Subtraction Bialgebras

Mustafa Uçkun ${ }^{1 *}$, Yılmaz Çeven ${ }^{2}$, Mehmet Ali Öztürk ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Adlyaman University, 02040 Adlyaman, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, 32260 Isparta, Turkey
muckun@posta.adiyaman.edu.tr

Abstract

The notions of subtraction bialgebras, sub-subtraction bialgebras, biideals and complicated subtraction bialgebras are introduced, and related properties are investigated.

Keywords: Subtraction algebra, subtraction bialgebra, biideal.

Fark Bi-Cebirleri

Özet

Y. B. Jun, Y. H. Kim ve K. A. Oh, karmaşık fark cebiri kavramını tanımlayarak, bu kavram ile ilgili bazı özellikleri araştırdılar. Daha sonra Y. Çeven ve M. A. Öztürk, fark cebirleri ile ilgili bazı kavramları (alt fark cebiri, sınırlı fark cebiri, fark cebirlerinin birleşimi) tanımladı ve bazı özellikleri incelediler. Bu ve benzeri çalışmalar doğrultusunda bi-cebirsel yapılar dikkate alınarak, bu çalışmada fark bi-cebiri, alt fark bi-cebiri, bi-ideal ve karmaşık fark bicebiri kavramları tanımlandı ve bu kavramlarla ilgili özellikler incelendi.

Anahtar Kelimeler: Fark cebiri, fark bi-cebiri, bi-ideal.

Introduction

B. M. Schein [1] considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [2]. He proved that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. B. Zelinka [3] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun, H. S. Kim and E. H. Roh [4] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [5], Y. B. Jun and H. S. Kim established the ideal generated by a set, and discussed related results. In [6], Y. B. Jun, Y. H. Kim and K. A. Oh introduced the notion of complicated subtraction algebras and investigated some related properties. In [7], Y. Çeven and M. A. Öztürk introduced some additional concepts on subtraction algebras, so called sub-subtraction algebra, bounded subtraction algebra and union of subtraction algebras, and some properties are investigated. Bialgebraic structures, for example, bisemigroups, bigroups, bigroupoids, biloops, birings, bisemirings, binear-rings, etc., are discussed in [8]. In [9], Jun et al. established the structure of BCK/BCI bialgebras, and investigated some properties.

In this paper, considering bialgebra structures, we introduced the notions of subtraction bialgebras, sub-subtraction bialgebras, biideals and complicated subtraction bialgebras, and we give some properties of these structures.

1. Preliminaries

An algebra ($X ;-$) with a single binary operation "-" is called a subtraction algebra if for all $x, y, z \in X$ the following conditions hold:
(S1) $x-(y-x)=x$,
(S2) $x-(x-y)=y-(y-x)$,
(S3) $(x-y)-z=(x-z)-y$.
The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that doesn't depend on the choice of $a \in X$. The ordered set ($X ; \leq$) is a semi-Boolean algebra in the sense of [2], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to induced order. Here $a \wedge b=a-(a-b)$ and the complement of an element $b \in[0, a]$ is $a-b$.

In a subtraction algebra, the following statements are true $[4,10]$:
(a1) $(x-y)-y=x-y$,
(a2) $x-0=x$ and $0-x=0$,
(a3) $(x-y)-x=0$,
(a4) $x-(x-y) \leq y$,
(a5) $(x-y)-(y-x)=x-y$,
(a6) $x-(x-(x-y))=x-y$,
(a7) $(x-y)-(z-y) \leq x-z$,
(a8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$,
(a9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$,
(a10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$,
(a11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$,
(a12) $(x-y)-z=(x-z)-(y-z)$.

Definition 1.1: [4] A nonempty subset A of a subtraction algebra X is called an ideal of X if it satisfies
(1) $0 \in A$,
(2) $(\forall x \in X)(\forall y \in A)(x-y \in A \Rightarrow x \in A)$.

