
Gazi Mühendislik Bilimleri Dergisi
2021, 7(2): 90-98

Konferans Bildirisi/Conference Paper
 https://dergipark.org.tr/gmbd

*Corresponding author: erdenerozcetin@hitit.edu.tr
To cite this article: Özçetin, E., Öztürk, G. “A Novel Permutation Based Solution Representation Technique for Vehicle
Routing Problems on GPUs”, Gazi Journal of Engineering Sciences, vol.7, no.2, pp. 90-98, 2021.
doi:https://dx.doi.org/10.30855/gmbd.2021.02.02

A Novel Permutation Based Solution Representation Technique for
Vehicle Routing Problems on GPUs
Erdener ÖZÇETİN*a, , Gürkan ÖZTÜRK b,

a,* Hitit Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü, Çorum, Türkiye
b Eskişehir Teknik Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü, Eskişehir, Türkiye

ARTICLE INFO ABSTRACT

Recevied: 10.01.2021
Accepted: 03.08.2021

In this study, the vehicle routing problem (VRP) which is a well-known NP-hard combinatorial
optimization problem is handled on graphic processing units (GPUs). Solving optimally any kind
of VRP is extremely hard when the instance size is large. For this reason, researchers tend to solve
the VRP with meta-heuristics. Although, many well-designed meta-heuristics produce near-
optimal solutions in reasonable time, still a challenge to solve large scale instances. To accomplish
this issue, researchers need novel, fast and wisely designed parallel operators for the proposed
algorithms. Furthermore, the success of these operators directly depends on the way the solution
is represented. This paper offers a new permutation based solution representation technique (π+)
for vehicle routing problems on GPUs. Results show that proposed technique can be used in many
algorithms to accelerate computations.

https://dx.doi.org/10.30855/gmbd.2021.02.02

Keywords:
Vehicle routing
problem
parallel programming
GPU
CUDA

Araç Rotalama Problemleri için Grafik İşlem Birimleri Üzerinde Yeni
Bir Çözüm Gösterim Tekniği

MAKALE

BİLGİSİ

ÖZ

Alınma: 10.01.2021
Kabul: 03.08.2021

Bu çalışmada, NP-Hard kombinatorik optimizasyon problemlerinden olan araç rotalama problemi
(ARP), grafik işlem birimleri (GPU) üzerinde ele alınmıştır. Problem boyutunun büyümesiyle
birlikte ARP'nin herhangi bir türünü optimal olarak çözmek oldukça zorlaşmaktadır.
Araştırmacılar bu yüzden metasezgisel yöntemlere yönelmektedir. Her ne kadar bu metasezgisel
algoritmalar kabul edilebilir sürelerde optimale yakın sonuçlar üretse de büyük boyutlu problemler
için bu durum farklıdır. Bu durumu aşmak için, araştırmacılar önerilen algoritmalar için yeni, hızlı
ve akıllıca tasarlanmış paralel operatörlere ihtiyacı bulunmaktadır. Bu operatörlerin başarısı
doğrudan çözümün temsil edilme şekline bağlıdır. Bu makale, ARP'yi GPU'lar üzerinde etkin bir
şekilde ele alabilmek için yeni bir permütasyon tabanlı çözüm gösterim tekniği (π +) sunmaktadır.
Sonuçlar, önerilen tekniğin hesaplamaları hızlandırmak için birçok algoritmada
kullanılabileceğini göstermektedir.

https://dx.doi.org/10.30855/gmbd.2021.02.02

Anahtar Kelimeler:
Araç rotalama
problemi
Paralel programlama
GPU
CUDA

1. INTRODUCTION (GİRİŞ)

The vehicle routing problem (VRP) can be defined
as the finding optimal routes of distribution plans with

side constraints [1]. Since the VRP introduced by
Dantzig and Ramser [2], researchers have studied
many variants of problem. This can be inferred that
popularity of the VRP still ongoing since many

https://orcid.org/0000-0002-6079-3159
https://orcid.org/0000-0002-9480-176X

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

91

applications of problem can be seen in real-life.
Besides popularity, it is still a challenge to solve VRP
optimally or near-optimally when the instance size
increases.

Metaheuristic algorithms are generally cited as

tools for solving certain types of optimization
problems, such as combinatorial optimization
problems like VRP. These algorithms do not
guarantee the exact solution developed for
optimization problems; but they are techniques that
give satisfactory solutions in a short time. They are
often used in cases where exact solution algorithms do
not provide solutions in a reasonable time.

