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Abstract

In this paper, we suggest an outer-product-of-gradient (OPG) variant of Lagrange multiplier (LM) test statistic for testing
homoskedasticity in cross-sectional spatial autoregressive models. We use the OPG method to estimate the asymptotic
variance of the score functions in a quasi-maximum likelihood (QML) setting. We use the OPG variance estimate to develop a
robust test statistic in the local presence of spatial parameters. Under some general assumptions, we establish the asymptotic
distribution of our test statistic under the null and local alternative hypotheses. In a Monte Carlo simulation, we investigate
the finite sample size and power properties of our test. Our simulation results show that our tests perform well in finite
samples.
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YATAY KESIT MEKANSAL OTOREGRESIF MODELLERDE ESIT YAYILIMIN TEST EDILMESI
Oz
Bu ¢alismada, yatay-kesit mekansal otoregresif modellerde esit yayilmi test etmek igin Lagrange ¢arpani (LM) test istatistiginin
bir dig Grtin gradyani (OPG) varyantini 6neriyoruz. Skor fonksiyonlarinin asimptotik varyansini sézde-maksimum olabilirlik
(QML) metodu altinda tahmin etmek igin OPG yontemini kullaniyoruz. Mekansal parametrelerin yerel varliginda direngli
bir test istatistigi gelistirmek igin OPG varyans tahmincisini kullaniyoruz. Bazi genel varsayimlar altinda, test istatistigimizin
asimptotik dagilimini sifir ve yerel alternatif hipotezler altinda gosteriyoruz. Bir Monte Carlo similasyonunda, testimizin

sonlu 6rnek boyutunu ve giig 6zelliklerini aragtiriyoruz. Similasyon sonuglarimiz, testlerimizin sonlu 6rneklerde iyi galistigini
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1.Introduction

In this paper, we consider a spatial model that has a spatial lag in the dependent variable and the disturbance
terms, and develop an outer-product-of-gradient (OPG) variant of Lagrange multiplier (LM) test statistic for
testing the presence of homoskedasticity in the disturbance terms. As in Breusch & Pagan (1980), we assume
that heteroskedasticity is induced by some exogenous variables through an unknown function such that the
variance of the ith disturbance term has the form 6? = 62h(z{a,), where h is an unknown function and z; is the
p X 1 vector of heteroskedasticity inducing exogenous variables with the matching parameter vector o. Under
the assumption that h(0) = 1, the presence of homoskedasticity can be tested by testing the null hypothesis
H§: oy = 0. We use the quasi-maximum likelihood (QML) framework to develop our suggested OPG test for
testing Hi: oy = 0, and then establish its asymptotic distribution under the null and the local alternative
hypotheses.

Our approach is based on the fact that the score-type functions of spatial models forms a martingale
difference array. This inherent martingale structure allows us to estimate the asymptotic variance of score-type
functions by the OPG method. We use this OPG estimate of variance term to form a score-type test statistic for
testing H§: «y = 0. To make our statistic robust to the presence of spatial dependence in the dependent variable
and/or the disturbance terms, we first show how to adjust the standard score functions. We then determine the
asymptotic variance of the adjusted score functions to form a quadratic test statistic that has an asymptotic chi-
squared distribution with p degrees of freedom under the null hypothesis. Our suggested test has two important
properties: (i) it is a valid test in the local presence of spatial parameters, and (ii) its computation only requires
the OLS estimator of a linear regression model. We design a Monte Carlo simulation to investigate the finite
sample size and power properties of our test statistic. The results show that our test statistic has good finite
sample properties.

In the literature, the martingale structure of the score-type functions in spatial models is explored in Kelejian
& Prucha (2001, 2010) to develop a central limit theorem for spatial processes. Born & Breitung (2011) use the
OPG variance estimate of score-type functions to derive simple test statistics for testing the presence of a spatial
lag term in the spatial auto-regressive and spatial error models.? The simple test statistics suggested in Born &
Breitung (2011) are equivalent to the one-directional LM tests derived in Burridge (1980) and Anselin (1988)
when the disturbance terms are homoskedastic. To improve the finite sample size and power properties of LM
tests, Baltagi & Yang (2013a, 2013b) suggest the standardized OPG variants of one-directional LM tests by
correcting the mean and the variance of the standard LM test statistics. In the context of standard panel data
models, the literature shows that we can improve the performance of the standard LM tests through the
standardizing process, especially when the asymptotic critical values are used to implement the test (Baltagi et
al., 1992; Koenker, 1981; Moulton & Randolph, 1989). The simulation results in Baltagi & Yang (2013a, 2013b)
show that the standardized OPG variants for testing spatial dependence can also perform relatively better in
finite sample. Jin & Lee (2018) suggest the OPG variants of C(a)-type tests (Neyman, 1959) in the ML and
generalized method of moments (GMM) settings for testing the presence of spatial dependence in cross-
sectional spatial autoregressive models.

