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Abstract

In this paper, we derive generating functions for the generalized Gould-Hopper polynomials in terms of the generalized Lauricella function
by using series rearrangement techniques. Further, we derive the summation formulae for that polynomials by using different analytical
means on its generating function or by using certain operational techniques. Also, generating functions and summation formulae for the
polynomials related to generalized Gould-Hopper polynomials are obtained as applications of main results. In addition, we derive a theorem
giving certain families of bilateral generating functions for the generalized Gould-Hopper polynomials. The results obtained here include
various families of bilinear and bilateral generating functions, miscellaneous properties and also some special cases for these polynomials.
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1. Introduction and Preliminaries

Special functions possess a lot of importances in numerous fields of mathematics, physics, engineering and other related disciplines covering
different topics such as differential equations, mathematical analysis, functional analysis, mathematical physics, quantum mechanics and so
on. Particularly, the family of special polynomials is one of the most useful, widespread and applicable family of special functions. Some
of the most considerable polynomials in the theory of special polynomials are generalized Hermite-Kampé de Fériet (or Gould-Hopper)
polynomial (see [1]). In the theory of special functions and special polynomials, and forms produced for functions have been studied and
developed by several mathematicians cf. [3]-[9], [13] and see also the references cited therein. Generating function is used in a wide variety
of research topics, even in modern combinatorics, to find specific properties and formulas for numbers and polynomials. They are used in
finding certain properties and formulas for numbers and polynomials in a wide variety of research subjects, indeed, in modern combinatorics.
In this study, we will examine the properties of generalized Gould-Hopper polynomials. Summation formulas for these polynomials, bilinear
and bilateral generating function relations will be obtained.

First, let’s give the notations we will use in our article.

We use the Pochhammer symbol (1), defined by ([11])

(), = 1, if n=0
Pl AA+D (A1), if nel,2,3,..,

also, we note that

mk
(n—mk)! = ((_]zl)m:”, 0<k< [%]
and
(n—M)! ((l)l‘;”!, 0<M<n,
-
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where M is defined by M = mkj +moky + ...+ mjkj, my,my,....mj € N; ki ,ka,....k; € No = NU{0}. We recall that, the Kampé de Fériet
function of two variables is defined by ([11]),

FPak (ap) : (bg):(cr)s Xyl = i 7 <af)r+qu‘ (55), H];:I( i) ¥ y
L | (eg) = (Bm) s () ) T G (o), Ty (By), Ty (1), 7t st

A further generalization of the Kampé de Fériet function (1.1) is the generalized Lauricella function of several variables, which is defined as

([11D):

(1.1)

F CADI?/;’”;?::;B( ) (21,22, 2n)
P (@) : 67,0",... 0] [(6) : (§")]:[(B") : (9")]; -5 [(B) : (9M)];
Fonom 3425 e 9in
C:D';D";...;D") o 1 - (- S 1A - ST 1A« (AN 21,22 Z
() y' sy y e [(d) 2 615 [(d") - 87]5..5[(d™) = (8)];
(1.2)
(1.3)
- i Q(my my,ccsmy) A2 2 (1.4)

where

o T (87) g U1 (89) 10 (87
ITj-1 ("/)m,9<+m294'+ Ay 6" Ij=1 (2] H 267 ~ITj- m, 6"
Q(ml’mz""’m") = HC ( ) ' D (g D) n
J=1 my; +m2q/”+ Amy, V/(") HI 1 (d ) H ( J)mgﬁ” ”.szl (dJ )m &
j n0j

and the coefficients GJ(k), j=12,...,A; q)j(k), j=1,2,..B®, q/j(k), j=12,...C; 5J<-k>, j=1,2,..,.D%): forall k € {1,2,...,n} are real
and positive, (a) abbreviates the array of A parameters a;,as, ...,da, (b(k)> abbreviates the array of Bk parameters b;k) ,j=1,2, ...,B(k);

for all k € {1,2,...,n} with similar interpretations for (c¢) and (d(k>> ,k=1,2,....n; et cetera. Note that, when the coefficients in equation

