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Abstract 

 

In this paper we study the non-geodesic non-null biharmonic curves in  -dimensional hyperbolic 

Heisenberg group with a semi-Riemannian metric of index 2. We prove that all of the non-geodesic 

non-null biharmonic curves in such a  -dimensional hyperbolic Heisenberg group are helices. 

Moreover, we obtain explicit parametric equations for non-geodesic non-null biharmonic curves 

and non-geodesic spacelike horizontal biharmonic curves, respectively. We also show that there do 

not exist non-geodesic timelike horizontal biharmonic curves in  -dimensional hyperbolic 

Heisenberg group with a semi-Riemannian metric of index 2.  

Keywords: Biharmonic curves, Horizontal curves, Heisenberg group. 

 

3-boyutlu Heisenberg Grubun Biharmonik Eğrileri Üzerine 

Özet 

Bu çalışmada indeksi 2 olan bir semi-Riemann metriğe sahip 3-boyutlu Heisenberg grubun 

jeodezik olmayan non-null biharmonik eğrileri çalışıldı. Bu şekildeki bir 3-boyutlu Heisenberg 

grubun jeodezik olmayan non-null biharmonik eğrilerinin helis olduğu ispatlandı. Ayrıca sırasıyla 

jeodezik olmayan non-null biharmonik eğriler ve jeodezik olmayan  spacelike  yatay biharmonik 

eğriler için açık parametrik denklemler elde edildi. İndeksi 2 olan bir semi-Riemann metriğe sahip 

3-boyutlu Heisenberg grup üzerinde jeodezik olmayan timelike yatay biharmonik eğrilerin var 

olmadığı gösterildi. 

Anahtar Kelimeler: Biharmonik eğriler, Yatay eğriler, Heisenberg Grup. 
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Introduction 

In 1964, Eells and Sampson [8] introduced the notion of biharmonic maps as a natural 

generalization of the well-known harmonic maps. Thus, while a map   from a compact 

Riemannian manifold       to another Riemannian manifold       is harmonic if it is a critical 

point of the energy functional      
 

 
∫  
 

       , the biharmonic maps are the critical points of 

the bienergy functional       
 

 
∫  
 

           

In a different setting, Chen [6] defined biharmonic submanifolds      of the Euclidean 

space as those with harmonic mean curvature vector field, that is       where   is the rough 

Laplacian, and stated that any biharmonic submanifold of the Euclidean space is harmonic, that is 

minimal. 

If the definition of biharmonic maps is applied to Riemannian immersions into Euclidean 

space, the notion of Chen’s biharmonic submanifold is obtained, so the two definitions agree. 

Harmonic maps are characterized by the vanishing of the tension field              , 

where   is a connection induced from the Levi-Civita connection    of   and    is the 

pull-back connection. The first variation formula for the bienergy derived in [15, 16] shows that the 

Euler-Lagrange equation for the bienergy is  

                                             

where                 
   is the rough Laplacian on the sections of       and 

                      is the curvature operator on  . From the expression of the bitension 

field   , it is clear that a harmonic map is automatically a biharmonic map. Non-harmonic 

biharmonic maps are called proper biharmonic maps. 

Of course, the first and easiest examples can be found by looking at differentiable curves in 

a Riemannian manifold. Obviously geodesics are biharmonic. So, non-geodesic biharmonic curves 

are  more interesting. Chen and Ishikawa [5] showed non-existence of proper biharmonic curves 

in Euclidean 3-space     Moreover they classified all proper biharmonic curves in Minkowski 

3-space   
  (see also [13]). Caddeo, Montaldo and Piu showed that on a surface with non-positive 

Gaussian curvature, any biharmonic curve is a geodesic of the surface [2]. So they gave a positive 

answer to generalized Chen’s conjecture. Caddeo et al. in [3] studied biharmonic curves in the unit 

3-sphere. More precisely, they showed that proper biharmonic curves in    are circles of geodesic 

curvature 1 or helices which are geodesics in the Clifford minimal torus. 
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On the other hand, there are several classification results on biharmonic curves in arbitrary 

Riemannian manifolds. The biharmonic curves in the Heisenberg group are investigated in [4] by 

Caddeo et al. They showed that biharmonic curves in the Heisenberg group are helices, that is 

curves with constant geodesic curvature    and geodesic torsion     The authors in [17] studied 

non-geodesic horizontal biharmonic curves in  -dimensional Heisenberg group. The same authors 

obtained some results for the Heisenberg Group with left invariant Lorentzian metric and 

investigated biharmonic curves in  -dimensional Lorentzian Heisenberg group (see [18], [19]) . In 

[9] Fetcu studied biharmonic curves in the generalized Heisenberg group and obtained two families 

of proper biharmonic curves. 

