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Abstract

This paper gives HOMFLY polynomials and Kauffman polynomials L and F of twist knots
as recurrence relations, respectively, and also provides some recursive properties of them.

1. Introduction

The knot polynomials are the most practical knot invariants for distinguishing knots from each other, where the coefficients of
polynomials represent some properties of the knot. The first of the polynomial invariants is the Alexander polynomial [1] with
one variable for oriented knots and links. There are generalizations of the Alexander polynomial and its Conway version [2],
see [3]- [5]. Another important knot polynomial with one variable for oriented knots and links is the Jones polynomial [6].
Both the Jones polynomial was defined with new methods [7, 8] and studies were conducted on generalizations of the Jones
polynomial [9]- [11]. One of the most important generalized polynomials is the HOMFLY polynomial [11]- [13] with two
variable. The Alexander and Jones polynomials are special cases of the HOMFLY polynomial. For unoriented knots and links,
there are the polynomials such as the BLM/Ho polynomial [14, 15] with one variable and the Kauffman polynomial F [16]
with two variable whose primary version Kauffman polynomial L is an invariant of regular isotopy for unoriented knots and
links. Both the Jones and the BLM/Ho polynomials are special cases of the Kauffman polynomial F .
The HOMFLY polynomial or HOMFLY-PT polynomial whose name is an acronym for its discoverers’ last names is inspired
by the Jones polynomial. The HOMFLY polynomial PK(a,z) is two variables Laurent polynomial for the oriented link diagram
K. PK(a,z) is an ambient isotopy invariant of the link K determined by the following axioms:

a−1PK+(a,z)−aPK−(a,z) = zPK0(a,z) (1.1)
P©(a,z) = 1, (1.2)

where K+, K− and K0 are skein diagrams drawn in Figure 1.1 and© is any diagram of the unknot.

K+ K− K0

Figure 1.1: Skein Diagrams
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From the axioms (1.1) and (1.2), it is obtained that a−1−a = zP©© or δ = (a−1−a)z−1 with δ = P©©, where©© is trivial
link with two components. If©µ is a trivial µ-component link, then P©µ

(a,z) = δ µ−1. Also, PK∗(a,z) = PK(a−1,−z), where
K∗ is the mirror image of K.

In 1987, L. Kauffman [16, 17] discovered a new polynomial, denoted by L, which specializes to the bracket polynomial [7].
The Kauffman polynomial L(a,x) is a two-variable Laurent polynomial for the unoriented link diagram K. L(a,x) is a regular
isotopy invariant of the link K satisfying the following axioms:

LK+(a,x)+LK−(a,x) = x(LK0(a,x)+LK∞(a,x)) , (1.3)
L©(a,x) = 1, (1.4)

LD+(a,x) = aLD0(a,x), (1.5)
LD−(a,x) = a−1LD0(a,x), (1.6)

where K+, K−, K0 and K∞ are unoriented diagrams drawn in Figure 1.2,© is any diagram of unknot and D+, D− and D0 are
unoriented diagrams drawn in Figure 1.3.

K+ K− K0 K∞

Figure 1.2: Crossings and splits

D+ D− D0

Figure 1.3: Diagrams related to Reidmeister moves of type I

The Kauffman polynomial F for oriented link diagram K by the formula [17]

FK(a,x) = a−w(K)LK(a,x), (1.7)

where LK is defined on oriented link diagrams by forgetting the orientation and w(K) denotes the writhe of oriented link
diagram K (w(K) is the sum of all crossing signs of K). Then the polynomial FK(a,x) is a Laurent polynomial invariant of
ambient isotopy. From the axioms (1.3) and (1.5), it is obtained that L©©(a,x) = (a+a−1)x−1−1 or δ = (a+a−1)x−1−1
with δ = L©©(a,x), where©© is trivial link with two components. If©µ is a trivial µ-component link, then L©µ

(a,x) =
F©µ

(a,x) = δ µ−1. Also, LK∗(a,x) = LK(a−1,x) and FK∗(a,x) = FK(a−1,x), where K∗ is the mirror image of link K.

The twist knots, which obtained by twisting a closed-loop repeatedly and then linking the ends together, are an essential class
of knots. It could be found out lots of studies about their knot invariants (See [18]- [25] and others). Here, a twist knot is
regarded with a clasp and right-handed n-half twists as drawn in Figure 2.1. Besides, the knot polynomials of some classes of
knots and links were studied to give recursive formulas [26]- [31].