As shown in the preceding paragraph, the bulk of literature on testing in spatial econometrics focuses on
testing the presence of spatial dependence in spatial models. Testing homoskedasticity in the disturbance terms
of a spatial model has not received much attention in the spatial econometric literature. However, it is important
to test the presence homoskedasticity in spatial models, since most of the estimators suggested in the literature
are formulated under the assumption that the disturbance terms are homoskedastic (Kelejian & Prucha, 2010;
Lee, 2004, 2007; Lin & Lee, 2010; Taspinar et al., 2019). Anselin (1988) specifies heteroskedasticity through a
skedastic function and develops an LM test for testing the presence of homoskedasticity in cross-sectional spatial
autoregressive models. Baltagi et al. (2020) suggest an adjusted quasi-score method for constructing diagnostic
tests for homoskedasticity in spatial cross-sectional, static and dynamic panel models. In comparison to the
testing approaches in Anselin (1988) and Baltagi et al. (2020), our approach is relatively simple since the
computation of our test does not require the estimation of spatial parameters.

1 There is a growing literature on spatial econometric models. Among others, see Anselin ( 1988), LeSage & Pace (2009) and Elhorst (2014).
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The rest of this paper is organized as follows. In Section 2, we state our spatial model and show how
heteroskedasticity is induced through some exogenous variables. In Section 3, we show how our OPG variant of
LM test can be systematically derived under some general assumptions. We establish the asymptotic distribution
of our test under both null and local alternative hypotheses. In Section 4, we describe our Monte Carlo design
and report the simulation results. In Section 5, we conclude and suggest some directions for future studies. Some
technical details and simulation results are collected in an appendix.

2. Model Specification

We consider the following cross-sectional spatial autoregressive model.
Y=AWY+XB,+U, U-=p,MU+V, (2.1)

where Y = (y4,¥,,*,¥,)" is the n X 1 vector of observations on the dependent variable, X is the n X k
matrix of observations on the exogenous variables with matching parameter vector S, U = (uy, Uy, ..., u,)" is
the n X 1 vector of regression disturbance terms, and V = (v, v,,:++,1,)" is the n X 1 vector of innovation
(disturbance) terms. The spatial weights matrices that specify spatial dependence among spatial units are
denoted by W and M. The scalar parameters 4, and p, in (2.1) are called the spatial parameters as they measure
the degree of spatial dependence among the elements of Y and U, respectively. As in Baltagi et al. (2020), we
assume that the elements of VV have independent distributions with mean zero and variances specified by the
skedastic function o7 = 6Zh(z/a,), where h is an unknown smooth function and z; is the p X 1 vector of
heteroskedasticity variables with the matching parameter vector «,. The model is stated with the true parameter
vector 8, = (B4, 68, 1g, Po, af)’, and we use 8 = (B’,02,1,p,a’)’ to denote any other parameter vector values
in the parameter space.

When a, = 0 holds, we get 6 = 62h(0). To get a homoskedastic model when a, = 0, following Baltagi et
al. (2020), we further assume that the heteroskedasticity function h satisfies h(0) = 1. Then, the null hypothesis
for testing homoskedasticity against heteroskedasticity can be stated as

Hg: dg = 0. (22)

Our goal, as shown in the next section, is to develop a robust OPG test in the local presence of 1 and p,. Let
¢o = (Ao, po)’. Consider the null and local alternative hypotheses H((,p: ¢o =0and Hf’: b0 = 64,/\/5, where &4
is a non-stochastic vector of constants. Our suggested test statistic for testing H& will be valid irrespective of
whether Hg’ or Hf holds.

3.The Robust OPG Test

Let S(A) =1, — AW, R =1, — pM and H(a) = Diag(h(z1@), h(z3a), , h(z,a)), where Diag(-) forms a
diagonal matrix from a given input vector. Then, the likelihood function of the model can be derived as

InL(8) = —2In(2r?) + In|S(D)| + In|R ()| — 5 In|H (@)| - #V’(B)H‘l(a)V(B), (3.1)

where V(68) = R(p)S(A)Y — R(p)Xp and | - | denotes the determinant operator. Let S, (6) = an::;e) fora €
{Bo, 02, A0, Po» @p} and A(x) = %ﬁf). Using (3.1), under both H§ and Hg’, it can be shown that

1 1 n
Sp(60) = J_OZX V(6o), S52(6o) = T‘G}V (60)V (6o) — ZTC(?'

1. 1. (3.2)
S2(60) = a_OZV (B0)WY, Sp(8o) = a—gV (6o)MV (6y),
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n
1 .
520) =55 h(0) ) (v} = o)z
20, .
=1

where h(0) is a constant term which will vanish from our test statistic. Let S(8,) =
(s,;(ao),s(,z(eo),51(90),5,,(90),5[;(9))'. Then, the score functions in (3.2) can be expressed as

MV (6,)
V' (80)P,V (6) — E(V' (60) P,V (60)
5(6g) = | V' ©)P2V (06) = E(V' 000,V (60)) + V' (00)1T,
V' (80)V (00) = E(V' (80) PV (6,)

—h(0) XLy (V7 — o)z
0

(3.3)

where I, = X/oZ, I, = WXB,/0¢, @, = I,/208, ®, = W /6 and ®@; = M /cZ. For any n X n matrix @,
consider the following decomposition: @ = ®* + @2 + @!, where @% is the strictly upper triangular matrix, @'
is the strictly lower triangular and @¢ is the diagonal matrix. Thus, the quadratic form V'(8,)®V (6,) can be
written as V'(8,)®V(6,) = V' (0,) (% + @' + @)V (0,) = V' (05)E(0o) + V' (8)PV (8,), where £(8,) =
(% + @YV (B,). Thus, we can express the zero-mean quadratic term V'(8,)®V (8,) — E(V'(8,)®V (6,)) as