We denote by $A \triangleleft X$.

Definition 1.2: [6] Let X be a subtraction algebra. For any $a, b \in X$, let $G(a, b)=\{x \in X: x-a \leq b\} . X$ is said to be complicated if for any $a, b \in X$ the set $G(a, b)$ has the greatest element.

Note that $0, a, b \in G(a, b)$. The greatest element of $G(a, b)$ is denoted $a+b$.
Proposition 1.1. [7] Let X be a subtraction algebra and I be a nonempty subset of X. Then I is an ideal of X if and only if $G(x, y) \subseteq I$ for all $x, y \in I$.

2. Subtraction Bialgebras

Definition 2.1: An algebra $X=(X,-, \ominus, 0)$ of type (2,2,0) is called a subtraction bialgebra if there exist two subsets X_{1} and X_{2} of X such that
(i) $X=X_{1} \cup X_{2}$,
(ii) $\left(X_{1},-, 0\right)$ is a subtraction algebra,
(iii) $\left(X_{2}, \ominus, 0\right)$ is a subtraction algebra.

We denote by $X=X_{1} \uplus X_{2}$.

Example 2.1: Let $X=\{0, a, b, c, d, e\}$ and consider two proper subsets $X_{1}=\{0, a, b\}$ and $X_{2}=\{0, a, c, d, e\}$ of X together with Cayley tables respectively as follows:

$$
\begin{array}{c|cccc|ccccc}
& & & & & \ominus & 0 & a & c & d \\
e \\
- & 0 & a & b & & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
\hline 0 & 0 & 0 & 0 & & a & a & 0 & a & a \\
a \\
a & a & 0 & a & & c & c & c & 0 & c \\
b & b & b & 0 & & d & d & d & d & 0 \\
d & d \\
& & & & e & e & e & e & e & 0
\end{array}
$$

Then $\left(X_{1},-, 0\right)$ and $\left(X_{2}, \ominus, 0\right)$ are subtraction algebras. Thus $(X,-, \ominus, 0)$ is a subtraction bialgebra, i.e., $X=X_{1} \uplus X_{2}$.

Example 2.2: Let $X=\{0, a, b, c, d, e, f, g\}$ and consider two proper subsets $X_{1}=\{0, a, b, c\}$ and $X_{2}=\{0, d, e, f, g\}$ of X together with Cayley tables respectively as follows:

$$
\left.\begin{array}{c|ccccc|ccccc}
- & 0 & a & b & c & & \ominus & 0 & d & e & f
\end{array}\right) g
$$

Then $\left(X_{1},-, 0\right)$ and $\left(X_{2}, \ominus, 0\right)$ are subtraction algebras. Thus $(X,-, \ominus, 0)$ is a subtraction bialgebra, i.e., $X=X_{1} \uplus X_{2}$.

Definition 2.2: Let $X=X_{1} \uplus X_{2}$. A subset $A(\neq \varnothing)$ of X is called a sub-subtraction bialgebra of X if there exist two subsets A_{1} and A_{2} of X_{1} and X_{2}, respectively, such that
(i) $A_{1} \neq A_{2}$ and $A=A_{1} \cup A_{2}$,
(ii) $\left(A_{1},-, 0\right)$ is a sub-subtraction algebra of $\left(X_{1},-, 0\right)$,
(iii) $\left(A_{2}, \ominus, 0\right)$ is a sub-subtraction algebra of $\left(X_{2}, \ominus, 0\right)$.

Example 2.3: Let X be a subtraction bialgebra in Example 1, and let $A_{1}=\{0, a\}$ and $A_{2}=\{0, c, d\}$. In this case $A_{1} \neq A_{2}$ and A_{1} (resp. A_{2}) is a sub-subtraction algebra of X_{1} (resp. X_{2}). Thus $A=\{0, a, c, d\}$ is sub-subtraction bialgebra of X. On the other hand, we can easly show that $(A, \ominus, 0)$ is subtraction algebra. Also, note that $A_{3}=\{0, e\}$ is a sub-
subtraction algebra of X_{2} and $A_{1} \neq A_{3}$. Thus $B=\{0, a, e\}$ is a sub-subtraction bialgebra of X.

