
Motion of scalar (i.e. spinless) particles in quan-
tum mechanics is investigated by solving Kle-

in-Gordon equation (relativistic case) or Schrödinger 
equation (non-relativistic case) for the interaction in 
system [1, 2]. This interaction is represented by a po-
tential function which is crucial for solving the eigen-
value equation, since it acts a part to determine the 
solving technique.

The hyperbolic type molecular potential (or 
symmetrical well potential) [3] is one of the attractive 
potentials, and it represents some interactions in ato-
mic and molecular levels. After Buyukkilic and friends 
introduced the potential and obtained one dimensi-
onal non-relativistic solutions in Ref.[3], many papers 
in which various solving methods are used, have been 
come out in the last decade. For instance, in Ref.[4], 
Yang has generalized the symmetrical well potential to 
the deformed one by way of the deformed hyperbolic 
functions [5]. In Ref.[6], exact solutions of relativistic ca-
ses have been obtained for l=0 states. Furthermore, Refs.
[7, 8] can be adduced for using different solving methods 
to investigate the symmetrical well potential.

Recently, Candemir[9] has tackled Klein-Gordon 
equation in spherical-coordinates, for equal vector and 
scalar symmetrical well potential. She has obtained 
the solutions for   states by using Nikiforov-Uvarov 
(NU) method[10]. She has also used Green-Aldrich 

Article History: 
Received: 2017/07/19

Hittite Journal of Science and Engineering, 2018, 5 (2) 97-103
ISSN NUMBER: 2148-4171

DOI: 10.17350/HJSE19030000079

N-Dimensional Solutions of Klein-Gordon Particles
for Scaled Molecular Potential via Highly-Accurate
Approximation
Hasan Fatih Kisoglu
Mersin University, Department of Basic Sciences, Mersin, Turkey

Accepted: 2017/10/20
Online: 2018/04/06

Correspondence to: Hasan Fatih Kışoğlu 
Mersin University, Faculty of Maritime , 
Department of Basic Sciences, Mezitli, 
Mersin Turkey 
Tel: +90 324 482 5278/1162
Fax: +90 324 482 5496 
E-Mail:hasanfatihk@mersin.edu.tr

approximation[11] to cope with the centrifugal term in 
the eigenvalue equation.

In this paper, the solutions of Klein-Gordon equati-
on for equal vector and scalar symmetrical well potenti-
al is obtained in N-dimensional euclidean space. For the 
calculations, Asymptotic Iteration Method (AIM)[12, 
13, 14] is used. Furthermore, an approximation scheme, 
which is more precise than Green-Aldrich approximati-
on, is also used to eliminate the centrifugal term[15, 16]. 
Besides these, the potential is scaled considering that it 
should be the same in non-relativistic limit.

Organization of the paper is as follows: stationary 
Klein-Gordon equation for any equal vector and scalar 
potential is summarized in Section 2. Section 3 outlines 
AIM while it is used for obtaining the energy eigenvalu-
es and eigenfunctions of Klein-Gordon equation for the 
symmetrical well potential in Section 4. The results are 
sums up in Section 5.

KLEIN-GORDON EQUATION FOR 
EQUAL VECTOR AND SCALAR 
POTENTIAL
Stationary (i.e. time-independent) Klein-Gordon equ-
ation for a potential that consists of vector and scalar 
components is given as follows ( = = 1c )

A B S T R A C T

The energy eigenvalues and eigenfunctions of relativistic scalar particles are obtained for
an equal vector and scalar symmetrical molecular potential in N-dimensional euclidean 

space by using Asymptotic Iteration Method. For such a calculation, the potential in the ei-
genvalue equation is scaled regarding to fact that the potential is the same in non-relativistic 
limit. Furthermore, an highly-accurate approximation scheme is used to deal with the cen-
trifugal term in the eigenvalue equation. The results obtained are compared with the ones 
that exist in literature.
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where  ( )0 zΛ  and ( )0 zσ   functions are in C∞  . The

general solution of (6) is as follows ( 1S  and  2S  are invari-

ants)

