84.32 0.0431 0.04312 
A(z)=1-0.5305z-1+0.03801z-2 

B(z)=0.6370z-1-0.0451z-2-0.01060z-3 

3 ARX321 84.33 0.0446 0.04356 
A(z)=1-0.5301z-1+0.04501z-2+0.004114z-3 

B(z)=0.640z-1-0.0443z-2 

4 ARMAX3221 84.45 0.0445 0.0434 

A(z)=1+0.2831z-1-0.3101z-2 

B(z)=0.6401z-1+0.4721z-2+0.0072z-3 

C(z)=1+0.8061z-1+0.1582z-2 

5 ARMAX3441 84.56 0.0449 0.04366 

A(z)=1-0.631z-1-0.7405z-2+0.3981z-3 

B(z)=0.6512z-1-0.0959z-2-0.5401z-3+0.01306z-4 

C(z)=1-0.1190z-1-0.7299z-2-0.0901z-3-0.0520z-4 

6 ARMAX4441 84.91 0.0442 0.04432 

A(z)=1-0.630z-1-0.8001z-2+0.4019z-3-0.000601z-4 

B(z)=0.6602z-1-0.09501z-2-0.5291z-3+0.01281z-4 

C(z)=1-0.1202z-1-0.801z-2-0.0903z-3-0.0490z-4 

 

 
Figure 3. Signals for the model validation of ARX and ARMAX structures. 

 

 
Figure 4. Residual Technique Curves for the WECS Model Validation Test. 



Journal of Energy Systems 

52 

This indicates that the discrete linear model of the WECS is adequate for the mathematical model 

representation of the system. Fig. 4 shows the autocorrelation of the output and cross-correlation of input 

and output of the ARX221 model structure of the WECS. The output autocorrelation of the models need 

to be within a certain range of the equivalent estimate showing the outputs are uncorrelated. It also 

shows the output residuals are within a certain interval (-0.1 to 0.1). This proves that the output residuals 

are uncorrelated and autonomous from previous inputs. 

 

3. SPEED CONTROLLER DESIGN 

There are two operating modes for the DFIG speed control as discussed in Refs. [16,24].  The first is 

when the wind is lower than the nominal value. Here, the generator operates at a speed lower than the 

synchronous speed, where the slip becomes positive. In this case, the power is delivered to the winding 

of rotor and grid by stator winding. The second mode is when the rotor runs with speed higher than 

synchronous speed where its slip becomes negative. Here, the power is delivered to the grid through the 

stator and rotor windings of the generator. Monthly average wind speeds in Table 2 are less than the 

rated wind speed indicating the generator operates in the first mode. The speed controller is designed 

for the model formulated in Eq. (7b). Fig. 5 shows the simulation results of the model. In this figure, 

when unit step input is applied, it is observed that the generator speed exhibits undershoot in transient 

response and its steady-state response is maintained at 1.14 per unit (p.u). The rated speed of the 

generator is considered as 1680 rpm, which means the generator is above the rated speed by 235 rpm. 

This may result in frequency or power instability. 

 
Figure 5. Uncontrolled generator speed at the rated wind speed of 9.5 m/s equal to 1 p.u for the WECS model. 

Since the real wind speed is time varying, the generator speed controller parameters should be self-

adjustable to regulate the generator speed around its rated value. In this research, PID controller based 

on fuzzy logic and Ziegler-Nichols method are improved for the generator speed control. We employ 

PID controller by adapting its parameters by using fuzzy logic to achieve the aim of the study. Fig. 6 

depicts the proposed diagram for the fuzzy logic-based controller. Classical methods for the PID 

controller parameter tuning cannot attain acceptable response for the WECS because of its nonlinearity 

and irregular uncertainty varying with the wind speed. Therefore, fuzzy logic-based updating technique 

for the PID controller is developed and evaluated in the present work. The general continuous-time PID 

model, as discussed in [25], is adapted and merged with fuzzy logic. This is expressed by,  

1 ( )
( ) ( )

o

t

p d

I t

de t
PID K e t e d

dt
  


  

 

(8) 

Here the proportional gain is KP, the derivative time constant is Ʈd = Kd/Kp, and the integral time constant 

is ƮI = γƮd.  For the proposed controller structure shown in Fig.  6, the error e(t) between the reference 

input and system actual output, and the rate of change of the error (i.e. de(t)/dt ) are the inputs. The fuzzy 



Journal of Energy Systems 

53 

inference is intended to update 3 parameters of the PID controller [26,27,28] as depicted in Fig. 7. The 

fuzzy inference generates nonlinear relations from its inputs (i.e. e(t) and de(t)/dt)) to the PID controller 

parameters (Kp, Kd, γ). These relations or rules are planned to obtain the appropriate response of 

generator speed in WECS. The maximum / minimum aggregation of fuzzy sets and centroid 

defuzzification are employed for this controller design. 