(1.4) equal to 1, the generalized Lauricella function (1.4) reduces to a direct multivariable extension of the Kampé de Fériet function (1.1).
Taking coefficients equal to 1 in definition (1.4) and for n = 2, we have the Kampé de Fériet function of two variables,

q1 / q2 "
P P (ap) : (b, ) (bg,) _ v T (@) ITJ2 (b‘j)’"l = <bj)’"2 a4 a
15135 (Zl,Zz) L5135 (c ) (d/ ) (d”) 21,22 . . T .
1 e 1,2 =0 H./=1 (Cj)ml-‘rmz Hj]:1 <d3> m Hj2:1 (d},>m2 e

The Gould-Hopper family of polynomials is defined by the exponential generating function (see [2]),
©0 . tn i
Y i () =t (1.5)
- n!

where j € N with j > 2. In the case j = 1, the corresponding generating polynomials are simply expressed by the Newton binomial formula.
Upon setting j =2 in (1.5) gives the classical Hermite polynomials H,§2> (

extensions of some special polynomails (see [3]).

x,y) and the polynomials have been used to define bivariate
The generalized-Gould-Hopper polynomials (G-GHP) P,,<j <) (x,y) are defined by the following generating function ([10]):

ZP”) xy) = (c>1,j>2). (1.6)
n=0
It is clear that P\ (x, y) is explicitly given by ([10]),

[n/]] n—js,,s .
T ()t (1.7)

(J:¢) —
P () n’szo (n—js)!s!

where the symbol [rn/j] denotes the greatest integer less than or equal [/ j]. Note that ¢ = e gives P,Sj’e) (x,y) = H,<,j> (x,y)andc =e, j =2,
gives P,Sz’e) (x,y) = Hyp(x,y), where

HY () =n B 20 Ha(ey) = ) (18)

(n— ]a) s (n—2s)!s!

are Hermite-Kampé de Fériet (or Gould-Hopper) polynomials. These polynomials are specified by the generating function

Yo o B ()l = Y H (xy) by = 0T
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Further, we note the following link:
Hy (v, =1) = Hy o (x), (1.9)

where Hy, j , (x) denotes the generalized Hermite polynomials defined by Lahiri ([14]):
- o

Z Hn,j,v(x); — evxt—t!.

n=0

In this paper, we derive the generating functions for the generalized Gould-Hopper polynomials (G-GHP) P,Sj ) (x,y) in terms of the
generalized Lauricella function of two variables FC D If,, [.] by using series rearrangement techniques. Further, we derive the summation

formulae for the generalized Gould-Hopper polynomials P,g ) (x,y) by using different analytical means on the generating function of the

generalized Gould-Hopper polynomials P,Ej ) (x,y) or by using certain operational techniques.
2. Generating functions for the Generalized Gould-Hopper Polynomials

First, we prove the following generating function for the generalized Gould-Hopper polynomials Pn(j <) (x,y).

Theorem 2.1. For a suitable bounded sequence { f (n)},_ .the following generating function for the generalized-Gould-Hopper polynomials
P,EJ ) (x,y) holds true:

Y FmE et = ¥ fne jo) O frlnc)” @1
= S s!
Proof. Denoting the L.h.s. of equation (2.1) by A; and using equation (1.7), we find
o [1/]] n’x” Js s(lnc)”'”_jst”
nz:o; fn (n— js)!sn!
Replacing n by n+ jis in the above equation and using (2.2) ([11]):
o  M<n
Y Y ok, Z Z o (ki,kp,....kpsn+M), 2.2)
n=0k1 k... ky=0 =0k ka,....kr=0
where M is defined by M = myky +moky + ...+ mjk;, my,my,...mj € N;ky,ky,....kj € Ngo=NU{0}, we find
_ i Flntjs) (xtlnc)’:’(sf’tj lnc)s‘
n,5=0 St
O
Remark 2.2. Taking
Fln) = H?:l (aj)n
T, (65), 1T (¢),,
in assertion (2.1) of Theorem 2.1 and using definition (1.4) (for n = 2), we deduce the following consequence of Theorem 2.1.
Corollary 2.3. The following generating function for the G-GHP P,,(j ) (x,y) holds true:
o P (4 ‘ n a1, P ;
Lo, ;) o, e = s < o1, (@ 15] =m0 1> W
where the notation (a)‘i7 is used to represent the product H§:1 aj
Example 2.4. Taking p =g =1=1 in equation (2.3), we get
Z (bl()il()gl) P(j K (x, y) : le;333) ( [by: [ﬁlji 71[’611] :: 17,]]7— = xtine, ! lnc) ' @9