Theorem 2.1: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra and let A be a nonempty subset of X. Then A is a sub-subtraction bialgebra of X if and only if there exist two proper subsets X_{1} and X_{2} of X such that
(i) $X=X_{1} \cup X_{2}$, where $\left(X_{1},-, 0\right)$ and $\left(X_{2}, \ominus, 0\right)$ are subtraction algebras,
(ii) $\left(A \cap X_{1},-, 0\right)$ is a sub-algebra of $\left(X_{1},-, 0\right)$,
(iii) $\left(A \cap X_{2}, \ominus, 0\right)$ is a sub-algebra of $\left(X_{2}, \ominus, 0\right)$.

Proof. Assume that A is a sub-subtraction bialgebra of X. Then $(A,-, \ominus, 0)$ is a subtraction bialgebra. Thus there exist two proper subsets A_{1} and A_{2} of A such that $A=A_{1} \cup A_{2}$ and $\left(A_{1},-, 0\right)$ and $\left(A_{2}, \ominus, 0\right)$ are subtraction algebras. Taking $A_{1}=A \cap X_{1}$ and $A_{2}=A \cap X_{2}$, we get that $\left(A_{1},-, 0\right)$ and $\left(A_{2}, \ominus, 0\right)$ are sub-subtraction algebra of $\left(X_{1},-, 0\right)$ and ($\left.X_{2}, \ominus, 0\right)$ respectively.

Conversely, let A be a nonempty subset of a subtraction bialgebra ($X,-, \ominus, 0$) satisfying conditions (i), (ii) and (iii). Hence

$$
\begin{aligned}
\left(A \cap X_{1}\right) \cup\left(A \cap X_{2}\right) & =\left(\left(A \cap X_{1}\right) \cup A\right) \cap\left(\left(A \cap X_{1}\right) \cup X_{2}\right) \\
& =\left((A \cup A) \cap\left(X_{1} \cup A\right)\right) \cap\left(\left(A \cup X_{2}\right) \cap\left(X_{1} \cup X_{2}\right)\right) \\
& =\left(A \cap\left(A \cup X_{1}\right)\right) \cap\left(\left(A \cup X_{2}\right) \cap X\right) \\
& =A \cap\left(A \cup X_{2}\right)\left(\text { since } A \subseteq A \cup X_{1} \text { and } A \cup X_{2} \subseteq X\right) \\
& =A .
\end{aligned}
$$

The proof completes.
Definition 2.3: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra. A subset $I(\neq \varnothing)$ of X is called a biideal of X if there exist two subsets I_{1} and I_{2} of X_{1} and X_{2}, respectively, such that $I=I_{1} \cup I_{2}, I_{1} \triangleleft X_{1}$ and $I_{2} \triangleleft X_{2}$.

Example 2.4: Let $X=\{0, a, b, c, x, y, z, t\}$ and consider two proper subsets $X_{1}=\{0, a, b, c\}$ and $X_{2}=\{0, x, y, z, t\}$ of X together with Cayley tables respectively as follows:

$$
\left.\begin{array}{c|ccccc|ccccc}
- & 0 & a & b & c & & \ominus & 0 & x & y & z
\end{array}\right)
$$

Then $X=X_{1} \uplus X_{2}, I_{1}=\{0, c\} \triangleleft X_{1}$ and $I_{2}=\{0, z, t\} \triangleleft X_{2}$. Therefore $I=\{0, c, z, t\}$ is a biideal of X.