Whether it is exact method or meta-heuristic still

requires intelligent and fast computational techniques.
Especially, when the researchers study with very large
scale problems, time is one of the most important
issues to generate a good solution.

A graphics processing unit (GPU) is a processor

designed to rapidly manipulate and alter memory to
accelerate the visualization of images. As well as
visualization, GPUs are increasingly used in
computing. With the motivation of shortening the
solution times of optimization problems, it is
becoming widespread to develop metaheuristic
algorithms on GPUs, mostly using by CUDA
environment. However, this technology is an obstacle
to the direct use of traditional programming
knowledge and skills. In order to develop applications
using this technology, it is necessary to understand the
architecture of GPU very well.

The problem under consideration must be suitable

for processing on the GPU. Furthermore, the
representation of the problem and constraint handling
will directly affect the efficiency of the GPU. In order
to develop the algorithms on GPUs effectively, it is
important to define proper representation to the
problem structure.

In this study, we focus on solution representation

of the VRP. We propose a new permutation based
solution representation technique which we called π+.
The main contributions of π+ can be summarized as
follows:

• It is easy to manipulate.
• It offers a tremendous speed up opportunity

on GPUs
• It can be adaptable for other combinatorial

optimization problems.

The remainder of this paper is organized as
follows. In Section 2, we review the VRP and meta-
heuristic algorithms on GPUs. In Section 3, we
describe the proposed permutation based solution
representation technique and in Section 4 we show the
computational experiments. In conclusion, we discuss
the efficiency of the proposed technique and the
potential for future studies.

2. VRP AND META_HEURISTICS on GPUS

(ARP ve GPU İÇİN METASEZGİSELLER)

Researchers commonly propose meta-heuristics
algorithms for any variant of VRP. These algorithms
can be single solution based such as tabu search,
simulated annealing and variable neighborhood
search or population based such as genetic algorithm
and ant colony optimization. In many studies, these
techniques can be hybridized and enriched with local
search strategies to give both intensification and
diversification properties to the algorithm.

2.1. VRP (Araç Rotalama Problemi)

There are many variants of the VRP in the
literature such as capacity constrained, time
windowed and open. When the VRP is mentioned, the
first thing that comes to mind is the capacity
constrained VRP. A vehicle fleet with the same
capacity in the capacity-limited VRP moves from a
warehouse and serves customers whose demands are
known in advance. Each customer gets service from
only one vehicle and each customer's demand is met.
The vehicles cannot exceed their capacity and return
to the warehouse at the end of service. It is aimed to
find the least costly routes under these constraints. In
one variant of the problem, there is the additional
constraint that the travel time of each vehicle should
not exceed a given travel time limit. In open VRP,
each route starts at the depot and ends at a customer,
visiting number of customers, each once, without
returning to the depot.

Mathematical model of heterogeneous fleet open

vehicle routing problem is given below.

Parameters:
𝐼, 𝐽 = {1, 2, … , 𝑛} : set of customers
𝐾 = {1,2, … , 𝑚} : set of vehicles
𝑟𝑘 : capacity of kth vehicle
𝑑𝑗 : demand of jth customer

𝑐𝑖𝑗𝑘 : cost between jth and jth customer with kth
vehicle

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

92

Decision variables:
𝑥𝑖𝑗𝑘

= {
1, if 𝑘𝑡ℎ vehicle 𝑠𝑒𝑟𝑣𝑒 𝑗𝑡ℎ 𝑐𝑢𝑠𝑡. 𝑎𝑓𝑡𝑒𝑟 𝑖𝑡ℎ 𝑐𝑢𝑠𝑡.

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦𝑗𝑘

= {
1, if 𝑘𝑡ℎ vehicle 𝑠𝑒𝑟𝑣𝑒 𝑗𝑡ℎ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Objective:

min 𝑧 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘𝑘𝑗𝑖 (1)