In contact geometry, it is well known that a simply connected 3-dimensional Sasakian 

space form of constant holomorphic sectional curvature   is isometric to     So in this context J. 

Inoguchi classified in [14] the proper biharmonic Legendre curves and Hopf cylinders in a 

 -dimensional Sasakian space form and in [10] the explicit parametric equations were obtained. In 

[7], the authors showed that every non-geodesic biharmonic curve in a  -dimensional Sasakian 

space form of constant holomorphic sectional curvature is a helix. T. Sasahara [21], analyzed the 

proper biharmonic Legendre surfaces in Sasakian space forms and in the case when the ambient 

space is the unit  -dimensional sphere    he obtained their explicit representations. A full 

classification of proper biharmonic Legendre curves, explicit examples and a method to construct 

proper biharmonic anti-invariant submanifolds in any dimensional Sasakian space form were given 

in [11]. Furthermore, D. Fetcu [12] studied proper biharmonic non-Legendre curves in a Sasakian 

space form. 

Motivated by these circumtances, in the present paper we associate a semi-Riemannian 

metric of index   with a  -dimensional Heisenberg group and study the non-null biharmonic 

curves in such a  -dimensional Heisenberg group (for short,   
 ). Section 1 is devoted to the some 

basic definitions. We also define and characterize a cross product in  -dimensional Heisenberg 

group   
 . In section 2 we investigate the necessary and sufficient conditions for a non-null curve 

in  -dimensional Heisenberg group   
  to be non-geodesic biharmonic. In section 3 we prove 

that a non-geodesic non-null curve parametrized by arclenght in  -dimensional Heisenberg group 

  
  with the vanishing third component of the binormal vector field cannot be biharmonic. In 

section 4, we study the non-geodesic non-null biharmonic helices in  -dimensional Heisenberg 

group with a semi-Riemannian metric of index  . Moreover, we obtain explicit parametric 
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equations for non-geodesic non-null biharmonic curves in   
 . In the last section, we give explicit 

examples of non-geodesic spacelike horizontal biharmonic curves and prove that there do not exist 

non-geodesic timelike horizontal biharmonic curves in  -dimensional Heisenberg group   
 . 

1.  Preliminaries 

1.1.  Biharmonic Maps 

Let       and       be Riemannian manifolds and                be a smooth 

map. The tension field of   (see [8]) is given by              , where     is the second 

fundamental form of   defined by            
            

   ,          . For any 

compact domain    , the bienergy is defined by [15, 16]  

       
 

 
∫  
 

           

Then a smooth map   is called biharmonic map if it is a critical point of the bienergy functional 

for any compact domain      We have for the bienergy the following first variation formula 

[15, 16]:  

 
 

  
             ∫  

 
             

where    is the volume element,   is the variational vector field associated to the variation      

of   and  

                                             

      is called bitension field of  . Here  
 

 is the rough Laplacian on the sections of the 

pull-back bundle       which is defined by  

  
    ∑   

       

    

    
   

   

                     

where    is the pull-back connection on the pull-back bundle       and        
  is an 

orthonormal frame on    When the target manifold is semi-Riemannian manifold, the bienergy 

and bitension field can be defined in the same way. 

Let   be a semi-Riemannian manifold and       be a non-null curve parametrized by 

arclenght. By using the definition of the tension field we have  

        

  

 
   

 

  
       

where     . In this case biharmonic equation for the curve   reduces to (see also [20])  
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1.2.  3-dimensional Heisenberg group with a semi-Riemannian metric of index   

Consider    with the group law given by  

  ̃    ̃     ̃     ̃     ̃   ̃    (1) 

where             ̃    ̃  ̃  ̃ . 

Let   
         be 3-dimensional Heisenberg group endowed with the 

semi-Riemannian metric   of index   which is defined by  

               
 

 
                 (2) 

Note that the metric   is left invariant. 

We can define an orthonormal basis for the tangent space of   
  by  

    
 

  
   

 

  
        

 

  
   

 

  
         

 

  
   (3) 

which is dual to the coframe 

                        
 

 
            

Proposition 1.2.1: For the covariant derivatives of the Levi-Civita connection of the left-invariant 

metric   defined above, we have  

 {

   
            

             
       

   
              

            
       

   
              

              
     

 (4) 

where            is the orthonormal basis for the tangent space given by (3).  