To develop a self-updating fuzzy logic-based PID controller the domains of its parameters are decided 

based on their specific values obtained by applying the Ziegler-Nichols (Z-N) graphical method [29,30] 

on considering the performance and stability of the system. Hence, based on Z-N graphical method the 

coefficients Kp = 1.18, Ki = 19.4 at  γ =  4 and Kd = 0.018 are found for this system. For the self-updating 

fuzzy logic-based PID controller, before the normalization, Kp is between 0 and 1.2, Kd ranges from 0 

to 0.02, and γ = γ′ which ranges between 1 and 6. The values of Kp and Kd are normalized to K′P and K′d 

in the range of 0 and 1 as shown in Fig. 8. 

 
Figure 6. The proposed structure for self-updating PID Controller. 

 

 
Figure 7. Fuzzy logic inference for PID controller structure. 

The designed fuzzy logic-based continuous-time PID controller has the form as shown in Eq. (9) and 

depicted in Fig. 8. In this figure, the rate of variation of error input to the fuzzy logic is described by 

unit delay and derivative filter. The coefficient N is associated with the PID controller to reduce the 

noise due to the derivative parameter of the controller. The normalized ranges of PID controller 

parameters are equivalently expressed as the values generated by fuzzy logic as in Eqs. (10a - 10c). 

     
 ' 2

p d
P

d

(K ) K
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Figure 8. Fuzzy logic based PID controller structure. 

The membership functions for e(t) and de(t)/dt are triangular shapes within the range of [-1, 1]. 

Moreover, their membership function are triangular as depicted in Figs. 9(a,b). The linguistic 

equivalence of e(t), and de(t)/dt are set with 7 terms for each: Large negative (LN), medium negative 

(MN), small negative (SN), zero (Z), small positive (SP), medium positive (MP), and large positive 

(LP). Figs. 9(c,d) show the K′P and K′d parameters with Gaussian membership functions. For K′P and 

K′d, the linguistic terms small (S) and large (L) are assigned. The linguistic terms assigned to γ have the 

same with numeric values as illustrated in Fig. 9(e). In total, 49 “if e is __ and de/dt is __ then K′p is __ 

and K′d is __ and γ′ is __” fuzzy rules are used for generator speed control of the WECS. These rules 

are given in Tables 4,5 in detail.  

Table 4. Rules to tune K′P and K′d components of the PID controller 

e(t) 

K′P K′d 

Change in Error (de(t)/dt) Change in Error (de(t)/dt) 

LN MN SN Z SP MP LP LP MN SN Z SP MP LP 

LN L S S S S S L S L L L L L S 

MN L L S S S L L S L L L L L S 

SN L L L L L L L S S L L L S S 

Z L L L L L L L S S L L S S S 

SP L L L S L L L S S L L L S S 

MP L L S S S L L S L L L L L S 

LP L S S S S S L S L L L L L S 

 

Table 5. Rules to tune γ component of PID controller 

  

e(t) 

Change in Error (de(t)/dt) 

LN MN SN Z SP MP LP 

LN 2 3 4 5 4 3 2 

MN 2 3 3 4 3 3 2 

SN 2 2 3 3 3 2 2 

Z 2 2 2 3 3 2 2 

SP 2 2 3 3 3 2 2 

MP 2 3 3 4 3 3 2 

LP 2 3 4 5 4 3 2 
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(e) 

Figure 9. Fuzzy logic membership functions for (a) Error, (b) de(t)/dt, (c) K′P, (d) K′d and (e) γ. 
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For the MatLab/Simulink simulation, the block diagram of the estimated WECS model with the 

proposed controllers shown in Fig.  8 is connected together as depicted in Fig.  10 to Fig.  13. These are 

the plots of the simulation results.  

 
Figure 10. Simulink block of fuzzy logic-based PID and classical Z-N PID Controllers of the generator speed in 

WECS. 

 

4. RESULTS AND DISCUSSION 

The simulation results are generated for the nominal model of the WECS generator speed controllers. 

Step input is assumed as per unit value of uniform and rated wind speed. From Table 2, actual annual 

average wind speed of 9.74 m/s, equivalently 1 p.u with variance of 0.5 m/s and 0.2 m/s is used as the 

input to Fig.  10 to test the designed PID controllers based on Z-N method and Fuzzy logic. The results 

are presented in Table 6 and in Fig. 11 through Fig 13. 