( )

( )( )
( ) = exp ( )

exp ( ) 2 ( )2 1 0

f z t dt

S S d dt

µ

τ µ τ τ

×−∫

 + Λ +∫ ∫  
          (7)

in prospect of

=
1 1

n n
n n

σ µ
σ

Λ
≡

Λ− −
(8)

where > 0n  ( )n Z∈    and

= , =1 1 0 1 1 0 1
' '

n nn n n n nσ σ σ σΛ Λ + +Λ Λ + Λ− − − − −      (9)

The functions 0Λ   and 0σ   contain the, En  , (unk-
nown) energy eigenvalues when AIM is used in quantum 
mechanics in mathematical physics. These eigenvalues are 
obtained from the following equation

( , ) ( , ) ( , )1
( , ) ( , ) = 01

z E z E z En n n
z E z En n

σ

σ

∆ ≡ Λ −
− Λ −

(10)

reached by the medium of Eq.(8). The eigenvalue prob-
lem is said to be "exactly solvable", if Eq.(10) depends upon 
only (unknown) E   eigenvalues. In this case, an   En  energy 

eigenvalue is achieved after  n  iterations[19, 20, 21]. If Eq.
(10) is also dependent on the variable z, the energy eigenva-
lues are obtained approximately. Then, a suitable 0z z≡   va-
lue should be determined for initiation of the AIM iterati-
ons[22, 23, 24].

As for obtaining the eigenfunctions of eigenvalue prob-
lem, following function generator is used in the view of AIM

( )( ) = exp2 ( )
tnf z S dtn tn

σ 
−∫ Λ 

(11)

THE SOLUTIONS OF KLEIN-GORDON 
EQUATION
In this section, the eigenvalues and eigenfunctions of 
Klein-Gordon equation for the symmetrical well potenti-
al is obtained in N-dimensional euclidean space. For the 
calculations, AIM is used.

( ) ( )222 ( ) ( ) ( ) = 00V r S r m rε ψ
 
∇ + − − + 
 



  

                  (1)

where  ε  is relativistic energy,  0m  is rest mass,  ( )S r

and  ( )V r  are position-dependent scalar and vector potenti-
als, respectively. In the case of ( ) = ( )S r V r±

   , Eq.(1) turns
into

( )2 2 22 ( ) ( ) = 00 0m V r m rε ε ψ ∇ − ± + −  


 

               (2)

This equation is written in relativistic limit and, in ge-
neral, stands for scalar particles. So, it is Klein-Gordon equ-

ation for the potential ( )V r  . Besides, it should give Schrö-

dinger equation for the same potential in non-relativistic li-
mit as mentioned by Alhaidari et al. in Ref.[17]. In case of 

( ) = ( )S r V r+
   , non-relativistic limit of Eq.(2), in which

0m Eε − ≈   (E is non-relativistic energy and | | 0E m=  ), is 

yielded as

2
2 ( ) ( ) = 0

2 0
V r E r

m
ψ

 ∇
− + 

  

 

(3)

This is Schrödinger equation for the potential 2 ( )V r  ,

not  ( )V r . Thus, one can scale the potentials in Eq.(1) as[17,

18]

2 21 12 ( ) ( ) ( ) = 002 2
V r S r m rε ψ

     ∇ + − − +        



  

              (4)

As for the case of ( ) = ( )S r V r+
   , it can be written as

( )2 2 2( ) ( ) = 00 0m V r m rε ε ψ ∇ − + + −  


 

                    (5)

and this gives Schrödinger equation for the potential 

( )V r  , in non-relativistic limit.