Constraints:
∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑗𝑘 , ∀𝑗, 𝑘 , 𝑗 > 1 𝑖,𝑖≠𝑗 (2)
∑ 𝑥𝑖𝑗𝑘 ≤ 𝑦𝑖𝑘 , ∀ 𝑖, 𝑘𝑗,𝑖≠𝑗,𝑗>1 𝑖 > 1 (3)
∑ ∑ 𝑥1𝑗𝑘𝑘 ≤ 𝑚 𝑗 (4)
∑ 𝑑𝑗𝑦𝑗𝑘 ≤ 𝑟𝑘 , ∀𝑘𝑗,𝑗>1 (5)
∑ ∑ 𝑥𝑖𝑗𝑘𝑘 = 1 𝑖 ∀𝑗 > 1 (6)
𝑢𝑖𝑘 − 𝑢𝑗𝑘 + 𝑟𝑘𝑥𝑖𝑗𝑘 ≤ 𝑟𝑘 − 𝑑𝑗 , 𝑖 ≠ 𝑗, 𝑖 > 1 & 𝑗 >

1 ve 𝑑𝑗 + 𝑑𝑖 ≤ 𝑟𝑘 (7)

With the objective function (Eq. 1) the total cost is

minimized. Constraint (Eq. 2) guarantees that jth
customer will be served by kth, if 𝑦𝑗𝑘 = 1. Constraint
set (Eq. 3) states that, if customer ith is visited by kth
vehicle; then this vehicle may travel or may not travel
to another customer. Constraint (Eq. 4) limits the
number of vehicles. It is ensured not exceeding the
capacities of the vehicles with (Eq. 5). Constraint set
(Eq. 6) indicates that every customer must be visited
exactly once. Relations (Eq. 7) are the sub-tour
elimination constraints.

VRP diversifies according to the needs in

application and gains new variants every day. Both
technological innovations and the needs of the
industry have led to the emergence of many different
types of VRP. However, the need to make effective
decisions in a short time has led researchers to various
studies on VRP's solution methods.

The diversity of models and solution approaches in

vehicle routing is enormous (see, e.g., [3] and [4]). For
detailed information for variants of problem, readers
are encouraged to see [5]. Some meta-heuristic
approaches are commonly studied to solve the VRP
like tabu search [6], variable neighborhood search [7]
and ant colony optimization [8]. The number of
metaheuristic algorithms in the literature can be easily
increased, but in this study, we focus on the solution
representations used in metaheuristic algorithm
design for the VRP.

2.2. Meta-heuristics on GPUs (Grafik İşlem Birimleri

Üzerinde Metasezgisel Algoritmalar)

Although metaheuristic algorithms search for
solution spaces with highly advanced techniques, the
increase in the size of the instances can cause
algorithms to not converge to the best solution.
Therefore, parallelization is a very important tool that
allows the development of new methods for solving
large problems.

Parallel computing has been an advanced way of

solving difficult large-scale problems for years. The
design and coding of sophisticated parallel
metaheuristic algorithms are directly affected by the
platform where the calculation will be made. GPU,
which is used as a visualization tool in computer
systems, is one of these platforms.

It is a fact that metaheuristic algorithms

significantly reduce the computational complexity
and perform the search for the best solution, but the
increase in the size of the problems causes the solution
times to increase and the solution quality to decrease.
In combinatorial optimization problems, the increase
in the instance size causes the solution space to grow
exponentially. However, computing the objective
function and many other calculations require more
processing time. For these reasons, a parallel design to
metaheuristic algorithms comes to the fore. In a
broader sense, parallel and distributed computing on
metaheuristic algorithms aims to:

• Speeding up the search,
• Improving the quality of the solution

obtained,
• Increasing consistency,
• Solving large scale problems.

With these purposes, parallelization in

metaheuristic algorithms occurs in three main
dimensions:

• Solution level parallelization: This type of
parallelization involves the simultaneous
computation of the evaluation of a single
solution by breaking it into pieces.

• Parallelization at the level of iteration: It
means that multiple solutions can be
calculated simultaneously or that the
neighborhood comparison on a solution can
be partitioned and evaluated simultaneously.

• Algorithmic level parallelization: It is the
simultaneous processing of different
metaheuristic algorithms in order to obtain
more consistent results.

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

93

2.2.1. Literature review (Literatür incelemesi)

When we focus on combinatorial optimization
problems that studied on GPUs, there are several
publications in the literature. Tsutsui and Fujimoto [9]
presented a parallel genetic algorithm on GPUs for the
quadratic assignment problem (QAP) in their study. In
this study, 3 to 12 times faster results were obtained
than the serial algorithm. In another study [10], the
same authors presented a method for the solution of
the quadratic assignment problem, consisting of
optimizing ant colonies and combining the 2-opt local
search algorithm. According to the results, it was
emphasized that the solution times on the GPUs are
24.6 times faster than the serial one. Czapinski [11]
developed multiple onset tabu search algorithm for the
QAP in the CUDA environment in their paper. In this
study, some of the literature problems developed for
the QAP were addressed and results were obtained in
up to 70 times shorter time with solutions that
averagely have 1% gaps to optimal solutions. The
same problems also studied on GPUs in [12] and [13].