Further, taking b; = ¢; = 1 and replacing a; by a+ 1 in equation (2.4), we get
o (a+n\ (e " 1:0:0 [a+1:1, j]:——; ;
Zo< " )P” W) =00\, gt g e e ).
n—=
Remark 2.5. Taking
H?:l (aj)n
151 (5)),,

in assertion (2.1) of Theorem 2.1 and using definition (1.4) (for n = 2), we deduce the following consequence of Theorem 2.1.

fn) =
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Corollary 2.6. The following generating function for the generalized Gould-Hopper polynomials P,Ej ) (x,y) holds true:

o HP:I (aj) i " 0: a1, ——: .
Z %Py'c) (x,y) - = Fq’?(')%o ( Eb;}, ; l’q . atlne, yt! lnc) . 2.5)
=0 1Tj-1 (), n 1-hJl s
Example 2.7. Taking p = g = 1 in equation (2.5), we get
- n JC> " 1:0;0 [01317ﬂ5_§_; j
g P y) =Fl.00 ( br:1,j]: —— xtlne, yt/Inc ). (2.6)

Next, taking ay = by = 1 in equation (2.6) and using equations ( 1.6) in the r.h.s. of the resultant equation, we get

o

Y A () = = e,
Remark 2.8. Taking

Dy v (D
f(n) =J (w) —kgbm7

(the generalized Bessel function or the Bessel-Wright function) in Theorem 2.1, we deduce the following consequence of Theorem 2.1.

Corollary 2.9. The following bilateral generating function for the generalized Gould-Hopper polynomials P,gj <) (x,y) holds true:

o0 . i M - - — .
Zb],g” (w)P,SJ’ )(x,y) = :Flo:'(%) ( et j]—m (xtlnc), (ytjlncfw)) . 2.7)

Proof. Denoting the 1.h.s. of equation (2.7) by A, and using definitions

S

)
Jn = 7.7
() & k(n+ jk)!

and (1.7), we find

s=0

vy (3 G0t (R Ry e i
Ao = g’ (,;)k!(n-l-jk)! nt Z (n—js)!s! n!’

Replacing n by n+ js, we find

Z i (fl)kwkx”y‘y(lnc)”'”
k!(n+ js+ jk)!n!s!

n+js

Y Y o6h=Y ¥ ok, @8)

s=0k=0 s=0k=0
we find,
= & Xy ( 1nc)n+stn+]s s (71)k W
A = _ e (——— . 2.9
2= nz‘bszz) (n+ js)!nls! k;)s k!(sfk)!(yﬂlnc) 29)
Finally, using the expansion ([11])
A‘ had xil
(-0 =Y (), =
= n!
and definition (1.4) (for n = 2) in equation (2.9), we get the r.h.s. of assertion (2.7) of Corollary 2.10. O

In the forthcoming section, we establish summation formulae for the generalized Gould-Hopper polynomials P,gj ©) (x,y) by using series
rearrangement techniques and also by making use of the operational techniques.
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3. Summation Formulue for the Generalized Gould-Hopper Polynomials

(17)(

First, we prove the following result involving the generalized Gould-Hopper polynomials X,¥).

Theorem 3.1. The following summation formula for the generalized Gould-Hopper polynomials P,gj ) (x,y) holds true:

psl oo = ¥ 5 (1) (7) o= e 5 )

Proof. Replacing t by u+t in Eq.(1.6) and then using the formula ([11])

=

Y rn) =Y flatm)—

n,m=0

" um

mm’

in the resultant equation, we find the following generating function for the generalized Gould-Hopper polynomials P,Ej ) (x,):

i P(J ¢ (t+ ”) Cx(r+u)+y(t+u)j

r n n! k)

which can be written as

- (Jse) "u" x(t+u) y(t+u)

nAmZ;()Pner ( 7y) n'm' C c ’
oo n,m
(t+u) (/) ru y(t4u)
n‘mz:OPrH»m ( 7y) n'm! -

Replacing x by w in the above equation and equating the resultant equation to the above equation, we find

