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Contact mechanics problems in isotropic materi-
als gained a great deal of interest and commonly 

investigated throughout the twentieth century. Ort-
hotropic materials have been utilized both in struc-
tural design and engineering applications such as ce-
ramic matrix composites [1]. These materials gained 
popularity in the last two decades and mainly projec-
ted to be used in the aerospace industry as fiber me-
tal laminates in the structure of aircrafts and in the 
components of gas turbine engines [2]. For example, 
Tyrannohex is a high strength ceramic material con-
taining properties of other orthotropic materials  and 
it is utilized in the gas turbine components [3]. 

The studies in the theory of contact mechanics da-
tes back to Lord Kelvin [4] who solved the problem of a 
force applied at a point in an isotropic infinite medium 
using Green’s functions [5]. Then Lamé [6] further imp-
roved Lord Kelvin ‘s solution with superimposed stres-
ses in a spherical container.  Boussinesq [7], provided the 
solution of a normal force applied to the boundary of 
an isotropic semi-infinite solid using Green’s functions 
and Kelvin’s method. Almost at the same time Hertz [8] 
solved the problem involving contact between two elas-
tic bodies with curved surfaces and postulated his fa-
mous assumptions about contact mechanics. Cerruti [9] 
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inquired on a problem of a force applied tangentially at 
the plane boundary of a semi-infinite solid also by using 
Kelvin’s solution. In Soutwells’ solution, [10]  a spherical 
cavity in an unlimited solid under simple tension was 
given. Then, Mindlin [11] derived the Green’s functions 
for the half-space by adding a supplementary  part of the 
solution to the Kelvin’s infinite space functions. 

The literature on contact mechanics, especially 
with isotropic material assumption has been reviewed 
by many researchers (see for example Barber and Ci-
avarella, [12]). Muskhelishvili, England and Johnson 
[13,14,15] displayed details of the theoretical and nume-
rical methods developed in contact mechanics. Contact 
problems are mixed boundary value problems due to 
the boundary conditions given in terms of the displace-
ments and stresses at the same time. The formulation of 
these problems usually ends up with the singular integ-
ral equations (see for example Erdogan [16,17]). 

In a contact problem, material selection plays a 
fundamental role since material properties have cruci-
al effects on the contact stresses. Although, most of the 
materials contain some local heterogeneity and faults 
because of their manufacturing techniques, they are 
usually modeled as isotropic materials. Contact mec-

A B S T R A C T

An analytical solution to the frictional sliding contact problem for homogeneous or-
thotropic materials indented by a semi-circular punch is developed.The principal 

axes of orthotropy are assumed to be parallel and perpendicular to the contact. Coulomb 
friction assumption is used to model the friction between the punch and the orthotropic 
medium. The mixed boundary value problem is reduced into a Fredholm integral equa-
tion of the second kind by using Fourier transform technique. The singular integral 
equation is solved analytically using Jacobi Polynomials for the unknown surface contact 
stresses. Numerical results show the effect of the orthotropic material parameters, coef-
ficient of friction on the contact stress distribution and load vs. contact length behavior.

Keywords:  Contact mechanics, Friction, Orthotropic materials, Singular integral equation, 
Semi-circular punch.
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hanics of anisotropic materials have also been analyzed 
in the literature. Stroh [18,19] and Lekhnitskii [20] repor-
ted solutions using transform methods for a concentrated 
point force in an infinite body or on the surface of a half-
space for anisotropic materials. Sveklo, [21] used integral 
transformation to the stress equilibrium equations and he 
also used the Cauchy integral for describing the boundary 
stress condition to solve contact problem of anisotropic 
material. Also, Willis [22], proposed a solution method of 
contact mechanics of anisotropic materials by using Fouri-
er transform.  Sveklo’ s method for indentation of the ort-
hotropic half-space was analyzed by Shi et al. [23]. Kahya 
et.al. investigated frictionless contact problem between two 
orthotropic elastic layers by solving the singular integral 
equations [24]. Batra and Jiang’s provided the parametric 
analysis of a punch problem for a linear elastic anisotropic 
layer bonded to a rigid substrate by using Stroh formalism 
[25]. Bagault et. al. [26] developed a semi-analytical method 
for the contact problem of anisotropic materials by utilizing 
Boussinesq and Cerruti solutions. Ashrafi et. al. [27] discus-
sed an analytical and computational solution of the contact 
problem of a semi-infinite orthotropic material indented by 
a rigid spherical punch where a numerical analysis was pre-
sented using a finite element model. Dong et. al. [28] provi-
ded various expressions for the stresses and displacements 
of orthotropic materials indented by two collinear punches 
with flat or cylindrical profile. In addition, frictionless con-
tact problems on arbitrarily multilayered piezoelectric half-
planes modeled as orthotropic medium and solved using 
matrix formulation [29,30]. Recently,  Zhou and Lee [31] also 
modeled piezoelectric half space as an orthotropic medium. 
They conducted a parametric analysis of two-dimensional 
frictionless sliding contact  problem by means of the Galile-
an transformation [31] and  they further studied a frictional 
contact of anisotropic piezoelectric materials indented by 
several stamp profiles [32].