In this paper, it is aimed that deriving the recurrence relations for the HOMFLY polynomials of the oriented twist knots and the
Kauffman polynomials L and F of the unoriented twist knots. While the HOMFLY polynomial and the Kauffman polynomials
L and F of twist knots are defined as fourth-order recurrence relations, the (2,n)-torus link diagrams are encountered and their
mentioned knot polynomials are utilized for some results. Also, some recursive properties of these relations are examined and
it is provided the generating functions, the general solutions and the explicit forms.

2. Oriented and unoriented knot polynomials of twist knots

2.1. HOMFLY polynomials of twist knots

Suppose that Kn is an oriented digram of twist knot drawn in Figure 2.1, K(2,n) is an oriented digram of (2,n)-torus link drawn
in Figure 2.2 and Pn denotes the HOMFLY polynomial of Kn instead of PKn(a,z) for simplicity.
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Figure 2.1: The twist knot with a clasp and right-handed n-half twists Figure 2.2: (2,n)-torus link

Theorem 2.1. The HOMFLY polynomial of twist knot Kn satisfies the following relations:

Pn = (a2 +1)Pn−2−a2Pn−4, n≥ 4 (2.1)

and

Pn =

{
azPK(2,n+1)

+a2 if n is odd,

−a−1zPK(2,n)
+a−2 if n is even.

(2.2)

Proof. Let the skein operations be applied to a designated half twist of the oriented diagram Kn. If the crossing is switched,
the resulting diagram is Kn−2 twist knot by the second Reidemeister move. Then, if the crossing is smoothed, the resulting
diagram is (2,2)-torus link, i.e. Hopf link, obtained by applying the first Reidemeister move n−1 times. Notice that, if n is
odd, all crossings of the (2,2)-torus link are right-handed with counter-directed strands and if n is even, all crossings of the
(2,2)-torus link are left-handed with same-directed strands. Hence, from the axiom (1.1), the following equations are obtained
as

Pn = azPK(2,2)
+a2Pn−2

and

Pn−2 = azPK(2,2)
+a2Pn−4.

Thus, the recurrence relation (2.1) is gotten from last two equations.
Let the skein operations be applied to a designated crossing of the clasp of the oriented diagram Kn. The crossings of the clasp
are right-handed and left-handed when n is odd and even, respectively. In case of n is odd, if the crossing is switched, the
resulting diagram is an unknot by applying the second Reidemeister move and the first Reidemeister move n times. Then, if
the crossing is smoothed, the resulting diagram is K(2,n+1) torus link with counter-directed strands taking into consideration
n+1 is even. Hence, from the axiom (1.1) and (1.2), the relation in (2.2) is obtained as

Pn = azPK(2,n+1)
+a2.

In case of n is even, the relation in (2.2) is obtained similarly.

Then, the recurrence relation (2.1) in Theorem 2.1 could be given with initial conditions as a fourth-order recurrence relation.

Definition 2.2. The HOMFLY polynomials {Pn}∞
n=0 for the oriented diagrams of twist knots Kn is defined by the recurrence

relation

Pn = (a2 +1)Pn−2−a2Pn−4, n≥ 4

with initial conditions

P0 = 1, P1 = a2z2−a4 +2a2, P2 = a2− z2 +a−2−1, P3 = a4z2 +a2z2−a6 +a4 +a2. (2.3)

Also, since PK∗(a,z) = PK(a−1,−z), where K∗ is the mirror image of the diagram K, the following relation is obtained by
using P−n instead of PK ∗

n (a,z)

P−n = (a−2 +1)P−(n−2)−a−2P−(n−4).

The characteristic equation of (2.1) is a bi-quadratic equation as

λ
4− (a2 +1)λ 2 +a2 = 0

and the roots of this equation are

λ1 = a, λ2 =−a, λ3 = 1, λ4 =−1. (2.4)



62 Fundamental Journal of Mathematics and Applications

Proposition 2.3. The generating function of the sequence {Pn} is

gP(λ ) =
−a2λ 3 +(a−2− z2−2)λ 2 +(a2z2−a4 +2a2)λ +1

a2λ 4− (a2 +1)λ 2 +1
. (2.5)

Proof. The generating function of {Pn} has the following form:

gP(λ ) = P0 +P1λ +P2λ
2 + . . .