V0PV (05) = BV (8)PV (680)) = ) (v + (v} = o)) = ) i (0o,

where g;(8,) = (v;&; + (W2 — 0@)Py), & is the ith element of £(8,) and ¢;; is the (i,i)th element of &.
Thus, the zero-mean quadratic terms V'(6,)®,.V(6,) — E(V'(0,)®,V(6y)) in (3.3), for r =1,2,3, can be
expressed as V' (6)®,V (65) — E(V'(60)®,V (6,)) = Zit1 gri (6), where g,;(60) = (vi&y; + (v — 63)¢rii)
and &, is the ith element of §,.(6y) = (®¥ + D)V (6,). This exposition indicates that we can express S(6,) in
the following way:

S©0) = ). 9i 00, 34
i=1

where  g;(6,) = (95,3(90):91',02 (60), 91,2(60), gi,p(go)'gil,a(go)) with gi,ﬁ(eo) = IT};v;, 9i,c? (6o) =

1 .
91i(60), 9ia(80) = 92:(60) + I121v1, 9i,p(60) = g3:(6o) and g;,(6o) = Eh(o)(viz — 0§)z;. It follows that the
sequence {g;(0,), &;} forms a martingale difference sequence (Baltagi et al., 2020; Jin & Lee, 2019; Kelejian &

Prucha, 2001), where {{;} is the increasing sequence of o-fields generated by (vq,:,v;) for i =1, ,n.
Therefore, the variance of S(6,), K = Var(S(6,)) = 2™, E (9:(84)9}(6,)), can be estimated by its sample

analogue K = Y, g; (6)g,(8), where 8 is a constrained consistent estimator of 6, under H& and HY. That is,
1 1
;K = ;K + Op(l).

92InL(6)) 2 = . . a ¢
Let Jop = —E (W) fora,b € {§,0°, A, p,a}. Let O be the constrained estimator of 6, under Hg and H, .

Then, the sample analogues of J;;, terms under H§ and Hgb can be derived as

1 777/
= T%}Z Diag(VV"),

- 1 . -
]a,B = ﬁ((l; QV)O2Z2)X, Jao2

- 1 - - 1 ~ -
Jar =532 (W) OV),  Jap =52 (WY =WXB) OV),
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- 1 - 1 1
]Bﬁ =§XX, ]302 =FX V, ]BA=FX WY,

1 n - 1 1

]0_20_2 zﬁllvllz_ﬁ; ]UZAZFV,WY: jazp=

'3 1 2 2 7 1 ! I'NISTT 7 1 7112
]/1/1=§||WY|| +tr(W=), Jap =g VWMV, Jop =§||MV|| ,

where [, is the p X 1 vector of ones, V=V(®)=Y—XB, Z=(21,25,,2,) is the n X p matrix of
observations on the heteroskedastic variables, AS = A + A’ for any square matrix A, @ denotes the Kronecker
product, © denotes the Hadamart product, tr(+) is the trace operator, and || - || is the Euclidean norm.

Lety = (.8’10-2),' and define J.p = Jaa _]ab]b_bljba a~nd Jab-c = Jan(0o) _]ac]c_cl]cb for a,b,c € {y,p,a}.
Our suggested test for testing HY is formulated with S, (6). In order to get an asymptotic null distribution for
S,(0) that is centered around zero in the local presence of ¢,, we need to adjust this score function. In our
setting, it can be shown that the adjusted score function takes the following form (for details see the proof of
Theorem 1).

S;(é) = Sa(é) _]ada-y]:;-lystp(é)- (3.5)
Note that S () reduces to the standard score function S,(8) when ja¢~y = 0 holds. Assume that K is

partitioned into sub-matrices K,; according to the dimensions of a and b, where a,b € {y, ¢, a}. Then, our
suggested robust test statistic is formulated with S} (8) and is given by

T = S;/(0)Dz}S4(0), (3.6)
where

Day = Bay +JaprJoy BorIoyloay = Jasr)pyBoay = BaprlorSpay: (3.7)
with

Bay = Raa + JayJyy KyJiy Tya = RayJiy Fya = Jaylyy Kyas (3.8)

Bagy = Rag = JayJry Byp — Rey it Tyg + Jar Ty By Ty (3.9)

Byy = Kog +IorJiy KnJyy Tyo — KTy Ty = Jon Ty Ky (3.10)

Bsay = Kpa = JovJiy Kya = KoyJiy Tya + Jon Ty KTy Ty (3.12)

To establish the asymptotic null distribution of our suggested test in (3.6), we need the following

assumptions.
Assumption 1: The disturbance terms {v;}!-, are independent with means zero and variances o? =

0éh(z]ay). Furthermore, E|v;|*** < oo for some k > 0.

Assumption 2: The spatial weights matrices W and M are uniformly bounded in both row and column sums
in absolute value.

Assumption 3: The exogenous variables in X and Z are non-stochastic and are uniformly bounded, and the
limit lim,,_, o %X 'X exists and is non-singular.