Normally, nine independent material parameters are 
needed to define stress-strain behavior of an orthotropic 
material. Krenk [33] redefined these parameters so that 
the number of elastic parameters decrease to four for plane 
strain and generalized stress conditions. Cinar and Erdogan 
[34] and Ozturk and Erdogan [35,36] applied this approach 
to the mixed-mode crack problems in an inhomogeneous 
orthotropic medium.

Recently, Guler [37] developed a solution method for 
the sliding frictional contact problem for an orthotropic se-
mi-infinite half space indented by a flat and a circular punch 
by combining Krenk’ s parameters and the method that he 
used to solve isotropic half space problems indented by va-
rious types of punch profiles [38-40]. Then, Kucuksucu et al. 
[41] postulated wedge-shaped indenter problem of orthotro-
pic materials by using the same method.

The primary aim of the present study is to look into the 
effect of the material parameters of the contact stress dist-
ributions at the surface of the isotropic half plane indented 
by a rigid semi-circular punch. The problem is reduced to a 
Fredholm integral equation of the second type which is sol-
ved using of Jacobi Polynomials. Relationships between the 
applied load versus the contact length and stress intensity 
factors at the sharp end of the punch are also found. 

Formulation of the problem
Consider the contact problem described in Fig. 1 where a 
rigid semi-circular punch is under sliding contact with a 
semi-infinite homogeneous orthotropic medium. The 
sliding contact is defined between 

1 0x =  to 
1x b= at the 

surface of the orthotropic medium ( 2 0x = ) where 

1 2( , ),x x are the principal axes of orthotropy which are pa-

rallel and perpendicular to the boundary [42,43]. It is as-
sumed that the coefficient of static friction is constant 
within the contact area. P and Q  are the resultant nor-
mal and shear forces, respectively, and they are proporti-
onal ,Q Pη= according to the Coulomb’s law.

In usual notation, 
iu  and 

ijσ ( , 1,2)i j =  specify the 

displacement and stress components, and 
iiE , 

ijG and 
ijν

( , 1,2,3)i j =  specify engineering elastic parameters. Ort-

hotropic constitutive equations are composed of 9 elastic 
constants (3 Young’s moduli, 

11 22 33, ,E E E , 3 shear moduli, 

12 13 23, ,G G G  and 3 Poison’s ratios, 
12 13 23, ,ν ν ν ). To simplify 

the solution, engineering parameters are replaced by four 
independent material parameters, namely effective stiffness 
parameter ,E the effective Poisson’ s ratio ,ν   the shear pa-

rameter ,κ and  stiffness ratio ,δ defined by [33].

					           

(1a-d)

for generalized plane stress conditions and

(2a,b)

(2c,d)

4 11 12
11 22 12 21

22 21 12

, , , ,
2

E EE E E
E G

νν ν ν δ κ ν
ν

= = = = = −

12 13 32 21 23 3111 22

13 31 23 32 13 31 23 32

( )( ), ,
(1 )(1 ) (1 )(1 )

E EE ν ν ν ν ν νν
ν ν ν ν ν ν ν ν

+ +
= =

− − − −

4 23 3211

22 13 31 12

1 , ,
1 2

E E
E G

ν νδ κ ν
ν ν

−
= = −

−
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for plane strain conditions. In addition, we scale the 
independent and dependent variables by using stiffness or 
scaling ratio as

(3a-d)

(3e-g)

In this study, the spatial variation of Poisson’s ratio is 
assumed to be negligible, so it is taken as constant [40]. Note 
that the special case of 1δ κ= =  corresponds to an isotro-

pic material. Also, in a homogeneous orthotropic medium 
the range of κ  can be defined as 1 κ− < < ∞  and it can be 
shown that for 1κ ≤ − the elasticity problem has no appli-
cable solution [35,36,44].