P (j,¢) num (w—x)(t+u) - P(J"C> ™
n;o n+m w,y PP =c n‘éo n+m (x7y) M7
or
o0 k oo n,,m
(je) "u" ((w—x)(t+u)(Inc)) () "u
P = P
) = P X e G
which on using formula (3.2) in the first summation on the r.h.s. becomes
I ) k+r k+r n,,m
(J¢) "u™ _ (W 7)6) (lIlC) Jsc l u
n;::OinLm (W7y) ! 7](,2::0 X n;OPmLm ,y 'm'
Now, replacing n by n — k, m by m — r and using (2.8); in the r.h.s. of Eq.(3.3), we find
5P oy L5 B B, ) (0 e
W7 - .
n,m=0 e Y nim! n,m=0k,r=0 klr! (n - k) !(m - r)!

Finally, one quating the coefficients of like powers of  and u in Eq.(3.4), we get the assertion (3.1) of Theorem 3.1.

Remark 3.2. Taking m = 0 in assertion (3.1) of Theorem 3.1, we deduce the following consequence of Theorem 3.1.

Corollary 3.3. The following summation formula for the generalized Gould-Hopper polynomials P,Ej ) (x,y) holds true:

i ( > Y (ine) PY9 (x,y).

Remark 3.4. Replacing w by w+x in (3.5), we obtain

n

P (waxy) =Y <Z) () (e PIY (x,).

k=0

Further, we prove the following result involving products of the generalized Gould-Hopper polynomials P,Ej ) (x,y):

(3.1)

3.2)

(3.3)

34)

(3.5)

(3.6)

Theorem 3.5. The following summation formula involving products of the generalized Gould-Hopper polynomials P,Ej ) (x,y) holds true:

X\ (XS . .
%Py D (wy) PV (W,y) =

L ot imey () — A - 1)
k=0 i=0 (r— jk) k! (s — jI)!I!

PY) () PV (X ).

3.7
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Proof. Consider the product of G-GHP P,Sj ) (x,y) generating functions (1.6) in the following form:

C*(xwzfy(fxz)/ﬁLXWny(7XZ)1') _ i (_1)r+sPr(j~,C) (w,y) PS(LC) (W,y) (xz)r'()fZ)S (3.8)
=0 rls!
which on replacing t by wz and T by WZ becomes
— (xw: y(—wz) —y(— J had s j,c j,c wz)" (WZ)*
o QW XWZ—y(—wz) —y(-WZ))) _ Z (—1) +sPr(/, )(x,y)PS(J >(X, ) ( )r!(s! ) (3.9)

rs=0

Next, replacing x by w, w by x, X by W and W by X in (3.9) and equating the resultant equation to (3.9), we find after expanding the
exponentials in series

Y (1) PO () PO () B XES

15!
50 rls!

(3.10)

k(i ik oo (xi—wih (e (W2
_ r+]ky ( ) (x ) (lnc) (WZ v+]ly Z) ( w ) (HC) ( ) (js¢)
- LG w7 @) X (=1 w1 P (Xy). G
(3.12)
Finally, replacing r by r —mk, s by s — ml and using equality (3.13) ([11]):
o o o [n/j]
Y Y A( ZZAkn Jk), (3.13)
n=0k=0 n=0 k=
in the r.h.s. of Eq. (3.11) and then equating the coefficients of like powers of z and Z, we get formula (3.7). O

Lemma 3.6. We have the following summation formula for the generalized Gould-Hopper polynomials P,,<j ) (x,y) holds true:

PV (31 + 32,31 +32) = Y ( ‘ )P(]’C) 1,01 P (x2,72)
k=0

Proof. 1If we take x — x; +x2 , y — y1 +y7 in (1.6) and then we use the relation (2.8)

n

n!

ZPrEJ’ (x1 +x2,y1 +y2) = b))y

n=0

s t+xot Y1t +yat!