Assumption 1 specifies the distribution of the disturbance terms. We need the moment condition E|v;|*** <
oo for some k > 0 in order to use the central limit theorem in Kelejian & Prucha (2001, 2010) for the linear and
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quadratic forms of the disturbance terms. Assumptions 2 and 3 are standard assumptions in the spatial
econometric literature, e.g., among others, see Kelejian & Prucha (2010) and Lee (2004). To show the asymptotic
null distribution of their suggested tests, Baltagi et al. (2020) further assume that S1(1) and R™1(p) are
uniformly bounded in both row and column sums in absolute value, uniformly in ¢ over a neighborhood of ¢y.
In our setting we do not need this restrictive assumption as our vector of score functions and our expressions on
Jab(8) terms do not involve S~1(1) and R™1(p).

The following theorem shows the asymptotic distribution of our test T under HZ: &ty = 8,/v/n, where &, is
a non-stochastic vector of bounded constants.

Theorem 1: Assume that Assumptions 1-3 hold. Then, under HE: aty = 8, /Nn and irrespective ong5 and Hf’,
it follows that

T4 2o, (3.12)

where )(5 (9) is the chi-squared distribution with p degrees of freedom and the non-centrality parameter

Y= 6{1(]0(-}/ _]a¢-y]4_>-1y]¢a-y)’D¢;-%/(]a-y _]ad)-y]gz-ly](pa-y)é‘a/n- (3'13)

Proof: See Appendix A.

Theorem 1 shows that the asymptotic distribution of T under H{: ay = 60‘/\/5 is )(,%(19) irrespective of
whether H(? or Hf’ holds. Thus, the asymptotic null distribution of our test, i.e, when §, = 0 holds, is )(127. That
is, we can use the critical values from the )(5 distribution to implement our test. Note that our test statistic
simplifies significantly if /o4, = 0 holds. In that case, the test statistic takes the following form

T = S"(0)B;15(0).

The asymptotic distribution of this simplified version under H: a, = §,/v/n will be T 2 )(12,(19), where 9 =
6&]&.),8,;.},],1.],5“. However, this simplified version is invalid in our case since /4., # 0.

Remark 1: Our suggested test statistic in (3.6) is formulated with 6 = (f',52,0,0,0")', which is the
constrained estimator obtained under H§ and Hg’. Note that under H§ and Hg’, our model reducestoY = Xf3, +
V. Thus, we can use the OLS estimator § = (X'X)™'X'Y and % = V'V /(n — k) to calculate our test statistic. On
the other hand, the test statistics suggested in Baltagi et al. (2020) require the estimation of ¢, by a non-linear
optimization routine. Thus, it is clear that our approach has a computational advantage over the approach
suggested in Baltagi et al. (2020).

4.Monte Carlo Simulations

To investigate the finite sample size and power properties of our suggested test, we conduct Monte Carlo
simulations in this section. We consider the following data generating process

Y = AWY + Boly + BiX + U, U=p,MU+V,

where [, is the n X 1 vector of ones. We set §, =5, f; =1 and W = M. The spatial autoregressive
parameters take values from {0,0.1,0.2,0.5}. We use two specifications for the spatial weights matrix: (i) the rook
contiguity and (i) the queen contiguity. To this end, the n spatial units are randomly allocated into Vn X vn
square lattice graph. In the rook contiguity case, w;; = 1 if the j’th observation is adjacent (left/right/above or
below) to the i’th observation on the graph. In the queen contiguity case, w;; = 1 if the j’th observation is
adjacent to, or shares a border with the i’th observation. Both weights matrices are row normalized so that each
row sums to unity. The sample size n takes three values {169,361,529}. We generate X according to X ~
N (0,1, I,). The heteroskedasticity is generated according to o2 = oZexp(z;a,), where ¢ =1, z; = x; and
a, € {0,1}. Thus, we will investigate the empirical size properties of our test under the case of o, = 0, and the
empirical power properties under the case of ay = 1. The disturbance terms are drawn independently as v; ~
o;€;, where (i) €; ~ N(0,1) and (i) €; ~ (x3 — 3)/V6. We set the number of repetitions to 1000 and use the
nominal sizes {10%, 5%, 1%} to calculate the empirical rejection rates in all cases.
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The Monte Carlo results are summarized in Tables 1-4 for the rook contiguity case. To save space, we present
the results for the queen contiguity case in Appendix B. The empirical size properties of the proposed test can
be evaluated from the results in Tables 1 and 2. The first row in the first panel of Table 1 shows that when there
are no spatial effects the empirical size of the proposed test statistic is close the nominal levels chosen. In this
panel, we observe that the test still performs well when there is spatial dependence in the error terms. As
expected though, as the value of the p becomes quite large, the test becomes oversized. The first rows in panels
2,3 and 4 can be used to evaluate the empirical size of the test when there is spatial dependence in the outcome
variable. We observe that the empirical size of the test statistic is satisfactory but deteriorates as the value of 4
becomes large. The remaining rows in panels 2, 3 and 4 can be used to evaluate the size properties of the test
when there is spatial dependence in the outcome variable and the error terms. We observe that the test statistic
performs well. For example, when A = 0.2, p = 0.1 and n = 361, at the 5% level, the empirical size of the test
is about 6.1%. As expected though, when both 1 and p become very large, the test becomes oversized. The
overall findings from Table 2 are similar, but the rejection rates are slightly higher when the error terms are
generated from the chi-squared distribution as opposed to the standard normal distribution. Although the
proposed test statistic is asymptotically robust to non-normality of the error terms, in finite samples its behavior
may be affected when the sample size is quite small. The empirical power properties of the test statistic can be
assessed from the results in Tables 3 and 4. In both tables, we observe that the proposed test has the satisfactory
power and rejects the false null hypothesis with probability close to one. The results seem robust to non-
normality of the error terms as well. As expected, the empirical power of the test increases as the sample size
increases.