Example 2.5: Let X be the subtraction bialgebra in Example 2.1, and let $I_{1}=\{0, b\} \triangleleft X_{1}$ and $I_{2}=\{0, c, d, e\} \triangleleft X_{2}$. Hence $I=\{0, b, c, d, e\}$ is a biideal of X.

Example 2.6: Let $X=\{0, a, b, c, d, x, y\}$ and consider two proper subsets $X_{1}=\{0, a, b, c, d\}$ and $X_{2}=\{0, a, x, y\}$ of X together with Cayley tables respectively as follows:
$\left.\begin{array}{c|cccccc|cccc}- & 0 & a & b & c & d \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & & \ominus & 0 & a & x\end{array}\right)$

Then $X=X_{1} \uplus X_{2}, \quad I_{1}=\{0, a\} \triangleleft X_{1}$ and $I_{2}=\{0, x\} \triangleleft X_{2}$. Hence $I=\{0, a, x\}$ is a biideal of X. But $I=\{0, a, x\}$ is not an ideal of $\left(X_{2}, \ominus, 0\right)$ since $y \ominus a=x \in I$ and $y \notin I$.

Theorem 2.2: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra. If I is a nonempty subset of X such that $I \cap X_{1} \triangleleft\left(X_{1},-, 0\right)$ and $I \cap X_{2} \triangleleft\left(X_{2}, \ominus, 0\right)$ then I is a biideal of X.

Proof. Taking $I_{1}=I \cap X_{1}$ and $I_{2}=I \cap X_{2}$ and hence

$$
I_{1} \cup I_{2}=\left(I \cap X_{1}\right) \cup\left(I \cap X_{2}\right)=I \cap\left(X_{1} \cup X_{2}\right)=I \cap X=I .
$$

Thus I is a biideal of X.

Theorem 2.3: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra. Then any biideal of X is a subsubtraction bialgebra of X.

Proof. Straightforward.

Following example shows that the converse of Theorem 2.3 is not true.
Example 2.7: Let $X=\{0, a, b, c, d, e, f, g, x, y\}$ and consider two proper subsets $X_{1}=\{0, a, b, c, d, e, f, g\}$ and $X_{2}=\{0, a, x, y\}$ of X together with Cayley tables respectively as follows:

| - | 0 | a | b | c | d | e | f | g | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | |
| a | a | 0 | a | a | a | a | a | a | | \ominus | 0 | a | x | y |
| b | b | b | 0 | b | b | b | b | b | | 0 | 0 | 0 | 0 | 0 |
| c | c | c | c | 0 | c | c | c | c | a | a | 0 | a | 0 | |
| d | d | d | d | d | 0 | d | d | d | x | x | x | 0 | 0 | |
| e | e | e | e | e | e | 0 | e | e | y | y | x | a | 0 | |
| f | 0 | f | | | | | | |
| g | 0 | | | | | | |

Then $X=X_{1} \uplus X_{2}$. We say that $A_{1}=\{0, a, b, c, d\}$ and $A_{2}=\{0, a, x\}$ are subsubtraction algebra of X_{1} and X_{2}, respectively. Hence $A=A_{1} \cup A_{2}=\{0, a, b, c, d, x\}$ is a subsubtraction bialgebra of X. However A_{1} is an ideal of X_{1} and A_{2} is not an ideal of X_{2} since $y \ominus a=x \in A_{2}$ and $y \notin A_{2}$. Hence $A=\{0, a, b, c, d, x\}$ is not an biideal of X.

Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra. Then we define the set $G(x, y)$ for any $x, y \in X$ in the following:

$$
G(x, y)= \begin{cases}G_{1}(x, y) & , x, y \in X_{1} \backslash X_{2} \\ G_{2}(x, y) & , x, y \in X_{2} \backslash X_{1} \\ G_{1}(x, y) \cup G_{2}(x, y) & , x, y \in X_{1} \cap X_{2} \\ \varnothing & , \text { in other cases }\end{cases}
$$

Then we write the following definition.