 

Also, we have the following bracket relations 

                                    (5) 

The curvature tensor field of   is given by  

                              

while the Riemannian-Christoffel tensor field is  

                          

where                 
  . If we put  

                  

where the indices         take the values        . Then the non-zero components of the curvature 

tensor field are  
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 {
                                       
                                  

 (6) 

 

Now we shall define a cross product on  -dimensional Heisenberg group   
  for later use  

Definition 1.2.2: We define a cross product   on   
  by  

                                                 

where            is an orthonormal basis of   
  given by (3) and                   

                       
   .   

Theorem 1.2.3: The cross product   on   
  has the following properties: 

(i) The cross product is bilinear and anti-symmetric (        ). 

(ii)     is perpendicular both of   and  . 

(iii)                                

(iv)                          

(v) Define a mixed product by 

                  

                     then we have  

                     

and  

                         

(vi)                              

            for all               
     

2.  Biharmonic curves in  -dimensional Heisenberg group with a semi-Riemannian metric    

    of index   

An arbitrary curve       
           in  -dimensional Heisenberg group   

  is 

called spacelike, timelike or null (lightlike), if all of its velocity vectors       are respectively 

spacelike, timelike or null (lightlike). If      is a spacelike or timelike curve, we can 

reparametrize it such that  (           )     where     if   is spacelike and      if   

is timelike, respectively. In this case      is said to be unit speed or arclenght parametrization. 

Let       
  be a non-null curve parametrized by arclenght and         be the 
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orthonormal moving Frenet frame along the curve   in   
  such that       is the unit vector 

field tangent to      is the unit vector field in the direction     normal to   and      . 

The mutually orthogonal unit vector fields  ,   and   are called the tangent, the principal 

normal and the binormal vector fields, respectively. Then we have the following Frenet equations 

                                                    

                                                   (7) 

            

where                      and            Here                 is the 

geodesic curvature of   and    is its geodesic torsion. 

From (7) we have  

   
   (      

     )  (  
       

        
   )  

         (   
            

     )   (8) 

Using (6) one obtains   

                            
                 (9) 

where                                    and                 

    . Hence we get   

       (      
     )  (  

       
        

              
 )  

          (   
            

                 )   (10) 

 

Theorem 2.1: Let       
  be a non-null curve parametrized by arclenght. Then   is a 

non-geodesic biharmonic curve if and only if  

 {

              

  
        

         
  

  
       

 (11) 

  

Proof. From (10) it follows that   is biharmonic if and only if 

 {

    
    

  
       

        
              

    

   
        

            

 

If we look for non-geodesic solution of the above system we complete the proof. 
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Corollary 2.2: If    constant   and      for a non-null curve       
  then   is a 

non-geodesic biharmonic curve if and only if   
           

   and          

Proposition 2.3: Let       
  be a non-geodesic non-null curve parametrized by arclenght. If 

   is constant and       , then   is not biharmonic.  

 

Proof. By using (4) and (7) we have  

     (  
        )   (  

        )     
     (12) 

              

which implies that  

   
           

If we put              and            we get               Then we can write  

   √     
            √     

                   

From (12) we calculate  

           (
  

   

√     
   

      √     
                )   

                                     (
  

   

√     
   

      √     
                )   

                                        (13) 

By taking into account the definition of the geodesic curvature    and the last equation one can see 

that  

           

√                
   

     
     (14) 

If we write (14) in (13) we get 

     ( 
√                

   

√     
   

      
    

√     
   

     )    

        ( 
√                

   

√     
   

      
    

√     
   

     )         
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Since      , from the definition of the cross product in   
  we have  

        √                
     (15) 

On the other hand from the Frenet equations we obtain  

                          

Using (4) since                  we also have  

              
       

which implies that  

    
                     (16) 

By writing                and (15) in (16) we get 

      
(      

      )  

√                
   

          
  

  

  
     (17) 

Now assume that   is biharmonic. Then from the third equation in (11) we write   
         

which gives  

    
  
 

  
    

By writing the last equation in (17) and then by integrating we obtain  

   
           

           (18) 

where   is a constant. Also, from the second equation in (11) we have 

       
    

   

 
   

   

 
 

  

 
  (19) 

By comparing (18) and (19) we get  

   
                  

where          
        is a constant, which implies that    is also a constant. Hence we 

obtain a contradiction with the assumption   
   . This completes the proof. 

Theorem 2.4: Let       
  be a non-geodesic non-null curve parametrized by arclenght. Then 

  is biharmonic if and only if 

 {

              
            
       

  
        

         
  

 (20) 
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3.  Biharmonic helices in  -dimensional Heisenberg group with a semi-Riemannian metric   

    of index   

A non-null curve in a semi-Riemannian manifold having constant both geodesic curvature 

and geodesic torsion is called helix. Now we shall investigate the biharmonicity conditions of a 

helix in  -dimensional Heisenberg group. For any helix in   
 , the system (11) reduces to 

 {
  

        
         

  
       

 (21) 

which implies that    must be a constant. 