Cecilia et al. [14] developed an ant colonies

optimization for the travelling salesman problem and
obtained solutions up to 20 times faster. In another
study conducted for the same problem, Delevacq et al.
[15] achieved an acceleration up to 23.6 by ant
colonies optimization.

Although the literature is rich on GPU

implementations of population-based metaheuristics,
only a few publications discuss routing problems.
Shulz [16] presented a study on applications of local
search algorithms for VRP. In the study, the memory
operations were emphasized which is one of the
bottlenecks when operating on GPUs. In another study
for the VRP, Groer et al. [17] have applied local
search techniques on GPUs. In another study, Szymon
and Dominik [18] developed a parallel tabu search
algorithm on GPUs for the multi-criteria VRP.

Local Search is a basic algorithm in discrete

optimization and used commonly with metaheuristics.
With the availability of CUDA, the number of papers
studying local search based metaheuristics on the
GPU increased. The technical report by Luong et al.
[19] discusses a CUDA based GPU implementation of
local search. The neighborhood evaluation is the most
computationally intensive task in local search based
algorithms such as variable neighborhood search. In
many applications, selecting the best move is not
always done on the GPU to use memory operation
efficiently. The papers (Luong et al. [19], O'Neil et al.

[20], Coelho et al. [21], Rocki and Suda [22]) all
discuss different implementation details and CUDA
specific optimizations.

The strategy that used for handling of constraints

and objective components for each solution in the
neighborhood is an almost perfect parallel task, see for
instance [23] and [24] for an illustrating example.

2.2.2. Handling VRP with meta-heuristics (ARP’nin

metasezgisellerle ele alınması)

There are some solutions representation methods
for VRP, such as permutation based and binary
encoding. An example of permutation based
representation can be seen for VRP in Figure 1. It is
known that representation methods for VRP strictly
depends on the constraints of problem. In addition to
this, time consuming operations can be handled
according to representation of problem.

Figure 1: An example of permutation representation

for VRP (ARP için permütasyon tabanlı gösterime bir örnek)

When it comes to parallel algorithms and

concurrent computing, representation design of the
problem comes to the fore. Davidovic et al. [25] offers
the permutation based representation the best for
concurrent computation on many types of problems.

3. Proposed Solution Approach (Önerilen Çözüm

Yaklaşımı)

In many CPU-GPU oriented meta-heuristic
algorithms for combinatorial optimization problems
like the VRP are designed as follows: The starting
solutions are generated and some complex operations
are made on the host (CPU side). Then the solution is
manipulated and sent to device (GPU side) to make
parallel computations. This procedure brings many
memory operations between host and device which
makes GPUs inefficient.

Presentation of solutions on the GPU is extremely

critical in terms of the simultaneous operation of the
algorithm. π+ has been proposed to show the solutions
on the GPU, which provides many advantages.

3.1. Representation (Gösterim)

The main purpose of the π+ is to standardize route
lengths. We used dummy demand points (Ø) to ensure
that all routes have equal lengths. The distance of all
demand points including the warehouse to Ø is 0, and

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

94

the distance of Ø to all demand points is a very large
number (M). At the same time, the distance of Ø to
itself is 0. However, Ø does not have demand.

To make the new representation format easy to

understand, we will continue to explain π+ on open
VRP. As it is mentioned before, in open VRP, a route
starts from depot and ends at a customer. In this
example, we assume that all the vehicles are identical.
Namely, they have the same capacities. Except for the
warehouse and dummy demand points, the demands
are arranged in ascending order to obtain the
maximum number of different demand points that can
be served with one vehicle. The number l is obtained
by adding 2 to this number. The reason for adding 2 to
this value is that, in accordance with open VRP, the
first elements in each route are created from the
warehouse last elements and the dummy demand
points.

0 3 1 4 5 Ø 0 6 2 7 Ø Ø

Figure 2: An example of π+ for open VRP (AARP için
bir π+ örneği)

The total length of a π+ is obtained by multiplying

the l by the number of vehicles. An example of π+ with
2 vehicles and 8 nodes including the warehouse is as
in Figure 2. Accordingly, it is assumed that a
maximum of 4 different demands can be loaded on a
vehicle according to the vehicle capacity by listing the
demands ascending. Therefore, the number l is
determined as 6. In π+ every l segment represents a
route.