Definition 2.4: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra. Then X is called a complicated subtraction bialgebra if the nonempty set $G(x, y)$ for any $x, y \in X$ has the greatest element.

Example 2.8: Let $X=\{0, a, b, c\}$ and consider two subsets $X_{1}=\{0, a\}$ and $X_{2}=\{0, a, b, c\}$ of X together with Cayley tables respectively as follows:

$$
\begin{array}{c|ccc|cccc}
& & & \left.\begin{array}{c}
\ominus \\
-
\end{array} \right\rvert\, & 0 & a & b & c \\
\hline- & 0 & a & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & & a & a & 0 & a \\
a \\
a & a & 0 & & b & b & b & 0 \\
0 \\
& & & c & c & b & a & 0
\end{array}
$$

Then $\left(X_{1},-, 0\right)$ and $\left(X_{2}, \ominus, 0\right)$ are subtraction algebras. Thus $(X,-, \ominus, 0)$ is a subtraction bialgebra, i.e., $X=X_{1} \uplus X_{2}$. Then we obtain $G_{1}(0,0)=\{0\}$, $G_{1}(0, a)=G_{1}(a, 0)=\{0, a\}, \quad G_{1}(a, a)=\{0, a\}, \quad$ and also we have $G_{2}(0,0)=\{0\}$, $G_{2}(0, a)=G_{2}(a, 0)=\{0, a\}, \quad G_{2}(0, b)=G_{2}(b, 0)=\{0, b\}, \quad G_{2}(0, c)=G_{2}(c, 0)=\{0, a, b, c\}$, $G_{2}(a, a)=\{0, a\}, \quad G_{2}(b, b)=\{0, b\}, \quad G_{2}(c, c)=\{0, a, b, c\}, \quad G_{2}(a, b)=G_{2}(b, a)=\{0, a, b, c\}$, $G_{2}(a, c)=G_{2}(c, a)=\{0, a, b, c\}, G_{2}(b, c)=G_{2}(c, b)=\{0, a, b, c\}$.

Therefore we can write all the sets $G(x, y)$ for any $x, y \in X$. Some of them are in the following:

$$
G(0,0)=G_{1}(0,0) \cup G_{2}(0,0)=\{0\}, \quad G(0, a)=G_{1}(0, a) \cup G_{2}(0, a)=\{0, a\}, \quad G(0, b)=\varnothing,
$$

$\ldots, G(b, c)=G_{2}(b, c)=\{0, a, b, c\}, G(c, c)=G_{2}(c, c)=\{0, a, b, c\}$. Thus X is a complicated subtraction bialgebra.

Example 2.9: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra in Example 1. Then we have
$G_{1}(0,0)=\{0\}, \quad G_{1}(0, a)=G_{1}(a, 0)=\{0, a\}, \quad G_{1}(a, a)=\{0, a\}, \quad G_{1}(0, b)=G_{1}(b, 0)=\{0, b\}$, $G_{1}(a, b)=G_{1}(b, a)=\{0, a, b\}, \quad G_{1}(b, b)=\{0, b\} \quad$ and also we get $G_{2}(0,0)=\{0\}$, $G_{2}(0, a)=G_{2}(a, 0)=\{0, a\}, \quad G_{2}(0, c)=G_{2}(c, 0)=\{0, c\}, \quad G_{2}(0, d)=G_{2}(d, 0)=\{0, d\}$, $G_{2}(0, e)=G_{2}(e, 0)=\{0, e\}, \quad G_{2}(a, a)=\{0, a\}, \quad G_{2}(c, c)=\{0, c\}, \quad G_{2}(d, d)=\{0, d\}$, $G_{2}(e, e)=\{0, e\}, \quad G_{2}(a, c)=G_{2}(c, a)=\{0, a, c\}, \quad G_{2}(a, d)=G_{2}(d, a)=\{0, a, d\}$, $G_{2}(a, e)=G_{2}(e, a)=\{0, a, e\}, \quad G_{2}(c, d)=G_{2}(d, c)=\{0, c, d\}, \quad G_{2}(c, e)=G_{2}(e, c)=\{0, c, e\}$, $G_{2}(d, e)=G_{2}(e, d)=\{0, d, e\}$.