Table 6. DFIG based WECS speed response when controlled by the PID controller 

Method 
Input  is 1 p.u with 

variance of 

Response Performance Indicators 

Settling time 

(s) 
Overshoot /sluggish Steady state value 

Z-N 
± 0 

< 1 25% 0.8 p.u =1344 rpm 

Fuzzy Logic < 1 2% 1 p.u =1680 rpm 

Z-N 
± 0.5 

>10 sluggish 0.8 p.u =1344 rpm 

Fuzzy Logic < 1 Varying around 1p.u 1 p.u =1680 rpm 

Z-N 
± 0.2 

>10 sluggish 0.88 p.u= 1478 rpm 

Fuzzy Logic < 0.5 around 1p.u 1 p.u =1680 rpm 

The result in Table 6 indicates that the speed response of DFIG based WECS maintained the steady state 

value with less than 1 s, when the PID controller is fuzzy logic tuned and even under varying inputs. On 

the other hand, it takes 10 s in case of classical PID with variable inputs. Table 6 and Fig. 11 show the 

response of the speed of WECS controlled by both the Z-N method PID controller and the fuzzy logic-

based updatable PID controller, when the unit step (rated speed) input signal is applied. The fuzzy logic-

based PID controller attains better output, when compared with the PID controller designed by the Z-N 

method. Both responses of the controllers have less than 1 s settling time. Nevertheless, when Z-N PID 

is used, the system response exhibited 25% overshoot and maintained a final value of 0.8 p.u. The fuzzy 

logic-based PID controller has an overshoot of less than 2 % and final value of 1 p.u. This indicates that 

the generator runs at its rated speed for uniform and rated value inputs wind speed to the WECS, when 

the fuzzy logic-based PID controller is employed. For classical Z-N PID controller case, the generator 

runs at 1344 rpm below its rated speed even though the wind speed is uniform and at the rated value. 

This causes lower power capture from wind resulting in generator overloading and frequency instability 

in the case of a grid-connected wind turbine unit. 
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Figure 11. Z-N PID and Fuzzy logic-based PID controlled generator speed response at wind speed of 13 m/s 

(equivalent to 1 p.u) is used as the input. 

The simulation results shown in Figs. 12,13 are generated when 1 p.u. with 0.5 or 0.2 variances is applied 

to the system. When the Z-N method PID controls the speed of the DFIG generator, the steady-state 

value is 0.8 p.u as in Table 6 and Fig. 12 and 0.88 p.u as Table 6 and in Fig. 13 that is 1344 rpm and 

1478 rpm, respectively. These are for the same rated wind speed input with different variations. These 

responses are sluggish as indicated in Figs. 12,13. However, when the fuzzy logic-based PID controller 

is used, the generator speed is settled to its rated value with in one second. This response is higher than 

the results presented in Refs. [31,32] even under variable input with smaller variation as seen in Fig. 13. 

This is achieved since the PID parameters are self-updatable by fuzzy logic under the stated conditions. 

This shows that the classical PID controller is not as good as the fuzzy logic-based PID for a system 

with variable inputs. 

 
Figure 12. Z-N method PID and Fuzzy logic based PID controlled generator speed response for real-time data of 

annual average of 1 p.u with 0.5 variance wind speed as presented in Table 1. 

 

 
Figure 13. Z-N method PID and fuzzy logic-based PID controlled generator speed response for the real-time data 

of annual average of 1 p.u with 0.2 m/s variance wind speed presented in Table 1. 
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5. CONCLUSIONS 

The System Identification Toolbox of MatLab is used to develop the linear model of the WECS relating 

wind speed with generator speed. Different ARX and ARMAX models are developed. The performances 

of the ARMAX and the ARX models are closely related. However, the ARMAX model structures are 

found to be more complex than the ARX. Hence, we used the ARX221 model structure with best fit of 

84.31%, 0.0433 FPE, and 0.0432 MSE for the controller design due to its simplicity. The model validity 

is carried out according to the residual correlation criterion. The Z-N method and fuzzy logic based PID 

controllers are used to control the DFIG generator speed in WECS. When classical Z-N PID is used, the 

response of the system is not satisfactory for both uniform and variable inputs. For the fuzzy logic-based 

PID controller, the generator speed is around its rated value and the response is improved under uniform 

and even for variable wind speeds. This is due to the PID parameters are self-updatable by fuzzy logic 

under the stated conditions. Power regulation, frequency stability, and load variation impacts are 

possible future extension to improve WECS modelling and performance. 
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