A SUMMARY OF ASYMPTOTIC 
ITERATION METHOD (AIM)
Asymptotic Iteration Method (AIM)[12] has been studied 
out as an alternative solution technique for, in general, se-
cond order linear differential equations given as

( ) = ( ) ( ) ( ) ( )0 0f z z f z z f zσ′′ ′Λ +  (6)
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The stationary Klein-Gordon equation for equal scalar 

( ( )S r ) and vector ( ( )V r ) potentials is given as in Eq.(5)

( )2 2 2( ) ( ) = 00 0m V r m rε ε ψ ∇ − + + −  


 

For N-dimensional euclidean space,  ( )rψ   is taken as

1
2( ) = ( ) ( , ,..., )1 2 1, ,...,1 2 1

N
r r u r Y Nl l lN

ψ ϕ ϕ ϕ

 
 
  
 

−−

−−



 (12)

where 
1 2 1, ,...., 1 2 1( , ,..., )

Nl l l NY ϕ ϕ ϕ
− − are hyperspherical har-

monics and 1 2 1, ,..., Nl l l −   are angular momentum quantum

numbers[25, 26, 27, 28, 29]. For spherical coordinates ( = 3N

), e.g., 2Nl m− ≡   and 1Nl l− ≡  , while 2Nϕ −   and  1Nϕ −  are azi-
muthal and polar angles, respectively. Thus, for simpleness, 
the quantum number  1Nl −  is abbreviated such as 1Nl l− ≡

from now on.

Being  (0, )r∈ ∞ , the radial Klein-Gordon equation in 

N-dimensions can be written as

( ) ( ) ( )2 1( ) 2 2 ( )0 02 2
( ) = 0

d u r m m V r
dr r

u r

γ γε ε ×
 
 
 

+
+ − − + −

    (13)

by using Eq.(12), where 3=
2

Nlγ −
+ and  ( )V r  is the

central potential of system.

As an attractive potential function, equal vector and 
scalar symmetrical well potential is given as

2
( ) = ( ) = 1

22
2

r re eS r V r V r re e

V r re e

α α
α α

α α

− −
 −+ 

 +  −+ 

(14)

where 1V  ,  2V  and  α  are arbitrary constants. The 

form of the symmetrical well potential for a few  α  values 
can be seen in Fig.1

For the potential in Eq.(14), Klein-Gordon equation 
which is given in Eq.(13) is written as

( ) ( )

( )

2 2
0 0

2

2 1( ) ( ) = 02 22
2

1
2

m m

r re eV r re ed u r u r
dr

V r re e

r

ε ε

α α
α α

α α

γ γ

×
 
 − − +
 
  − −  + −  +  +   
      −+  
 + −
  

 

In this equation an approximation scheme is used to 

deal with the, ( ) 21 / rγ γ +  , centrifugal term. For this purpo-
se, following approximation can be used [15]

2
1 24 0 12 2 1

reC C rr e

α
α α

   ≈ +   −  
(16)

where the constants 0C  and  1C  are as follow

( )
( ) ( )

32 21 1= , =1 0 12 23 2 2 44 1 2 1

e eC C C
e e e

α α

α α αα α

−
−

+ −
 (17)

As is seen in Fig. 2, the approximation in Eq.(16) is too 

close to the  21/ r  for either small or large values of the  α
[16].

Eq.(15) can be turned into the following equation by 

defining a new variable such as 
2

=
r re ex r re e

α α
α α

− −
 −+ 

  and 

using the approximation scheme given in Eq.(16)

2 ( ) 1 1 ( )
2 2 1

( ) = 02 2 (1 )(1 )

d u x du x
x x dxdx

A B D u x
x xx x

 + − − 

 
+ + +  −− 

        (18)

where (0,1)x∈   and

= , = , = 21 1 2 3 1 2A B Dκ κ κ κ κ κ− − + − − +      (19)

The constants 1κ  , 2κ   and  3κ  are as below
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( )

( )

52 2 32( ) = ,0 1

52 1
( 1)2( ) =0 (1 ) (1 )

x
x x

Dx
x x x x

ρ β

ρ β
ρσ

  +  + Λ − − 
− 

  
  + +  − +  − 

− − 
  

                    (24)

The first-four iterations give the D  as

( )

( )

1= 7 5 6 4 ,0 2
1= 18 9 10 41 2

D

D

β ρ βρ

β ρ βρ

+ + +

+ + +

( )