For this example, the objective function of π+ can

be calculated as ∑ 𝑐𝑜𝑠𝑡[𝜋
+[𝑖], 𝜋

+[𝑖 + 1]] 𝑛−1
𝑖=0 . Please

note that only a dummy demand point is added as the
last column and last row in the cost or distance matrix.

3.2. Objective Function Calculation (Amaç fonksiyonu

hesaplaması)

Objective function calculation is a critical issue for
meta-heuristics. Depending on the flow of the
algorithm and type of the problem, the objective
function may need to be calculated over and over
again. π+ can reduce computation time for many
combinatorial optimization problems like the open
VRP on GPUs. This should be considered that each
route designed as a block on grid structure of GPU. A
vector can be defined on device for π+ and each
element of this vector will keep a route’s cost.

Two random instances were created to show the
effectiveness of the proposed solution representation
method in calculating the parallel objective function.
According to this, the instance A has 79 customers and
a depot with 10 vehicles, and the instance B has 385
customers and a depot with 47 vehicles. We generate
random solutions between 210 and 220. Time of
generating these solutions were discarded from
comparison. On the other hand, we took into account
the time of data transfers to GPU side for fair
comparison. The comparisons for these random
instances are shown in seconds in Table 1. This can be
said that the objective function evaluation on GPUs
with π+ for open VRP offers a tremendous speed-up.
In addition, it should not be overlooked that
algorithms do not only consist of calculating the
objective function, but also have many other
computational operators. For this reason, we focused
also other operators like local search.

Table 1: Performance comparison on objective
function calculation (Amaç fonksiyonu bakımından
performans karşılaştırması)

 A B
Number

of
solutions

n80k10
CPU
(secs)

n80k10
GPU
(secs)

n386k47
CPU
(secs)

n386k47
GPU
(secs)

210 0.126 0.085 0.356 0.097
211 0.154 0.088 0.620 0.100
212 0.300 0.089 1.412 0.104
213 0.529 0.094 2.500 0.106
214 1.162 0.096 5.528 0.143
215 2.285 0.136 10.027 0.152
216 4.383 0.142 20.497 0.210
217 8.887 0.151 42.560 0.351
218 20.770 0.225 84.241 0.676
219 34.871 0.365 174.168 1.378
220 73.872 0.649 372.455 3.282

3.3. Local Search Operators (Yerel arama operatörleri)

Most of well-designed meta-heuristics use local
search operators. We can divide local search
algorithms for VRP into intra-route and inter-route
operators. Intra-route algorithms search for some
neighborhoods in a route and inter-route algorithms
search for neighborhoods between two or more routes.

3.3.1. Intra-route local search operators (Rota içi

yerel arama operatörleri)

The most popular intra-route local search
algorithms are Or-opt, 2-opt or 3-opt for the VRP. We
implemented 2-opt and Or-opt for open VRP on GPUs
to show the efficiency of π+.

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

95

Since a similar strategy is followed in all
neighborhoods, the operation on GPU is explained in
detail only over the 2-opt neighborhood. Breaking (i,
j) and (i + 1, j + 1) connections by breaking (i, i + 1)
and (j, j + 1) connections with j ≥ i + 2 in each route,
simultaneously on all routes is tested. The inverse
conversion between (i + 1, j + 1) performing at the
appropriate ones is also performed simultaneously
(see Figure 3)

Figure 3. 2-opt neighborhood (2-opt komşuluğu)

In π+, the warehouse that states at the beginning of

the routes and the Ø that states at the end of routes are
excluded from the local search. However, in π+, Ø can
also take place somewhere else the last point. When
looking at the 2-opt neighborhood, the Ø in the route
is prevented from getting ahead of a demand point,
thanks to the large number of the distance of Ø to the
demand points in the cost matrix. This block level
parallelization can bring tremendous speed-up to
intra-route local search operators.

3.3.2. Inter-route local search operators (Rotalar

arası yerel arama operatörleri)

Basically, inter-route algorithms make moves
between two or more vehicles. When concurrent
search between vehicles is concerned, bank conflict
should be taken into consideration. For GPUs the local
memory is divided into memory banks. Each bank can
only address one dataset at a time, so if a half-warp
tries to load/store data from/to the same bank the
access has to be serialized. In detail, this is not
possible to compare a vehicle with more than one
vehicle and apply meaningful changes in
simultaneous operation (see Figure 4).