Proposition 3.1: Let       
  be a non-geodesic non-null curve parametrized by arclenght with 

      Then we have        and   is a timelike vector field, where           and 

         .  

Proof. Assume that       
  is a non-geodesic non-null curve parametrized by arclenght and 

           . If   is a spacelike curve then we can write  

                                           (22) 

where          and         . From (4) the covariant derivative of the unit tangent vector 

field   of  , is  

     (  
                          (  

         ))    

               (  
                          (  

         ))    (  
       )   

             =        

By using the definition of cross product in   
  we also obtain 

    
       (  

         )  

  
  

Now let     . From the last equation above, since          then   
           . Thus 

we have 

       
                                           (23) 

We can assume that   
    ( when   

    then we have      , which implies that   is a 

geodesic). Hence we get 

              
                 (  

 )
 
                    (  

 )
 
  (24) 

If   is spacelike then       which is a contradiction. 
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By a similar way, for a timelike curve  , its tangent vector field can be expressed by 

                                           (25) 

where          and         . From (4) we get  

     (  
                          (  

         ))    

              (  
                          (  

         ))    

         (  
       )   

              

Next, we have  

              
       (  

         )

  
    

Now assume that     . If          then     , that is,   is a geodesic. So one must have  

   
             

Thus we get 

       
                                           (26) 

Here we can assume that   
    without loss of generality (when   

    then   becomes a 

geodesic again). Then from (26) it follows that 

   
                (  

 )
 
                  (  

 )
 
  (27) 

If   is timelike then       which is a contradiction again. This completes the proof. 

Proposition 3.2: Let       
  be a non-geodesic non-null curve parametrized by arclenght with 

      Then  2
2    and   cannot be biharmonic.  

Proof. Assume that       
  is a non-geodesic non-null curve parametrized by arclenght and 

           . If   is a spacelike curve then from Proposition 3.1 and (24),   must be timelike 

and        
     Using (22), (23), the first Frenet equation and the definition of cross product 

in   
  it follows that 

     sinh   cosh      sinh   sinh      cosh    3   

         sinh      cosh        

From (4) we also have  

      (  
 cosh   cosh    sinh   )   

                                        (  
 cosh   sinh    cosh   )     

 sinh    3   
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which implies that 

                 

Similarly, if   is a timelike curve then from Proposition 3.1 and (27), we have   is 

spacelike and        
     Using (26) and the first Frenet equation one obtains  

     cosh   cosh      cosh   sinh      sinh    3   

         sinh      cosh      . 

After a straightforward computation we get  

       (  
       cosh    sinh   )   

          (  
 sinh   sinh    cosh   )     

 cosh   3   

which gives 

                 

The proof is completed. 

Thus we have: 

Corollary 3.3: Let       
  be a non-geodesic non-null biharmonic helix parametrized by 

arclenght. Then  

 {

 3  constant    

  
        

        3
  

 3    

 (28) 

Lemma 3.4: Let       
  be a non-geodesic non-null curve parametrized by arclenght. If 

   0 then  

      cosh   cosh        cosh   sinh        sinh    3 (29) 

or 

      sinh   cosh        sinh   sinh        cosh    3  (30) 

where   ,     .  

Proof. Let   be the tangent vector field of       
  given by                  and 

         . By using (4) we have  

        
       3       

       3     3
   3 

                  

which implies that  3    if and only if  3   constant. Then we complete the proof. 
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Theorem 3.5: The parametric equations of all non-geodesic spacelike biharmonic curves    of 

  
  are 

      
 

 
cosh  sinh           

      
 

 
cosh  cosh           (31) 

       (sinh   
 

 
 cosh   

 )   

         
   

 
cosh  cosh       

   

 
cosh  sinh        3  

where   sinh   √  sinh   
                    3 .  