Sttt ottt

From the coefficients of " on the both sides of the last equality, we get the desired result. O
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4. Bilinear and Bilateral Generating Functions

In this section, we derive several families of bilinear and bilateral generating functions for the generalized Gould-Hopper polynomials
P,Ej ) (x,y) defined by (1.7) using the similar method considered in (see, [12], [13]).

Theorem 4.1. For a non-vanishing function Qy (z1,...,z,) of ¥ complex variables zy, ...,z (r € N) and for ay #0, u,y € C, peN, let

Ay (@1 28) = Y arQu izt z) 8

k=0
and
oy [n/p] io) ek
0, 320y ey s P Q sy Zp)
n.p (x,y321,0,23 8 ]g) ai pk(x ¥) [J+q/k(zl zr) (n— pk)!
Then, we have
Y oLy (X,y;m, Zr,l:n>t = YAy (2, ez, 4.1

n=0
provided that each member of (4.1) exists.

Proof. For convenience, let T denote the first member of the assertion (4.1) of Theorem 4.1. Then,

ol v n = (R (je) (fnT)k
— . n , P n
T = H;O®I‘lp (x»y,Zh >2rs tp>l - ZO kz akP —pk (X y)Qﬂ+1{/k(Zl7 7Zr)m .
Replacing n by n + pk, we may write that
k ln+pk
T = Z Zakpn Q,quwk(leer)lW 0

n=0k=

= ZPnJC x,y) = Zak9u+wk(zla 7Zr)rlk)
n=0

t4yt/ .
c* 1 Aﬂ,‘ﬂ/(zla"-7zr, 77)7

which completes the proof. O

Theorem 4.2. For a non-vanishing function Q (y1,...,yr ) of r complex variables y, ...,y (r € N) and for apy #0, 1,y € C,n,p €N, let

(n/p] .
Ay (X1 X2, 31+ 323205520 M) 1= Y akP,Ef;)k(m 22,91 +92) Q15 2)M.
k=0
Then, we have
R pl G () I an
Y Ya ( k— pl )Pn;’k (YD) B (02, 2)Qpuyi (21, 2N = Ay (1 32,91 323215 ,20 M), 4.2)
k=0 [=0
provided that each member of (4.2) exists.
Proof. Applying the well-known equality
n_ [k/p] [ﬂ/ pln—pl

and then using Lemma 3.5, we get

[n/pln—pl 0l . e
= Yy az< " kp )P,i_’k)_,,l(xhyl)f’k(j’ )(x27YZ)Qp+l//l(217~-~er)Tll
P(j’) (x )P(j-,c‘)( )| e ( ) !
n—k—pl 1,)1 k X2,)2 u+yl Zlye-5lr n

(-xl +x27)’1 +)’2)Q/4+u/l(217~-~»2r)771

I

ag
S
"U

= AN X0,y 4325215523 M),
which completes the proof. O
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5. Special Cases

As an application of the above theorems, when the multivariable function Qy(y1,--,yr), kK € Ng = NU{0}, r € N, is expressed in terms
of simpler functions of one and more variables, then we can give further applications of the above theorems.
We first set, r = m and take

QH+VIk(yla"'aym) = (bLofgwk(ylv"wym) (uvaNOZNU{O})v

in Theorem 4.1. Recall that, by dDL +) Pk (¥1,---,¥m), we denote the multivariable polynomials (see, e.g., [12]) generated by

Z‘P (1)t = (1—x10) " %exp(xa+ ... +x)1, (Jt] < x| 7). (5.1

Then from Theorem 4.1, we obtain the following result which is a class of bilateral generating functions for the multivariable polynomials
Dy 4y (x1,.-.,,) and generalized Gould-Hopper polynomials P pU<) (x,).

u+yk
Corollary 5.1. If

Ay @102 8) 1= Y @@ (a1, 2)CE (@ £ 0, pyeC),
k=0

and
oy WP @ gt
®n,7p (x7y;217--~72r§§) = k:ZO akPn,’pk(xvy)q)ﬂ“FWk(Zla"'7Zr) (n—pk)' .