Figure 4. Bank conflict example (Bank uyuşmazlığı örneği)

For example, we suppose a one-to-one change (see

Figure 5) inter-route search is performed on an
example with three routes (R=Route, R1-R2, R1-R3).
In this case, in the comparisons of R1-R2 and R1-R3,
an element from R1 may be replaced by an element
from both R2 and R3, and this causes the algorithm to
malfunction or bank conflict in technological term.

Figure 5. One-to-one change neighborhood (Bire-bir

değişim komşuluğu)

In the proposed parallel method, comparisons up to

int ((number of vehicles) / 2) during the search
between vehicles are considered simultaneously. To
compare all vehicles with each other a loop must be
found in the code. In this case, there is a need for an
index set that states which routes to compare in each
repetition. Successively indexed routes are taken
simultaneously for comparison. A reciprocal change
of element between routes has been considered for
each vehicle to be used at most once. A route cannot
be processed more than once in a concurrent
transaction. An example of the index set can be seen
in Figure 6.

Figure 6. An example of index set (İndeks kümesi

örneği)

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

96

4. Computational experiments (Hesapsal deneyeler)

With the proposed π+ many calculations can be
done in a parallel manner on GPUs. For a meta-
heuristic algorithm that solves the VRP on graphic
processing units can easily calculate objective
function and run local search operators.

4.1. Test Environment (Test ortamı)

The platform for our investigations is a modern
NVIDIA Maxwell architecture GPU (GTX 980) with
16 streaming processors, each with 128 cores, a total
of 2048 cores for parallel computation. In addition,
our workstation has an Intel Xeon E5-2630 2.4 Ghz.
CPU and 32 GB RAM. Python 2.7 was used when
coding the algorithms. Furthermore, PyCuda [26]
library is used for GPU operations. Finally, kernels are
coded as C ++.

4.2. Performance of local search operators (Yerel

arama operatörlerinin performansı)

In this study, it is not aimed to design a total meta-
heuristic algorithm for open VRP. However, we
define a way to get performance of local search
operators on GPUs by means of time. This should be
considered that if we design an operator that has many
conditional statements, the efficiency of GPUs would
drop noticeably.

A wise performance evaluation method has been
followed. We test intra-route (2-opt, Or-opt) and inter-
route (one to one change) local search algorithms,
respectively with different iterations. It is not allowed
vehicle capacities to be exceeded, therefore we can
say that we have a time-consuming process during the
control of vehicle capacities in the exchange between
routes. Furthermore, we consider the time of initial
solution transfer to GPU side for fair comparison.
Furthermore, in contrast to objective function
evaluation we handle a single solution.

In Table 2, the results in seconds can be seen for
different iterations for problem A and B. This can be
said that memory transfer is a bottleneck for GPU
side, up to 5000 iterations. This can be comprehended
that when the number of iterations increases, things
turn in favor of GPU. In the B problem with 386
customers and 47 vehicles, when the number of
iterations is increased, an acceleration of up to five
times is observed. As a consequence, a significant
acceleration can be given to the algorithm with the
proposed strategy.

Table 2. Performance comparison on local search
operators (Yerel arama operatörleri bakımından performans
karşılaştırması)

A B
Iterations n80k10

CPU
(secs)
(serial
code)

n80k10
GPU
(secs)
(parallel
code)

n386k47
CPU
(secs)
(serial
code)

n386k47
GPU
(secs)
(parallel
code)

1000 0.705 1.166 1.788 3.366
2500 1.655 1.754 3.670 4.785
5000 2.698 2.227 6.299 6.213
10000 5.993 3.566 14.365 9.137
25000 12.367 5.217 29.437 13.767
50000 22.335 7.425 56.432 18.998
100000 39.215 9.665 110.369 29.231

5. Conclusions and Further Research (Sonuçlar ve

gelecek çalışmalar)

For high GPU utilization, there are a number of
implementation issues, the most important ones being
related to configuration and use of memory structures,
and code diversion for configurable thread blocks.
There is still a need to solve large combinatorial
optimization problems like the VRP with fast meta-
heuristic algorithms. GPU offers an opportunity to
accelerate algorithms.