After the multiplications (a2 +1)λ 2gP(λ ) and −a2λ 4gP(λ ), the following is provided by using (2.1)

(1− (a2 +1)λ 2 +a2
λ

4)gP(λ ) = P0 +P1λ +(P2− (a2 +1)P0)λ
2 +(P3− (a2 +1)P1)λ

3

+
∞

∑
n=4

(
Pn− (a2 +1)Pn−2 +a2Pn−4

)
λ

n

= P0 +P1λ +(P2− (a2 +1)P0)λ
2 +(P3− (a2 +1)P1)λ

3.

Hence, the equality (2.5) is obtained from the below by using the equalities in (2.3).

gP(λ ) =
P0 +P1λ +(P2− (a2 +1)P0)λ

2 +(P3− (a2 +1)P1)λ
3

a2λ 4− (a2 +1)λ 2 +1
.

Proposition 2.4. The general solution of the recurrence relation (2.1) is

Pn = Aan +B(−a)n +C+D(−1)n, n≥ 0,

where

A =− (a2 +a+1)(a4−a2(z2 +2)+1)
2a2(a+1)

, C =
a4−a2z2 +1

2a2 ,

B =
(a2−a+1)(a4−a2(z2 +2)+1)

2a2(a−1)
, D =− (a2 +1)(a4−a2(z2 +2)+1)

2a2(a2−1)
.

Proof. The closed form of the sequence {Pn} is given by

Pn = Aλ
n
1 +Bλ

n
2 +Cλ

n
3 +Dλ

n
4 , n≥ 0.

Then, the following linear equation system is provided from (2.3) and (2.4) as

P0 = A+B+C+D = 1,
P1 = Aλ1 +Bλ2 +Cλ3 +Dλ4 = a2z2−a4 +2a2,

P2 = Aλ
2
1 +Bλ

2
2 +Cλ

2
3 +Dλ

2
4 = a2− z2 +a−2−1,

P3 = Aλ
3
1 +Bλ

3
2 +Cλ

3
3 +Dλ

3
4 = a4z2 +a2z2−a6 +a4 +a2.

The values A, B, C and D is obtained by solving this system. Note that considering xn− yn = (x− y)
n−1
∑

i=0
xkyn−1−k, the factors

(a−1) are simplified.

Corollary 2.5. For n≥ 2, the explicit formula for the HOMFLY polynomial of twist knot Kn is given by

Pn =


z2

a+1

(
n
∑

i=0
ai+2

)
−an+3 +an+1 +a2 if n is odd,

− z2

a+1

(
n−1
∑

i=0
ai
)
+an−an−2 +a−2 if n is even.

(2.6)

Proof. From Corollary 1 in [28], the explicit formula for the HOMFLY polynomial of (2,n)-torus link K(2,n) with counter-
directed strands taking into consideration that n is even and the notations and diagrams mentioned in this paper is given
by

PK(2,n)
=

(
an−1

a−a−1

)
z−an(a−a−1)z−1. (2.7)

Hence, the formulas in (2.6) are provided by using (2.2) and (2.7).

Remark 2.6. Since it is well known that the HOMFLY polynomial specializes to the Jones polynomial for a = t and
z = t

1/2 − t−
1/2 , the Alexander-Conway polynomial for a = 1 and the Alexander polynomial for a = 1 and z = t

1/2 − t−
1/2 , the

recurrence relations for the mentioned knot polynomials of twist knot Kn could be easily obtained.
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2.2. Kauffman polynomials L and F of twist knots

Now, suppose that Kn is an unoriented digram of twist knot drawn in Figure 2.1, K(2,n) is an unoriented digram of (2,n)-torus
link drawn in Figure 2.2 and Ln denotes the Kauffman polynomial L of Kn instead of LKn(a,x) for simplicity.