Table 1 Empirical size properties: Rook contiguity case and ¢€; ~ N(0,1)

n=169 n=361 n=529

A 10% 5% 1% 10% 5% 1% 10% 5% 1%

0 0 0.112 0.064 0.017 0.091 0.048 0.007 0.114 | 0.067 | 0.016

0 0.1 0.107 0.056 0.008 0.102 0.045 0.01 0.114 | 0.056 | 0.013

0 0.2 0.127 0.068 0.01 0.121 0.058 0.012 0.123 0.071 0.014

0 0.5 0.195 0.128 0.045 0.168 0.095 0.029 0.169 0.104 | 0.041

0.1 0 0.111 0.061 0.017 0.094 0.048 0.018 0.114 0.06 0.015
0.1 0.1 0.115 0.063 0.014 0.113 0.058 0.017 0.106 0.065 0.015
0.1 0.2 0.146 0.083 0.022 0.127 0.077 0.02 0.131 0.066 0.015
0.1 0.5 0.193 0.12 0.044 0.197 0.133 0.049 0.191 0.128 0.031
0.2 0 0.131 0.064 0.014 0.115 0.062 0.012 0.112 0.064 |0.016
0.2 0.1 0.127 0.07 0.017 0.114 0.061 0.009 0.12 0.061 0.018
0.2 0.2 0.149 0.086 0.02 0.126 0.07 0.016 0.137 0.079 0.018
0.2 0.5 0.214 0.142 0.064 0.203 0.135 0.052 0.208 0.135 0.054
0.5 0 0.205 0.134 0.049 0.194 0.113 0.035 0.193 0.117 0.039
0.5 0.1 0.215 0.135 0.052 0.205 0.134 0.048 0.215 0.134 | 0.05
0.5 0.2 0.245 0.185 0.092 0.241 0.169 0.068 0.271 0.19 0.092
0.5 0.5 0.495 0.427 0.303 0.489 0.406 0.271 0.473 0.4 0.266
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Table 2 Empirical size properties: Rook contiguity case and €; ~ (x% — 3)/6

n=169 n=361 n=529
A p 10% 5% 1% 10% 5% 1% 10% 5% 1%
0 0 0.128 |0.069 |0.024 |0.138 |0.073 [0.014 |0.129 |0.076 |0.015
0 0.1 0.162 |0.085 |0.026 |0.142 0.082 0.017 0.136 |0.069 |0.02
0 0.2 0.186 |0.117 |0.029 |0.145 |0.08 0.018 |0.157 |0.079 |0.022
0 0.5 0.22 0.144 |0.056 |0.181 0.108 0.035 0.18 0.096 |0.021
0.1 0 0.157 |0.091 |0.03 0.15 0.089 0.031 0.118 |0.069 |0.024
0.1 0.1 0.139 |0.082 |0.025 |0.14 0.082 0.022 0.135 |0.072 |0.019
0.1 0.2 0.225 |0.145 |0.046 |0.159 |0.093 |[0.023 |0.17 0.091 |0.028
0.1 0.5 0.243 | 0.157 |0.058 |0.242 0.158 0.068 0.225 |0.148 |0.064
0.2 0 0.169 |0.111 |0.031 |0.147 0.085 0.029 0.139 |0.073 |0.021
0.2 0.1 0.211 |0.136 |0.037 |0.16 0.084 0.025 0.146 |0.081 |0.024
0.2 0.2 0.207 |0.128 |0.038 |0.171 |0.104 [0.031 |0.169 |0.097 |0.029
0.2 0.5 0.322 |0.248 |0.113 |0.279 0.195 0.093 0.256 |0.178 |0.084
0.5 0 0.248 |0.167 |0.065 |0.259 0.175 0.077 0.265 |0.172 |0.06
0.5 0.1 0.307 |0.213 |0.115 |0.278 0.191 0.082 0.283 | 0.185 |0.076
0.5 0.2 0.328 |0.252 |0.132 |0.333 0.248 0.126 0.341 |0.269 |0.129
0.5 0.5 0.586 |0.52 0.391 |0.542 0.459 0.344 0.535 |0.448 |0.316
Table 3 Empirical power properties: Rook contiguity case and €; ~ N(0,1)
n=169 n=361 n=529
! p 10% 5% 1% 10% 5% 1% 10% 5% 1%

0 0 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0 0.1 0.999 0995 |0.995 |1.000 |[1.000 |1.000 |1.000 |1.000 |1.000

0 0.2 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0 0.5 1.000 [1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000

0.1 0 0.997 0.996 0.995 0.998 0.998 0.998 1.000 1.000 1.000

0.1 0.1 0.995 0.994 0.993 1.000 1.000 1.000 1.000 1.000 1.000

0.1 0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.1 0.5 0.999 0999 |0.999 |[1.000 |1.000 |1.000 |1.000 |1.000 |1.000

