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I n this work, using the Calkin-Gorbachuk method firstly all selfadjoint extensions of the
minimal operator generated by first order linear singular quasi-differential expression
in the weighted Hilbert space of vector-functions on right semi-axis have been described.

Lastly, the structure of the spectrum set of these extensions has been investigated.
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INTRODUCTION

n the first years of previous century, J. von Neu-

mann [13] and M. H. Stone [12] investigated the
theory of selfadjoint extensions of linear densely de-
fined closed symmetric operators in a Hilbert spaces.
Applications to scalar linear even order symmetric
differential operators and description of all selfadjo-
int extensions in terms of boundary conditions were
done by I. M. Glazman in his seminal work [5] and
by M. A. Naimark [10] in his book. In this sense the
famous Glazman-Krein-Naimark (or Everitt-Krein-
Glazman-Naimark) Theorem in mathematical lite-
rature should be noted. In mathematical literature
there is another so-called Calkin-Gorbachuk method
(see [6], [11]).

Our motivation in this paper originates from the
interesting researches of W. N. Everitt, L. Markus, A.
Zettl, J. Sun, D. O'Regan, R. Agarwal [2], [3], [4], [14]
in scalar cases. Throughout this paper A. Zettl's and J.
Suns's view about these topics is to be taken into consi-
deration in [14]: A selfadjoint ordinary differential ope-
rator in Hilbert space is generated by two things:

(1) asymmetric (formally selfadjoint) differential
expression;

(2) a boundary condition which determined sel-
fadjoint differential operators.
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And also for a given selfadjoint differential operator,
a basic question is: What is its spectrum?

In this work, in Section 3 the representation of all
selfadjoint extensions of a symmetric quasi-differential
operator, generated by first order symmetric quasi-dif-
ferential expression in the weighted Hilbert space of
vector-functions defined at the right semi-axis in terms
of boundary conditions have been described. In Section
4, the structure of spectrum of these selfadjoint extensi-
ons is investigated.

STATEMENT OF THE PROBLEM

In the weighted Hilbert space L. (H,(a,)) where H
is a separable Hilbert space and @ €R , we will consi-

der the following quasi-differential expression given
by
I(u) :if’vg;(au)'(t)ﬂm(t).

Q) aw:(a,0)—>(0,0),

(2 a,weC(a,»),
Tow(s)

3 ds <o,

e

(4) A:D(4)cH — H isaselfadjoint operator.
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In this case, since

(l(u)’v)Li_(H,(a.w))

[ oa0)

w(t)dt + (Au,v)

H

£ (H.(a0))

tza(t)av't w(t)dt +(u, Av
AL )] o )

L, (H (a,0))

H

= (u,l(v))sz(”’(a’m)) )
then the differential-operator expression /(.) is formally

symmetric.

The minimal Z, and maximal L operators correspon-
ding to differential-operator expression in L, (H,(a,)) can
be defined by using the classical techniques (see [7]).

On the other hand one can easily see that
D(L)={ue L (H,(a,»)):1(u) e L,(H,(a,))},

D(L,)={ueD(L):(au)(a)=(cu)(=)=0}.
DESCRIPTION OF SELFADJOINT EXTENSIONS

In this section using the Calkin-Gorbachuk method we
will investigate the general representation of all selfadjo-
int extensions of the minimal operator L, .

First, let us prove the following assertion.

Lemma 3.1 The deficiency indices of the minimal ope-
rator L, in L, (H,(a,oo)) are in form

(n.(Ly).n_(L,)) = (dimH,dim H ).

Proof. For the simplicity of calculations it will be ta-
ken A=0. It is clear that the general solutions of differential
equations

iﬂ(aui)y(t) *iu, (t) =0,t>a

w(1)

can be given as

u =Lex i’ W(S) s IS >a
=50 p( !a%s)djf’f thiza
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From these representations we have

2
||u+ "Li (H.(

:I a(t)exp[—j: :2( )) dv]f : w(t)dr
o) exp[_ I:(( )) ds]dtllfll

2l [
;£1 —exp[ 2?[ ;VZ((SS)) dsD” 1 <o

Consequently, n, (L,)=dimker (L +iE)=dimH.

On the other hand, it is clear that for any feH,
one can obtain
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Consequently, n_(L,)=dimker(L—iE)=dimH. This

completes the proof.

As aresult, the minimal operator L, has at least one
selfadjoint extension (see [6]).

In order to describe these extensions we need to ob-
tain the space of boundary values.