Theorem 2.7. The Kauffman polynomial L of twist knot Kn satisfies the following relations:

Ln = xLn−1 +(a2−1)Ln−2−a2xLn−3 +a2Ln−4, n≥ 4 (2.8)

and

Ln = a−1xLK(2,n)
+ xLK(2,n+1)

−an. (2.9)

Proof. Let the axiom (1.3) be applied to a designated half twist of the unoriented diagram Kn. If the crossing is switched, the
resulting diagram is Kn−2 twist knot by the second Reidemeister move. If the crossing is split according to the K0, the resulting
diagram is Kn−1 twist knot. Then, if the crossing is split according to the K∞, the resulting diagram is (2,2)-torus link, i.e.
Hopf link, obtained by applying the first Reidemeister move n−1 times. Note that, if n is even, all crossings of the (2,2)-torus
link are left-handed and if n is odd, all crossings of the (2,2)-torus link are right-handed. Hence, by using the axioms (1.4) and
(1.5), the following equations are obtained as

Ln = xLn−1 +an−1xLK(2,2)
−Ln−2

and

Ln−2 = xLn−3 +an−3xLK(2,2)
−Ln−4.

Thus, the recurrence relation (2.8) is gotten from last two equations.
Let the axiom (1.3) be applied to a designated crossing of the clasp of the unoriented diagram Kn. If the crossing is switched,
the resulting diagram is an unknot obtained by applying the second Reidemeister move and the first Reidemeister move n
times. If the crossing is split according to the K0, the resulting diagram is torus link K(2,n+1). Then, if the crossing is split
according to the K∞, the resulting diagram is the image of torus link K(2,n) by applying the first Reidemeister move. Thus, the
relation (2.9) is obtained by using the axioms (1.4), (1.5) and (1.6).

Then, the recurrence relation (2.8) in Theorem 2.7 could be given with initial conditions as a fourth-order recurrence relation.

Definition 2.8. The Kauffman polynomials {Ln}∞
n=0 for the unoriented diagrams of twist knots Kn is defined by the recurrence

relation

Ln = xLn−1 +(a2−1)Ln−2−a2xLn−3 +a2Ln−4, n≥ 4

with initial conditions

L0 = a−2, L1 = (a+a−1)x2 +(a−2 +1)x−2a−a−1,

L2 = (a+a−1)x3 +(a2 +a−2 +2)x2− (a+a−1)x−a2−a−2−1, (2.10)
L3 = (a+a−1)x4 +(a2 +a−2 +2)x3 +(a3−a−2a−1)x2− (2a−2 +2)x−a3 +a+a−1.

Since LK∗(a,x) = LK(a−1,x), where K∗ is the mirror image of the diagram K, the following relation is obtained by using L−n
instead of LK ∗

n (a,x)

L−n = xL−(n−1)+(a−2−1)L−(n−2)−a−2xL−(n−3)+a−2L−(n−4).

The characteristic equation of (2.8) is a quadratic equation as

λ
4− xλ

3− (a2−1)λ 2 +a2xλ −a2 = 0

and the roots of this equation are

λ1 = a, λ2 =−a, λ3 =
1
2
(x+

√
x2−4), λ4 =

1
2
(x−

√
x2−4). (2.11)

Proposition 2.9. The generating function of the sequence {Ln} is

gL(λ ) =
a3λ 3 +((a2 +1)x2 +ax−a2−2)λ 2 +((a+a−1)x2 + x−2a−a−1)λ +a−2

−a2λ 4 +a2xλ 3− (a2−1)λ 2− xλ +1
.
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Proof. The generating function of {Ln} has the following form:

gL(λ ) = L0 +L1λ +L2λ
2 + . . .

After the multiplications xλgL(λ ), (a2−1)λ 2gL(λ ), −a2xλ 3gL(λ ) and a2λ 4gL(λ ), the following is provided by using (2.8)

(1− xλ − (a2−1)λ 2 +a2xλ
3−a2

λ
4)gL(λ ) = L0 +(L1− xL0)λ +(L2− xL1− (a2−1)L0)λ

2 +(L3− xL2− (a2−1)L1 +a2xL0)λ
3

+
∞

∑
n=4

(
Ln− xLn−1− (a2−1)Ln−2 +a2xLn−3−a2Ln−4

)
λ

n

= L0 +(L1− xL0)λ +(L2− xL1− (a2−1)L0)λ
2 +(L3− xL2− (a2−1)L1 +a2xL0)λ

3.

Hence, the equality (2.5) is obtained from the below by using the equalities in (2.3).

gL(λ ) =
L0 +(L1− xL0)λ +(L2− xL1− (a2−1)L0)λ

2 +(L3− xL2− (a2−1)L1 +a2xL0)λ
3

−a2λ 4 +a2xλ 3− (a2−1)λ 2− xλ +1
.