Therefore we can write all the sets $G(x, y)$ for any $x, y \in X$. Some of them are in the following:

$$
G(0,0)=G_{1}(0,0) \cup G_{2}(0,0)=\{0\}, \quad G(0, a)=G_{1}(0, a) \cup G_{2}(0, a)=\{0, a\}, \quad G(0, b)=\varnothing,
$$

$\ldots, G(d, e)=G_{2}(d, e)=\{0, d, e\}, G(e, e)=G_{2}(e, e)=\{0, e\}$. Since $G(d, e)=G_{2}(d, e)=\{0, d, e\}$ has not a greatest element, X is not a complicated subtraction bialgebra.

Proposition 2.1: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra. If X_{1} and X_{2} are complicated subtraction algebras then X is a complicated bialgebra.

Proof. Straightforward.

Theorem 2.4: Let $X=X_{1} \uplus X_{2}$ be a subtraction bialgebra and $I(\neq \varnothing)$ be subset of X. Then I is a biideal of X if and only if $G(x, y) \subseteq I$ for all $x, y \in I$.

Proof. Let I be a biideal of X. Then there exist two proper subsets I_{1} and I_{2} of X_{1} and X_{2}, respectively, such that $I=I_{1} \cup I_{2}$ and $I_{1} \triangleleft X_{1}$ and $I_{2} \triangleleft X_{2}$. By Proposition 1.1, we have $G_{1}(x, y) \subseteq I_{1}$ for all $x, y \in I_{1}$ and $G_{2}(x, y) \subseteq I_{2}$ for all $x, y \in I_{2}$. Then we get that $G(x, y) \subseteq I$ for all $x, y \in I$.

Conversely, let $G(x, y) \subseteq I$ for all $x, y \in I$. Then since $X=X_{1} \cup X_{2}$ and $I \subseteq X$, we write $I_{1}=I \cap X_{1}, I_{2}=I \cap X_{2}$ and $I=I_{1} \cup I_{2}$. Hence by the definition of $G(x, y)$, we obtain $G(x, y)=G_{1}(x, y) \subseteq I_{1}$ for all $x, y \in I_{1}$ and $G(x, y)=G_{2}(x, y) \subseteq I_{2}$ for all $x, y \in I_{2}$. Hence using Proposition 1.1 again, we have $I_{1} \triangleleft X_{1}$ and $I_{2} \triangleleft X_{2}$. Then by Theorem 2.2, we have that I is a biideal of X.

References

[1] B. M. Schein, Commun. in Algebra, 1992, 20, 2153.
[2] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston, 1969.
[3] B. Zelinka, Math. Bohemica, 1995, 120, 445.
[4] Y. B. Jun, H. S. Kim, E. H. Roh, Sci. Math. Jpn. Online e-2004, 397.
[5] Y. B. Jun, H. S. Kim, Sci. Math. Jpn. Online e-2006, 1081.
[6] Y. B. Jun, Y. H. Kim, K. A. Oh, Commun. Korean Math. Soc., 2007, 22 (1), 1.
[7] Y. Çeven, M. A. Öztürk, Hacettepe Journal of Mathematics and Statistics, 2009, 38 (3), 299.
[8] W. B. Vasantha Kandasamy, Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, 2003.
[9] Y. B. Jun, M. A. Öztürk, E. H. Roh, Sci. Math. Jpn., 2006, 64 (3), 595 (Online e-2006, 903-908).
[10] Y. B. Jun, K. H. Kim, International Mathematical Forum, 2008, 3 (10), 457.
[11] Y. B. Jun, Kyungpook Math. J., 2008, 48, 577.