Then, we have
SIS . . 14yt .
Z®#71:!I(x7yvzlv-'-7zr,t7 tn:Cx+} Al»lyll/(zlw-ervn)‘
n=0

Remark 5.2. Using the generating relation (5.1) for the multivariable polynomials q’p+u/k(117 wyZm) and getting ay =1, u =0,y =1 in
Corollary 5.1, we find that

AO,I (Z17"'7Zm7€) = Z ¢I((a) (Z17"'7Zm)€k

and

k
0,1 . ( ) 5
®’17P (x7y,zl,...,zm, Z kP pk X y (Zla..qu)m.
Then, we have
y @2:[1, (x,y;zl,...,zm;tﬂp> " =M (1= 210) " %exp(zn + ... +zm)7-
n=0
If wesetr=2,71 =x3,22 =y3,

Quiy(x3,y3) = P,a];&k(xaya)

in Theorem 4.2.

Corollary 5.3. If
) (j.©) k
ARy (X1 4x2,y1 +y2:x3,y3:1) Z P n ,,k (v 22,31 +32) P (v, (ax #0, py € Conp eN).

Then, we have
n [k/p]
n— l ie .7 . .’ R )
Y Y a ( k—[l;l )P,Eiz)(xl,yl)Plfiﬁ,);(xz,yz)l’,(ﬁv),,(xs7y3)711 = APy (x1 +x2,y1 +y2:x3,y3:1).

Remark 5.4. Using Eq. (??) and taking a; = ( r; ) L u=0,y=1,p=1,n'=n*=1in Corllary 5.2, we have

[2/p]
Aty (et +xo,y1 +y2izizim) = ) @, j’p>k(xl +x2,31 +y2)PL(¢+.,),k(X37y%)
k=0

Then, we have

L n n—pl j
k;) 1:0( / )( k—Zl )P(j’ )i,y PY p)l(x27)’2)P/,<1}+u)/[(x37y3):Pr§j7c>(xl+x2+x37y1+y2+)’3)'
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Corollary 5.5. Taking j=12, c=e, in Egs. (3.1), (3.5) and (3.6) and using Eq. (1.8), we get the following summation formulae for the
Hy(x,y) :

Hy o (.3) kzzf () () 0= ),

r=0

Hy v-+x3) = ¥, () #e (09,

k=0

respectively. Again, taking j =2, ¢ =e, in Eq. (3.7) and using Eq. (1.8), we get the following summation formulae involving products of the
Hy(x,y) :

S () e V(G O
(r— 2k) k! (s — 20) 111

X\ s a4
M[{r (wy)Hy (W,y) =) Z
k=01=0

rls!

Hr—2k (x7y) HS—ZI (X>y) .

Corollary 5.6. Takingy = —1, j =2, ¢ = e and replacing x by vx, w by vw in Egs. (3.1), (3.5) and (3.6) and using Eq. (1.9), we get the
following summation formulae for the generalized Hermite polynomials Hy . (x) :

PRI () () 0 009" Byt

n,r=0 n r

k

Hyjy(w+x)=Y <z) (W) " Hy g (),

n=0

respectively. Also, replacing x by vx, w by vw, X by vX, W by vW in Eq. (3.7) and using Eq. (1.9), we get the following summation formula
involving products of the generalized Hermite polynomials Hy, .y (x) :

(2)" (&) @l p— @y - @ ymy
THrm v( )Hv,m,v (W) - == (r—mk)!k!(s—n‘:;)!l! Hrfmk,m,v (x) Hsfml,m,v (X) .

We now discuss some miscellaneous recurrence relations of the G-GHP P,Ej ) (x,y) given by (1.6). By differentiating each member of the
generating function relation (1.7) with respect to x and using

Alkn) =Y Y Atkin—k),

n=0k=0

>

n=0

»
gMS

we arrive at the following (differential) recurrence relation for the G-GHP P,gj ) (x,y) polynomials:

d j.c .
ap’gf' )(x,y) = nine.PY (x,y).

6. Conclusion

In this paper, we have established some generating functions for the generalized Gould Hopper polynomials by using series rearrangement
techniques. Also, some summation formulae for that polynomials are derived by using certain operational techniques and by using different
analytical means on its generating function. Further, many generating functions and summation formulae for the polynomials related to
generalized-Gould Hopper polynomials are obtained as applications of main results. The approach presented in this paper is general and can
be extended to establish other properties of special polynomials.
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