Proposition 2.10. The general solution of the recurrence relation (2.8) is

Ln = Aan +B(−a)n +C(
1
2
(x+

√
x2−4))n +D(

1
2
(x−

√
x2−4))n, n≥ 0, (2.12)

where

A =
a2
(
x2−1

)
+ax+ x2−1

a2−ax+1
, B = 0,

C =

(
a2 +1

)(
2a3 +a2

(
x3 + x2

√
x2−4−

√
x2−4−3x

)
+a
(
−x2 + x

√
x2−4+2

)
−
√

x2−4− x
)

2a2
√

x2−4(−a2 +ax−1)
,

D =

(
a2 +1

)(
−2a3 +a2

(
−x3 + x2

√
x2−4−

√
x2−4+3x

)
+a
(

x2 + x
√

x2−4−2
)
−
√

x2−4+ x
)

2a2
√

x2−4(−a2 +ax−1)
.

Proof. The closed form of the sequence {Ln} is given by

Ln = Aλ
n
1 +Bλ

n
2 +Cλ

n
3 +Dλ

n
4 , n≥ 0.

Then, the following linear equation system is provided from (2.10) and (2.11) as

L0 = A+B+C+D = a−2,

L1 = Aλ1 +Bλ2 +Cλ3 +Dλ4 = (a+a−1)x2 +(a−2 +1)x−2a−a−1,

L2 = Aλ
2
1 +Bλ

2
2 +Cλ

2
3 +Dλ

2
4 = (a+a−1)x3 +(a2 +a−2 +2)x2− (a+a−1)x−a2−a−2−1,

L3 = Aλ
3
1 +Bλ

3
2 +Cλ

3
3 +Dλ

3
4 = (a+a−1)x4 +(a2 +a−2 +2)x3 +(a3−a−2a−1)x2− (2a−2 +2)x−a3 +a+a−1.

The values A, B, C and D is obtained by solving this system.

Suppose that Fn denotes the Kauffman polynomial F of Kn instead of FKn(a,x) for simplicity.

Corollary 2.11. The Kauffman polynomials {Fn}∞
n=0 for the unoriented diagrams of twist knots Kn is defined by the recurrence

relation

Fn =

a−5xFn−1 +(1−a−2)Fn−2−a−5xFn−3 +a−2Fn−4 if n is odd,

a3xFn−1 +(1−a−2)Fn−2−a3xFn−3 +a−2Fn−4 if n is even,
n≥ 4 (2.13)

with initial conditions

F0 = 1, F1 = (a−2 +a−4)x2 +(a−3 +a−5)x−2a−2−a−4,

F2 = (a+a−1)x3 +(a2 +a−2 +2)x2− (a+a−1)x−a2−a−2−1,
F3 = (a−4 +a−6)x4 +(a−3 +a−7 +2a−5)x3 +(a−2 +−a−4−2a−6)x2− (2a−7 +2a−5)x−a−2 +a−4 +a−6.

Also, the following relation is satisfied for Fn.

Fn =


a−3xFK(2,n)

+a−1xFK(2,n+1)
−a−2 if n is odd,

axFK(2,n)
+a3xFK(2,n+1)

−a2 if n is even.
(2.14)
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Proof. It is proven by considering w(Kn) = n+2 and w(Kn) = n−2 if n is odd and even, respectively, and by using (1.7) in
Definition 2.8 and the relation (2.9).

In addition, since FK∗(a,x) = FK(a−1,x), where K∗ is the mirror image of the diagram K, the following relations are obtained
by using F−n instead of FK ∗

n (a,x)

F−n =

a5xF−(n−1)+(1−a2)F−(n−2)−a5xF−(n−3)+a2F−(n−4) if n is odd,

a−3xF−(n−1)+(1−a2)F−(n−2)−a−3xF−(n−3)+a2F−(n−4) if n is even.

By using same notation, it could be provided a relation from (2.14) for the mirror image of K ∗
n .