Definition 3.2 [6] Let H be any Hilbert space and
8:D(S)cH—H be a closed densely defined symmetric
operator in the Hilbert space H having equal finite or
infinite deficiency indices. A triplet (H,7,,7,) where H is
a Hilbert space, 7, and 7, are linear mappings from
D(S*) into H, is called a space of boundary values for
the operator S if for any f.geD(S")

(s'7.2),-(1.S"g),
:(71(f)’72(g))y _(72(f)971(g))ﬂ

while forany F,,F, € H, there existsanelement f € D(St)



such that 7,(/)=F, and 7,(f)=F.
Lemma 3.3 The triplet (H.7,.7,) ,

72 D(L) = o, (1) =5 () () () ),
722 D(L) > H.7, () = () () ) )

JUE D(L)
is a space of boundary values of the minimal operator I,
in L, (H,(a,)) .

Proof. For any u,ve D(L),,

(Lu v) (u,Lv)

L(H {a)) L(H {a))

= (ig(au)v + Au,v]
w L(H (a))
a l
—|u,i= A
(u i (av) + v]

L(H (a»))

Now for any given element f,ge H one can find the
function ue D(L) such that

()= g5 (@) () ~(ew)(@) = /.
7:(0) = () (7)) () =&

From this it is obtained that (au)(oo)=(ig+f)/\/5
and (au)(a)=(ig—£)/Z

If we choose the function u(.) as below

u(t) =——(1-¢"")(ig + £) /N2

alr)

“(ig-f)/N2

1
+—"

a(1)

then it is clear that ue D(L) and ()= /.7, (u)=

The following result can be established by using the
method given in [6].

Theorem 3.4 If [ is a selfadjoint extension of the
minimal operator Z, in L (H,(a,%)), then it is generated
by the differential-operator expression /(.) and boundary
condition

(au)(a) =W (au)(=),
where W:H — H is an unitary operator. Moreover, the

unitary operator W in H is determined uniquely by the
extension 7 ,ie. L=L, and vice versa.

Proof. It is known that all selfadjoint extension of the
minimal operator L, are described by the differential-ope-
rator expression /(.) with boundary condition

(V—E)yl(u) +i(V+E)y2(u) =0,
where V:H — H is an unitary operator. Therefore from
Lemma 3.3 we obtain

(V = E)((au)(e0) - (au)(a))

+(V+ E)((ocu)(oo) + (au)(a)) 0,u e D(i)
From this, it is implies that

(a)(a) =7 (ca) ().

Choosing W=-V in last boundary condition, we have

(au)(a)=W(au)(w).

THE SPECTRUM OF THE SELFADJOINT
EXTENSIONS

In this section the structure of the spectrum set of the
selfadjoint extensions of the minimal operator Z; in
Li)(H,(a,oo)) will be examined.

Theorem 4.1 The spectrum of any selfadjoint extensi-

on L, isinform

(L, {ZGR z:[IWZ ]l (argu+2nr)
)

Proof. Consider the following problem to spectrum of
the extension L, , ie.

Hu)=2u+ fou,f eLi,(H,(a,oo
(au)(a) =W (au)(=),

)).A€R,
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that is,

ifvg;(au)'(t)wu(z) = 2u(1)+ £ ()t > a,

(c)(a) =W (au)(e0).

The general solution of the last differential equation,

au' t)=1 W(t) — au)(t —iw(t)
() (1) =15 (4= 2B @) ()= ()

is in form

“id)= om{ e ]

+azt)]gexp[ A lE j-;;((:_) J j;f( s)ds,
f,eH t>a.
In this case

 w(s) Jz

exp (A /IE Sds | f,

“() KRBT s
[ Lals, <
and
Lmex i(4- IW(T)TW—S) ss2
aﬂpﬂAmbwﬂL@ﬂV”mw
:Iaj(t) Iexp(z(A—lE)j;((?)dT]Z(i; £(s)as| (1)

Hence, u(., 1) ELfV(H,(a,OO)) for AeR .

From this and boundary condition, we have

[E Wexp£ (A-AE T:z D

34

©

:ijexp( (A-AE) j:z ] ;f(s)ds.

Therefore in order to 1 e G(LW) the necessary and suf-

a
ficient condition is

exp(i/lz (S))dsj—,ueo{Wexp[lAI o) D

. T ow(s . . .
Since the operator Wexp(iA.f (s) ds] is an isometric

2 (5)

operator, then lu|=1.

Consequently,

ﬂj w(s) ds =argu+2nm,ne’.

29 (5)

On the other hand since I W(S) ds >0, then

2o (5)

A= [T ;Vz((ss)) dsjl (argu +2n7),

ue O'[Wexp[iAI :2((1)) dsD nel.

This completes the proof.

Remark 4.2 Note that the similar problems in different
singular multipoint cases in the corresponding direct sums
of Hilbert spaces of vector-functions have been investigated

in [1], [8], [9].
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