In this study, we propose a novel permutation-
based solution representation technique which is easy
to manipulate for the VRP. The proposed
representation technique can be used with many meta-
heuristic algorithms and many variants of the VRP.
We showed the efficiency of this technique on
objective function calculation and some local search
operator. For the objective function calculation, the
parallel implementation runs up to 100 times faster
than the sequential one. A promising acceleration for
the local search operators have also been obtained. For
further studies, researchers can adapt the proposed
representation technique to other combinatorial
optimization problems such as quadratic assignment
problem with new heuristic or meta-heuristic
algorithms.

ACKNOWLEDGMENT (TEŞEKKÜR)

This work was funded with projects by Eskisehir
Technical University, project numbers 1601F004 and
19ADP022.

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

97

CONFLICT OF INTEREST STATEMENT

(ÇIKAR ÇATIŞMASI BİLDİRİMİ)

No potential conflict of interest was reported by the
authors.

REFERENCES (KAYNAKLAR)

[1] Gilbert Laporte, “The vehicle routing problem: An

overview of exact and approximate algorithms”,

European Journal of Operational Research, vol. 5 no.

3, pp. 345-358, 1992. doi:https://
dx.doi.org/10.1016/0377-2217(92)90192-C

[2] G. Dantzig and J. Ramser, “The Truck Dispatching

Problem”, Management Science, vol. 6, pp. 80-91,

1959. doi: https://dx.doi.org/10.1287/mnsc.6.1.80

[3] P. Toth and D. Vigo, “The granular tabu search and

its application to the vehicle-routing problem”,

Informs Journal on Computing, vol. 15, no. 4, pp.

333-346, 2003.

doi: https://dx.doi.org/10.1287/ijoc.15.4.333.24890

[4] D. Pisinger and S. Ropke, “A general heuristic for

vehicle routing problems”, Computers & Operations

Research, vol. 34, pp. 2403-2435, 2007.

doi: https://dx.doi.org/10.1016/j.cor.2005.09.012

[5] S. N. Kumar and R. Panneerselvam, “A Survey on

the Vehicle Routing Problem and Its Variants”,

Intelligent Information Management, vol. 4, pp.

66-74, 2012. doi: https://dx.doi.org/10.4236/

iim.2012.43010

[6] E. Taillard, P. Badeau, M. Gendreau, F. Guertin

and J.Y. Potvin, “A Tabu Search Heuristic for the

Vehicle Routing Problem with Soft Time Windows”,

Transportation Science, vol 31, no. 2, pp. 101-195,

1997. doi:https://dx.doi.org/10.1287/trsc.31.2.170

[7] K. Fleszar, I. Osman and K. Hindi, “A variable

neighbourhood search for the open vehicle routing

problem”, European Journal of Operational

Research, vol. 195, pp. 803-809, 2009.

doi: https://dx.doi.org/10.1016/j.ejor.2007.06.064
[8] Bin Yu, Zhong-Zhen Yang, Baozhen Yao, “An

improved ant colony optimization for vehicle routing

problem”, European Journal of Operational

Research, vol. 196, no. 1, pp. 171-176, 2009.

doi:https://dx.doi.org/10.1016/j.ejor.2008.02.028

[9] Shigeyoshi Tsutsui and Noriyuki Fujimoto,

“Solving quadratic assignment problems by genetic

algorithms with GPU computation: a case study,” in

Proceedings of the 11th Annual Conference

Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers
(GECCO '09), New York, USA, 2009, pp. 2523–
2530.
doi:https://dx.doi.org/10.1145/1570256.1570355

[10] S. Tsutsui and N. Fujimoto, "Fast QAP solving

by ACO with 2-opt local search on a GPU," 2011

IEEE Congress of Evolutionary Computation (CEC),

2011, pp. 812-819.

doi: https://dx.doi.org/10.1109/CEC.2011.5949702.

[11] M. Czapinski, “An effective Parallel Multistart

Tabu Search for Quadratic Assignment Problem

CUDA platform”, J. Parallel Distrib. Comput. , vol.

73, pp. 1461-1468, 2013.

doi:https://dx.doi.org/10.1016/j.jpdc.2012.07.014

[12] E. Özçetin, G. Öztürk, “A Parallel Iterated Local

Search Algorithm on GPUs for Quadratic Assignment

Problem”, International Journal of Engineering

Technologies, vol. 4, no. 2, pp. 123-127, 2018.