0.2 0 0.999 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0.5 1.000 [1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000

0.5 0 1.000 [1.000 |0.999 |1.000 |1.000 [1.000 |1.000 |1.000 |1.000

0.5 0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4 Empirical size properties: Rook contiguity case and €; ~ (x% — 3)/6

n=169 n=361 n=529
A p 10% 5% 1% 10% 5% 1% 10% 5% 1%
0 0 0.998 |0.996 |0.989 |1.000 |[1.000 |0.998 |1.000 |1.000 |1.000
0 0.1 0.998 [0.998 |0.993 |1.000 |1.000 |0.998 |1.000 |1.000 |1.000
0 0.2 0.998 10.997 |0.993 |1.000 |[1.000 |1.000 |1.000 |1.000 |1.000
0 0.5 1.000 |0.999 |0.990 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0 0.997 |0.997 |0.988 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0.1 0.999 |[0.998 |0.986 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0.2 0.999 |0.998 |0.994 |1.000 [1.000 |0.999 |1.000 |1.000 |1.000
0.1 0.5 1.000 |1.000 |0.997 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0 0.999 |0.997 |0.987 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0.1 1.000 [0.999 |0.993 [1.000 |1.000 |[1.000 |1.000 |1.000 |1.000
0.2 0.2 0.999 |0.998 |0.990 |1.000 |[1.000 |0.999 |1.000 |1.000 |1.000
0.2 0.5 0.999 |0.999 |0.997 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0 1.000 |0.999 [0.998 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.1 1.000 [1.000 |1.000 |[1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.2 1.000 |1.000 [1.000 |[1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.5 1.000 |1.000 |[0.999 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000

5.Conclusion

It is important to test the presence of homoskedasticity in spatial models because the conventional
estimators suggested in the literature are usually formulated under the assumption of homoskedastic
disturbance terms. In this paper, we suggested an outer-product-of-gradient (OPG) variant of Lagrange multiplier
(LM) test statistic for testing homoskedasticity in a spatial model that has a spatial lag term in the dependent
variable and the disturbance terms. Our suggested test is simple to compute since its computation only requires
the OLS estimator of a linear regression model. More importantly, the implementation of our test does not
require knowing whether or not spatial dependence is present in the dependent variable and/or the disturbance
terms. That is, our test statistic is robust to the (local) presence of a spatial lag in the dependent variable and the
disturbance terms. We designed a Monte Carlo simulation to assess the finite sample properties of our suggested
test. Our simulation results attest that our test statistic has good finite sample size and power properties.

For a cross-sectional spatial autoregressive model, we first showed how to adjust the score function, and
then how to determine the asymptotic variance of the adjusted score function to formulate a valid test statistic.
The same approach can also be used to develop test statistics for some other popular spatial models, including
(i) spatial models with endogenous weights matrices, (ii) higher order spatial autoregressive models, and (iii)
matrix exponential spatial models. The same approach can also be used to develop test statistics for static and
dynamic spatial panel data models with fixed or interactive effects. All of these extensions can be explored in
future studies.
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Appendix

A. Proof of Theorem 1

We start with the mean value expansions of — S «(0), S¢(9) and —= S (9) around 6, when both H: a, =

Sq/Nnand HY: o = 8,/v/n hold:

1. 10S,(6) 10S,(6) 10S,(0) — _
\/_HS(X(Q) _\/_ﬁsa(go)_a da’ (x_% a¢/ ¢ +£ ay/ ‘/E(V—Yo), (A1)
1 L 1054(0) 105,(6) 105,(0) — _
ﬁ%(g) _ﬁs"’(%) Ry o BCNELY 8¢ t 3y’ V(@@ = vo), (A.2)
1 10S,(0 108, (6 165
\/_ESY(H) = T y(6o) — n 9a (, )501 T 6Y¢S’ )545 @ )\/_(V Yo)» (A.3)

where 6 lies between § and 6,,. Under Assumptions 1-3, it can be shown that %]ab = %]ab +0,(1) fora,b €
{v, ¢, a}, e.g., see the proof of Theorem 2.1 in Baltagi et al. (2020). Then, the results in (A.1)-(A.3) can be

expressed as

1. 1 1 1 L e
_nsa(g) - \/_Hsa(go) + E]aada + ;]a¢6¢ - E]ay n(y - yO) + Op(l), (A.4)
1 1 1 1 1 y
\/_ES¢(9) = ﬁ&p(@o) + E]¢a6a + ;]¢¢5¢ - E]d)y\/ﬁ(y —Yo) +0,(1), (A.5)
1 1 1 1 1 ~
ﬁsy(g) = ﬁsy(eo) + E]yaaa + Z]y¢5¢ - ;l]yy\/ﬁ(y - Vo) + Op(l)- (A.6)

Note that \/L_Sy(é) = 0 holds in (A.6) by definition. Then, solving (A.6) for vVn(# — y,) and substituting the

resulting equation into (A.4) and (A.5) yields

1
_Sa(eo)

1 _ 1 1

\/_ﬁsa(g) = (1 ’ _]ay]);yl) \/Z + ;]wy((;a + ;]aqﬁ-y&ﬁ + Op(l): (A-7)
\/_ZS}/(HO)