( )

1= 33 13 14 4 ,2 2
1= 52 17 18 43 2

D

D

β ρ βρ

β ρ βρ

+ + +

+ + +

So, one can generalize the  D  as below

( ) ( )

( )

22 9 7 4 51=
2 4 6 4

n n n
Dn

n

β

ρ βρ

 + + + +
 
 + + + 

  (25)

where = 0,1, 2, 3, ...n  

Using Eqs.(25) and (??), the energy eigenvalues can be 
obtained analytically from the equation given below

( )

1( 1) 2 1 1 3 216
12 1 1 3 216

1 12 = 01 1 3 2 1 216 4

n n n κ κ κ κ

κ κ κ κ

κ κ κ κ κ κ

 
 
 

 
 
 

+ + + − + −

− + + −

+ + − + − + − +

             (26)

( 1)=1 1 4
( )( 1) 0= ( 1)2 0 1 224 4

2 2( )0
24

( )0= ( )3 1 224

C

m
C C V

m

m
V V

γ γκ

εγ γκ γ γ
α

ε

α
ε

κ
α

+

++
− + + +

−
+

+
+

           (20)

Regarding to the boundary conditions of the system, 

one can assume (unnormalized)  ( )u x  in Eq.(18) as follows

( )
1 1

14 16 1 3 2( ) = 1 ( )u x x x g x
κ κ κ κ+ + + −−                     (21)

where  ( )g x  is the function to be determined by AIM. 
If  ( )u x , given by Eq.(21), is substituted in Eq.(18) following 
equation is obtained

( )

( )

522 2 3( ) ( )2
2 1

52 1
( 1)2 ( ) = 0

(1 ) (1 )

d g x dg x
x x dxdx

D g x
x x x x

ρ β

ρ β
ρ

  +  + + − 
− 

  
  + +  − + − − 

− − 
  

     (22)

where

3 1= , = 11 1 3 24 16
ρ κ β κ κ κ− + + − − + −

Eq.(22) is in AIM form, and the iterations can be ini-
tiated using the following functions, in keeping with Eq.(6) 

Figure 1. Shape of the symmetrical well potential for = 21V  , = 52V  ,  

and =α  0.5, 0.25, 0.125. The  α  determines the range of the potential 

well and 1V  , 2V   specify the well depth

Figure 2. Comparison of the 21/ r   centrifugal term and the
approximation scheme. The approximation is too close to (even 
overlapped) the centrifugal term for either small or large values of the α  

.
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Some numeric values of the energy eigenvalues for 

= 31V  , = 102V   , = 10m    and = 0.125α   is given in Table 1. 

Besides, comparison of the energy eigenvalues which have 
been calculated from Ref.[9] with the ones obtained for 

= 3N   dimensions in present study is given in Table 2.

As mentioned in Section 3, eigenfunctions of the prob-

lem is achieved through the, ( )( ) = exp
( )
tng x dtn tn

σ 
−∫ 

Λ 
 , 

function generator. For this purpose,   and   functions in 
Eq.(24) are used.

Regarding to the first-four AIM iterations, outcomes 
given below are obtained for the function generator

( ) = 10g x

( ) [ ]4( ) 11
( ) = 4 5 11 (4 5)

g x x
β ρ

ρ
ρ
+ + 

− + − + 

( )

( )

[ ]

[ ][ ]

( ) = 4 52
2 4( ) 13

1
(4 5)

4 7 22 4( ) 13 4( ) 15
(4 5)(4 7) 2!

g x

x

x

ρ

β ρ
ρ

ρ
β ρ β ρ

ρ ρ

×+

+ + 
− + +  

+ + + + + + + 

( )( )( )( ) = 4 5 4 7 4 93g x ρ ρ ρ− + + +

[ ]

[ ][ ]

[ ][ ][ ]

3 4( ) 15
1

(4 5)
26 4( ) 15 4( ) 17

(4 5)(4 7) 2!
36 4( ) 15 4( ) 17 4( ) 19

(4 5)(4 7)(4 9) 3!