 Proof. Assume that       
  be a spacelike non-geodesic curve. Then its tangent vector field is 

given by (29). From Gram-Schmidt procedure we have 

      sinh       cosh        

By taking covariant derivative of the vector field   we get 

     cosh    
    sinh    sinh     cosh             

where  

    |cosh    
    sinh   |  (32) 

Taking into account the cross product in   
3 one obtains 

                

        sinh  cosh       sinh  sinh       cosh   3  (33) 

Moreover, 

     cosh      sinh      sinh      sinh      cosh   3  

From the second Frenet equation, it follows that 

    sinh    
    sinh       (34) 

Then   is a spacelike non-geodesic biharmonic curve if and only if  

 {
    constant   sinh   

   
    

      3
  

 (35) 

By substituting (32), (34) and  3  cosh   in the second equation of (35) we get 

             sinh        sinh   
    

which gives 

     sinh   √  sinh          

that is, 
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To find a differential equation system for the non-geodesic spacelike biharmonic curve      

                  by using (3) we first note that  

 
 

  
      3      

 

  
      3      

 

  
 
 

 
 3  (36) 

Therefore since   
  

  
, we have the following differential equations system 

 

  

  
 cosh  cosh       

  

  
 cosh  sinh       

  

  
  sinh    cosh   sinh           cosh            

 

Integrating the system gives (31). The proof  is completed. 

Theorem 3.6: The parametric equations of all non-geodesic timelike biharmonic curves   of   
  

are 

  ̃    
 

 ̃
sinh  sinh( ̃   ̃)      

  ̃    
 

 ̃
sinh  cosh( ̃   ̃)      (37) 

  ̃     (cosh   
 

 ̃
 sinh   

 )   

           
   

 ̃
sinh  cosh( ̃   ̃)  

   

 ̃
sinh  sinh( ̃   ̃)   3  

where  ̃  cosh   √  cosh         ̃              3 .  

 Proof. The tangent vector field of a non-geodesic timelike biharmonic curve       
  can be 

given by (30). From Gram-Schmidt procedure we have 

      sinh       cosh        

which implies that   is a timelike vector field. If we take the covariant derivative of the tangent 

vector field   it is easy to see that  

     sinh    
    cosh    sinh     cosh      

                    

and  

    |sinh    
    cosh   |  (38) 

Also we have 

                

               cosh  cosh       cosh  sinh       sinh   3  (39) 
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In this case it is obvious that   is a spacelike vector field. From (4) we get 

     cosh      cosh      sinh      cosh      sinh   3  

It follows that 

    cosh    
    cosh       (40) 

Then   is biharmonic if and only if  

 {
    constant   cosh   

   
    

      3
  

 (41) 

Using (38), (40) and  3  sinh   in the second equation of (41) we get 

             cosh        cosh   
    

which gives 

     cosh   √  cosh        ̃  

that is, 

       ̃   ̃      ̃     

Since   
  

  
, from (36), the differential equations system for the non-geodesic timelike 

biharmonic curve        ̃     ̃     ̃     is the following 

 

  ̃

  
 sinh  cosh( ̃   ̃) 

  ̃

  
 sinh  cosh( ̃   ̃) 

  ̃

  
  cosh    sinh  (sinh( ̃   ̃) ̃    cosh( ̃   ̃) ̃   ) 

 

If we integrate the above system we obtain (37). 

From Theorem 3.5 and Theorem 3.6 we also have 

Corollary 3.7: Let       
  be a non-geodesic non-null curve parametrized by arclenght with 

   0  Then we have        and   is a timelike vector field, where           and 

         .  

4  Horizontal Biharmonic curves in  -dimensional Heisenberg group 

Let              be a non-integrable two dimensional distribution in  3        
     

defined by   ker    where   is a 1-form on  3  The distribution   is said to be the horizontal 

distribution. A curve       ,                       is called horizontal curve if       

       for all    By using (36), for a non-null curve   in 3-dimensional Heisenberg group we can 
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write  

            
 

  
      

 

  
      

 

  
                         

 

  
  (42) 

Then   is a horizontal curve if 

                        (43) 

 

                                       (44) 

Theorem 4.1: The parametric equations of all non-geodesic spacelike horizontal biharmonic 

curves   in   
  are 

       sinh           

       cosh           (45) 

             cosh          sinh        3  

where                3    

 Proof. Let       
  be a non-geodesic spacelike horizontal biharmonic curve. Since the 

tangent vector field of   can be written as              3 3 then from (29) and (43) we 

have  

  3  sinh      (46) 

By using the last equation in (31) we complete the proof. 

Theorem 4.2: There does not exist a non-geodesic timelike horizontal biharmonic curve in   
    

Proof. Assume that       
  is a non-geodesic timelike horizontal biharmonic curve. Then we 

have  3    and  3     Since   is a timelike curve then Corollary 3.7 implies that   is a 

timelike and   is a spacelike vector field. Using (4) we have  

         3   3
              3   3

                        3   3
              (47) 

On the other hand from the Frenet formulas one can easily see that   

        3      3            3     3     3            3      3  (48) 

It follows from the definition of the cross product in   
 , (47) and (48) that   

       

Substituting the last equation in (19) we get  

    
    3

   

which is a contradiction. The proof is completed. 
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