[13] E. Özçetin, G. Öztürk, “A Hybrid Genetic

Algorithm for the Quadratic Assignment Problem on

Graphics Processing Units”, Anadolu University

Journal of Science and Technology-A Applied

Sciences and Engineering, vol. 17, no. 1, pp. 167-180,

2016. doi: https://dx.doi.org/10.18038/btda.15399

[14] J. M. Cecilia, J. M. Garcia, A. Nisbet, M. Amos

and M. Ujaldon, “Enhancing data parallelism for Ant

Colony Optimization on GPUs”, J. Parallel Distrib.

Comput., vol. 73, pp. 42-51, 2013.

doi: https://dx.doi.org/10.1016/j.jpdc.2012.01.002

[15] A. Delevacq, P. Delisle, M. Gravel and M.
Krajecki, “Parallel Ant Colony Optimization on
Graphics Processing Units”, J. Parallel Distrib.
Comput., vol. 73, pp. 52-61, 2013.
doi: https://dx.doi.org/10.1016/j.jpdc.2012.01.003

[16] C. Shulz, “Efficient local search on the GPU-

Investigations on the vehicle routing problem”, J.

Parallel Distrib. Comput., vol. 73, no.1, pp. 14-31,

2013.

[17] C. Groer, B. Golden and E. Wasil, “A Parallel

Algorithm for the Vehicle Routing Problem”,

INFORMS Journal on Computing, vol. 23, pp.

315-330, 2011. doi: https://dx.doi.org/10.1287/

ijoc.1100.0402

[18] J. Szymon and Z. Dominik, “Solving Multi-
criteria Vehicle Routing Problem by Parallel Tabu
Search on GPU”, Procedia Computer Science, vol. 18,
pp. 2529-2532, 2013.

Özçetin, Öztürk / Gazi Mühendislik Bilimleri Dergisi 7 (2). (2021) 90-98

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2017 Gazi Akademik Yayıncılık

98

[19] Thé Van Luong, Nouredine Melab, El-Ghazali

Talbi. “GPU Computing for Parallel Local Search

Metaheuristics”, IEEE Transactions on Computers,

vol. 62, no. 2, pp.173-185, 2013.

doi: https://dx.doi.org/10.1109/TC.2011.206

[20] M.A. O’Neil, D. Tamir, M. Burtscher, “A

parallel GPU version of the traveling salesman

problem,” in: Proceedings of the International

Conference on Parallel and Distributed Processing

Techniques and Applications, Lasvegas, Nevada,

USA, 2011, pp.348-353.

[21] I. Coelho, L. Ochi, P. Munhoz, M.Souza, C.

Bentes, R. Farias, “The Single Vehicle Routing

Problem with Deliveries and Selective Pickups in a

CPU-GPU Heterogeneous Environment”,

International Journal of Production Research, vol.

54, no. 4, 945-962, 2016. doi:https://
dx.doi.org/10.1080/00207543.2015.1035811

[22] K. Rocki and R. Suda, “Accelerating 2-opt and

3-opt Local Search Using GPU in the

Travelling Salesman Problem” 2012 12th

IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, 2012, pp. 705-706.

doi: https://dx.doi.org/10.1109/CCGrid.2012.133.

[23] N. Melab, E.G. Talbi, S. Cahon, E. Alba, G.

Luque, “Parallel Metaheuristics: Models and

Frameworks,” in E.G. Talbi Parallel Combinatorial

Optimization, John Wiley & Sons, Inc., New York,

2006, pp. 149-161.

[24] André R. Brodtkorb, Trond R. Hagen,

Christian Schulz, Geir Hasle, “GPU computing in

discrete optimization. Part I: Introduction to the

GPU”, EURO Journal on Transportation and

Logistics, vol. 2, no. 1–2, pp. 129-157, 2013.

doi: https://dx.doi.org/10.1007/s13676-013-0025-1

[25] T. Davidović, P. Hansen, N. Mladenovic,

“Permutation-based genetic, tabu and variable

neighborhood search heuristics for multiprocessor

scheduling with communication delays”, Asia Pacific

Journal of Operational Research, vol. 22, no.3, 2005.

doi:https://dx.doi.org/10.1142/S021759590500056X

[26] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P.

Ivanov ve A. Fasih, “PyCUDA and PyOpenCL: A

scripting-based approach to GPU run-time code

generation”, Parallel Computing, vol. 38, no. 3, pp.
157-174, 2012.

NOT: This article is an expanded version of the paper
presented at the International Conference on
Engineering Technologies (ICENTE'20) has been
organized in Konya, Turkey on 19-21 November
2020.