x

x

x

β ρ
ρ

β ρ β ρ
ρ ρ

β ρ β ρ β ρ
ρ ρ ρ

+ + 
− + 

 + + + + × + + + 
 + + + + + + −
 + + + 

Accordingly, the  ( )g xn  function generator can be ob-
tained as

( )

[ ]

( ) = ( 1) 4 2 3, , =1

( ) 4( ) 2 9 ,2
(4 5) !=0 ,2

nng x sn s
n nn x

ρβ ρ

µβ ρµ µ
ρ µµ µ

×
 − + +∏ 
 

 − + + + 
∑ +  

               (27)

where  = 0,1,2,3,...n  and

( ) = ( )( 2 )( 3 )...( ( 1) ),a a a k a k a k a d kd k + + + + −  (28)

is k-Pochhammer symbol ( k R∈   and d N+∈  ) [30, 31]. 

If the following relation between Pochhammer symbol and 
k-Pochhammer symbol is used

( ) =,
ada kd k k d

 
 
 

   (29)

one can write the  ( )g xn  as 

( )( ) = ( 1) 4 2 3, , =1 2
4( ) 2 9 4 5, ; ;1 2 2

nng x sn s
nF n x

ρβ ρ

β ρ ρ

×
 − + +∏ 
 
+ + + + − 

 

         (30)

where ( , ; ; )2 1F a b c x   is the hypergeometric function. 

Table 1. Numeric values of the En   energy eigenvalues for = 31V  ,  

= 102V , = 10m   and = 0.125α , and for = 3,6,9N   dimensions
.

En′   represents the energy eigenvalues of antiparticle. The principle qu-

antum number of an energy level is  ( )1n l+ + .

N  Energy 
level En En′

3 1s -0.982158 -0.999150 

2s -0.901930 -0.994573 

2p -0.946310 -0.998056 

4p -0.680055 -0.981598

4d -0.757918 -0.988561

5d -0.581474 -0.976690

6d -0.375575 -0.961079

6f -0.473204 -0.971551

6  1s -0.921555 -0.997383

2s -0.799418 -0.990154

2p -0.859335 -0.995781 

4p -0.528440 -0.974152

4d -0.614897 -0.983350

5d -0.415974 -0.968884

6d -0.195785 -0.950587 

6f -0.296301 -0.963340

9 1s -0.822311 -0.994852 

2s -0.665414 -0.985163

2p -0.737623 -0.992735 

4p -0.356946 -0.966148

4d -0.449066 -0.977435

5d -0.234210 -0.960458

6d -0.004814 -0.939539

6f -0.106303 -0.954464
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have been obtained using AIM. Results have been obtai-
ned for  -dimensional euclidean space. An highly-accurate 
approximation scheme[15, 16] has been also used to deal 
with the centrifugal term. Furthermore, potential term 
in the Klein-Gordon equation has been scaled taking the 
consideration that the potential should be the same in non-
relativistic limit, i.e. Schrödinger equation[17, 18]. For the 
calculations, the case of equal vector and scalar symmetri-
cal well potential has been considered.

The results achieved have also been compared with the 
ones calculated from Ref.[9]. It has been seen that the energy 
eigenvalues are greater than those of Ref.[9] in which calcu-
lations have been made in spherical coordinates   and Green-
Aldrich approximation[11] has been used to eliminate the 
centrifugal term (see in Table 2 ). This difference becomes 
more clear especially for higher quantum levels. One reason 
for such a conclusion can be resulted from that the eigenva-
lues have been obtained for the symmetrical well potential, 
let's say ( )V r  , in present study whereas the eigenvalues have 
been resulted for   in Ref.[9]. So, in present study, it is more 
likely to be free-particle system.

Besides, accuracy of the approximation scheme used 
can be illuminated by Eq.(17) (also seen in Fig.2). According 
to this equation, 0C   and 1C   constants are also dependent 

upon the α   arbitrary parameter. So, they correspondingly 

change in any variation of the  α .
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