Corollary 2.12. The general solution of the recurrence relation (2.13) is

Fn =


a−n−2

(
Aan +B(−a)n +C( 1

2 (x+
√

x2−4))n +D( 1
2 (x−

√
x2−4))n

)
if n is odd,

a−n+2
(

Aan +B(−a)n +C( 1
2 (x+

√
x2−4))n +D( 1

2 (x−
√

x2−4))n
)

if n is even,
n≥ 0,

where

A =
a2
(
x2−1

)
+ax+ x2−1

a2−ax+1
, B = 0,

C =

(
a2 +1

)(
2a3 +a2

(
x3 + x2

√
x2−4−

√
x2−4−3x

)
+a
(
−x2 + x

√
x2−4+2

)
−
√

x2−4− x
)

2a2
√

x2−4(−a2 +ax−1)
,

D =

(
a2 +1

)(
−2a3 +a2

(
−x3 + x2

√
x2−4−

√
x2−4+3x

)
+a
(

x2 + x
√

x2−4−2
)
−
√

x2−4+ x
)

2a2
√

x2−4(−a2 +ax−1)
.

Proof. The proof follows directly from (1.7) and (2.12) by considering w(Kn) = n+2 and w(Kn) = n−2 if n is odd and even,
respectively.

Remark 2.13. Since it is well known that the Kauffman polynomial F specializes to the Jones polynomial for a =−t
3/2 and

x = t−
1/4 + t

1/4 and the BLM/Ho polynomial for a = 1, the recurrence relations for the mentioned knot polynomials of twist
knot Kn could be easily obtained.

Corollary 2.14. For n≥ 1, the explicit form of of {Ln} and {Fn} are

Ln = a−1xRn+2 +(ax2 +a−2x−a−a−1)Rn+1 +(x2−ax+a2−a−2)Rn +(−x+a+a−1)Rn−1−an (2.15)

and

Fn =

a−1xSn+2 +(a2x2 +a−3x−a2−1)Sn+1 +(x2−a3x+a4 +a2−a−2−1)Sn +(−ax+a2 +1)Sn−1−a−2 if n is odd,

a3xSn+2 +(a6x2 +ax−a6−a4)Sn+1 +(a4x2−a7x+a8 +a6−a4−a2)Sn +(−a5x+a6 +a4)Sn−1−a2 if n is even,
(2.16)

where {Rn} and {Sn} are special cases of the following sequence {Gn} with initial conditions G0 = G1 = 0, G2 = 1 for
r = a+ x, s =−(1+ax), t = a and r = a2 +ax, s =−(a2 +a3x), t = a4, respectively.

Gn =

b n−2
2 c

∑
i=0

b n−2
3 c

∑
j=0

(
n−2− i−2 j

i+ j

)(
i+ j

j

)
rn−2−2i−3 jsi(−1)it j.

Proof. From Theorem 2.3 and 2.4 in [31], the explicit forms of the Kauffman polynomial L and F sequences of K(2,n) are
given by

LK(2,n)
= (a−1)Rn+1 +

(
ax− (a+a−1)x−1)Rn +

(
(1+a2)x−1−a

)
Rn−1, n≥ 1 (2.17)

and

FK(2,n)
= Sn+1 +

(
a3x− (a3 +a)x−1)Sn +

(
(a5 +a3)x−1−a4

)
Sn−1, n≥ 1. (2.18)

Hence, the explicit form (2.15) is obtained by using (2.9) and (2.17). Then, the explicit form (2.16) is obtained by considering
w(Kn) = n+2 and w(Kn) = n−2 if n is odd and even, respectively, and by using (2.14) and (2.18).



66 Fundamental Journal of Mathematics and Applications

References

[1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc., 30 (1928), 275–308.
[2] J. H. Conway, An enumeration of knots and kinks, and some of their algebraic properties, in Computational Problems in Abstract Algebra, (Pergamon,

Oxford, 1970), 329–358.
[3] S. Friedl, S. Vidussi, A Survey of Twisted Alexander Polynomials, M. Banagl, D. Vogel (eds), The Mathematics of Knots. Contributions in Mathematical

and Computational Sciences, Springer, Berlin, 2011, pp. 45–94.
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[31] İ. Altıntaş, K. Taşköprü, Unoriented knot polynomials of torus links as Fibonacci-type polynomials, Asian-Eur. J. Math., 12(1) (2019), 1950053, 17

pages.


	Introduction
	Oriented and unoriented knot polynomials of twist knots
	HOMFLY polynomials of twist knots
	Kauffman polynomials L and F of twist knots