Ts¢(e) (1, ]¢yjyy1) += ]¢ s + 14,0, /84 +0,(1), (A.8)

" fs L (60)
n

where [, is the p X p identity matrix. Under Assumptions 1-3, it can be shown that 7155(90) £ N(0,K/n), eg.,

see the proof of Theorem 2.1 in Baltagi et al. (2020). Then, the asymptotic distribution of \/%Sa(é) can be
determined from (A.7) by using the asymptotic normality of score functions. Thus, it follows that
(A.9)

1 a1 1
S @) AN (S JarBe + ~JapyBps Bay/n),
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where

Ba~y = Kga +]ay]}7y1Kyy])7y1](;y - Kay]];yl]!xy _]ay];leya- (A.10)
Using (A.8) and similar steps, we obtain

1

~ A 1 1

where
Byy = Kpg +]</>y])7y1Kw]J771]<ll>y - K¢V]17y1]<ll>y _]¢V]171/1Ky¢- (A.12)

Under H{, the result in (A.11) shows that n]q;,ly \/%Sd,(é) 4 N(6¢, B¢.y/n). Then, using (A.9) and this last result,

an adjusted score function that has zero asymptotic mean in the local presence of ¢, can be derived as

isgc(g) = i(Sat(é) _]a(j)q/](;-lystp(é))- (A.13)
=0 =5

Next, we show how to determine the asymptotic distribution of \/%S;(é). To that end, we combine (A.7) and
(A.8), and obtain

1

—=5y(6o)
1 . \/ﬁ 14 1
—5,(0 - n n
vioe® =<‘Jay/w1 Iy OP“) Loeon [+[ T ), aae
1 ) B v OX o 1 1 D ) .
=50(® ok B A N nfor%e * Joarda
n \—5¢(90)/

vn

where 0,4 is the a X b matrix of zeros. Using %5(90) 2 N(0,K/n), the joint asymptotic distribution of
\/%Sa(é) and \/%Sd)(é) can be determined as

s Q) L s 4l s
N 4 Eja-y at E]adw ¢ Byy/n Bggpy/n
N ) ) (A.15)
1 ~ 1 1 B¢a_y/n B¢_y/n
\/—qub(g) E]¢~y5¢ + E]d)aq/(sa
where
Bom/ = Ko +]ay])7leyy]}7}}]c/xy - Kay]}jyl]c,(y _]ay]];leya: (A.16)
Ba¢'V = Rag _]“Yj);}’lKWl’ - Kay];vl]m +Jay]17y1Kw]J7yljy¢' (A.17)

Bg., and By, are defined similarly. Using %fab = %]ab + 0,(1), the adjusted score function can be written as

1.

1 B L /\/_ﬁsa(e)\

\/—ﬁsg(e)=(12, “Jagdor)| | op(D) (A.18)
\/_ZS¢(9)
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Then, using (A.15) under H§ and Hf’, we obtain

1 .~ 2
\/_ZS“(H) ~N(0, Dyy/n), (A.19)
where
Da~y = Ba-y +]a¢-V]<5-1yB¢-V]$vlyj¢a~y _]aqb-)/]&lquﬁwy - Ba¢-V]<;~1y]¢a-y' (A.20)

Thus, the asymptotic distribution of\/izS;‘, (6) under HY and Hgb can be derived as

1

~ 1
\/HS;(Q) f’ N (Z (]u-y _]a¢-y]<;-1}/]¢a-y)6w Da-y/n)' (A-Zl)

Then, using Theorem 8.6 of White (1994) on the asymptotic distribution of quadratic forms, we obtain

A , - "o - . .
T~ x2(®), where 9 =64y, —]a¢.y]¢%,]¢,x.y) Dzd(Jay —]a¢.y]¢%,]¢,x.y)6a/n is the non-centrality
parameter.
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B. Additional Simulation Results

Table 5 Empirical size properties: Queen contiguity case and €; ~ N(0,1)

n=169 n=361 n=529

A p 10% 5% 1% 10% 5% 1% 10% 5% 1%
0 0 0.096 |0.049 |0.007 |0.099 |0.045 |0.007 |0.092 |0.051 |0.009
0 0.1 0.113 |0.062 |0.013 |0.111 [0.054 |0.009 |0.099 |0.049 |0.007
0 0.2 0.136 |0.075 |0.014 |0.121 |0.056 |0.012 |0.105 |0.057 |0.013
0 0.5 0.139 |0.074 |0.023 |0.152 |0.088 |0.018 |0.125 |0.08 0.019
0.1 0 0.149 |0.077 |0.012 |0.102 |0.046 |0.009 |0.11 0.059 |[0.019
0.1 0.1 0.125 |0.065 |0.018 |0.125 |[0.067 |0.012 |0.105 |0.062 |0.016
0.1 0.2 0.117 |0.055 |0.016 |0.104 |[0.054 |0.016 |0.129 |0.058 |0.013
0.1 0.5 0.148 |0.085 |0.021 |0.163 |0.097 |0.026 |0.156 |0.091 |0.021
0.2 0 0.128 |0.07 0.011 |0.107 |0.057 |[0.015 |0.117 |0.061 |0.011
0.2 0.1 0.118 |0.06 0.011 [0.118 |0.064 |0.015 |0.109 |0.058 |0.015
0.2 0.2 0.137 |0.073 |0.007 |0.126 |0.058 |0.02 0.103 | 0.055 |0.013
0.2 0.5 0.152 |0.094 |0.032 |0.154 |0.082 |0.022 |0.175 |0.11 0.033
0.5 0 0.159 |0.085 |0.026 |0.164 |0.089 |0.031 |0.146 |0.079 |0.029
0.5 0.1 0.169 |0.101 |0.025 |0.194 [0.124 |0.045 [0.165 |0.1 0.033
0.5 0.2 0.183 |0.123 |0.05 0.204 |0.135 [0.053 |0.201 [0.116 |0.043
0.5 0.5 0.333 |0.267 |0.156 |0.335 [0.254 |0.128 |0.327 |0.239 |0.132

Table 6 Empirical size properties: Queen contiguity case and €; ~ (¥ — 3)/6

n=169 n=361 n=529

A P 10% 5% 1% 10% 5% 1% 10% 5% 1%
0 0 0.17 0.099 |0.044 |0.129 |0.069 |0.012 |0.114 0.067 0.013
0 0.1 0.139 |0.079 |0.029 |0.144 |0.09 0.027 |0.107 0.062 0.012

0 0.2 0.159 |0.088 |0.026 |0.134 |0.072 |0.027 |0.13 0.076 0.02
0 0.5 0.175 |0.108 |0.041 |0.166 |0.097 |0.027 |0.172 0.103 0.044
0.1 0 0.134 |0.071 |0.025 |0.117 |0.079 |0.023 |0.122 0.065 0.02

0.1 0.1 0.166 |0.096 |0.03 0.127 |0.069 |0.019 |0.122 |0.06 0.02

0.1 0.2 0.157 |0.084 |0.026 |0.138 |0.067 |0.021 |0.135 |0.075 |0.023
0.1 0.5 0.2 0.118 |0.045 ]0.186 |0.116 |0.043 |0.179 ]0.115 |0.044
0.2 0 0.174 |0.105 |0.037 |0.144 |0.081 |0.024 |0.117 |0.064 |0.022
0.2 0.1 0.184 |0.105 |0.026 |0.141 |0.085 |0.026 |0.119 ]0.061 |0.016
0.2 0.2 0.202 |0.134 |0.042 [0.16 0.086 |0.029 |0.149 |0.088 |0.022
0.2 0.5 0.291 |0.198 |0.079 |0.241 |0.155 |0.067 |0.235 ]0.155 |0.064
0.5 0 0.231 |0.145 |0.063 [0.19 0.111 [0.038 |0.197 |0.122 [0.034
0.5 0.1 0.257 |0.186 |0.079 [0.23 0.155 |0.052 |0.208 [0.137 |0.048
0.5 0.2 0.328 |0.256 |0.106 |0.261 |0.184 |0.082 |0.264 |0.176 |0.08

0.5 0.5 0.469 |0.393 |0.234 |0.406 |0.332 |0.19 0.415 |0.339 |0.204
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Table 7 Empirical power properties: Queen contiguity case and €; ~ N(0,1)

n=169 n=361 n=529

A p |10% |5% 1% 10% |5% 1% 10% |5% 1%

0 0.996 |0.995 | 0.994 |1.000 |1.000 |1.000 |1.000 |0.999 |0.999
0.1 |0.990 |0.987 |0.980 | 1.000 |1.000 |{0.999 |1.000 |1.000 |1.000
0.2 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0 0.5 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0 1.000 |1.000 |0.996 |1.000 |1.000 |1.000 |1.000 |0.999 |0.999
0.1 0.1 |0.999 |0.999 |0.997 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0.2 |0.999 |0.998 | 0.995 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0.5 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0 0.999 |0.999 |0.999 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0.1 |1.000 |0.999 |0.998 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0.2 |1.000 |0.999 |0.999 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0.5 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0 1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.1 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.2 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.5 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000

o |O |©o

Table 8 Empirical power properties: Queen contiguity case and €; ~ (x% — 3)/6

n=169 n=361 n=529

A p |10% [5% 1% 10% |5% 1% 10% |5% 1%

0 0.997 |0.997 |0.979 | 1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 |0.995 [0.992 |0.989 |1.000 |1.000 |0.998 |1.000 |1.000 |0.999
0.2 |0.993 [0.991 |0.967 |1.000 | 1.000 |1.000 |1.000 |1.000 |1.000
0 0.5 |1.000 [0.999 |0.988 |1.000 | 1.000 |0.999 |1.000 |1.000 |1.000
0.1 0 1.000 |0.999 |0.992 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0.1 |0.994 |0.992 |0.985 |1.000 | 1.000 |0.998 |1.000 |1.000 | 1.000
0.1 0.2 |1.000 [0.996 |0.984 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.1 0.5 |1.000 |1.000 |0.993 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0 0.998 |0.998 |0.992 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0.1 |0.999 [0.996 |0.980 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0.2 |1.000 [0.998 |0.992 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.2 0.5 |1.000 |1.000 |0.998 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0 1.000 |1.000 | 0.996 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.1 |1.000 |1.000 |0.999 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.2 |0.999 [0.999 |0.999 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000
0.5 0.5 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000 |1.000

o |Oo |o
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