Integral equation of the problem
The singular integral equation of the sliding contact 
problem can be written as [37,43], 

(4a) 

(4b) 

where

(5a,b)

	

( )( )
( )( )
( )( )

1 3 6 2 4 50
1 12 2

2 4 7 1 3 8 2 4 7 1 3 8

2
, ,

1 1
r r r r r r

r r r r r r r r r r r r
κ ν

λ ω
ν ν

+ −∆
= =

− − − −
	       (6a,b)

	

( )( )
( )
( )

( )
( )

2
8 70

2 2
5 6 5 6

1
, .

2 2
r r

r r r r
ν

λ ω
κ ν κ ν

− −∆
= =

+ − + −
       (7a,b)

In the physical domain 
1 2( , ),x x  the integral equation 

(4) becomes
	
( ) ( )1

1 1 1 1 0 1 10
1 1

( ) , 0 ,
b tx dt E f x x b
t x

δ σωτ λ
π

− + = < <
−∫            (8a) 

	
( )1

2 1 1 2 0 1 10
1 1

1 ( )( ) , 0 ,
b tx dt E g x x b
t x
τω δσ λ

π
+ = < <

−∫           (8b) 

where

	
( ) ( ) ( ) ( )1 2 1 1 1 1

1 1

,0 , ,0 .f x u x g x u x
x x

δ∂ ∂
= =
∂ ∂        (9a,b)

Eq. (8)  constitute a pair of integral equations in terms 
of the unknown contact stresses σ and τ . In the contact 

region, we have
	

22 1 1 1 1( ,0) ( ) ( ), 0 ,x x p x x bσ σ= = − < <         (10a)

	
12 1 1 1 1( ,0) ( ) ( ), 0 ,x x p x x bσ τ η= = − < <         (10b) 

where the contact pressure, 
1( )p x , 

10 ,x b< <  is only 

unknown quantity. The relation between the applied load 
and the contact length, b  can be found by applying equilib-

rium condition [46]. Thus, using Eq. (10), Eq. (8) become: 
	
( ) 1

1 1 1 1 0 1 10
1 1

( ) ( ), 0 ,
b p tp x dt E f x x b
t x

δωη λ
π

− = < <
−∫          (11a)

	
( )1

2 1 1 2 0 1 10
1 1

( )( ) , 0 .
b p tp x dt E g x x b
t x

ηω δ λ
π

− − = < <
−∫         (11b)

and contact pressure must satisfy the following equi-
librium equation: 

(12)Figure 1. Geometry of sliding frictional contact problem of orthotropic 
medium indented by the semi-circular punch.

1
2 1 1 2 2 1 2

1, , ( , ) ( , ), ( , ) ( , ),xx y x u x y u x x v x y u x xδ δ
δ δ

= = = =

11 1 2 22 1 2 12 1 2( , ) ( , ) , ( , ) ( , ), ( , ) ( , ).xx yy xyx y x x x y x x x y x xσ σ δ σ δσ σ σ= = =

( ) ( )1 1 00

( ,0)1,0 , 0 ,
b yy

xy

t bx dt E f x x
t x

δ σ
ωσ λ

π δ
− + = < <

−∫

( )2 2 00

( ,0)1( ,0) , 0 ,
b xy

yy

t bx dt E g x x
t x

δ σ
ω σ λ

π δ
+ = < <

−∫

( ) ( ) ( ) ( ),0 , ,0 ,f x v x g x u x
x x
∂ ∂

= =
∂ ∂

1 1
0

( ) ,
b

p t dt P=∫
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where P  is the resultant compressive force. The amp-
litude of the applied load may be given in terms of either the 
load P  or stamp displacement in the 

2x  axis. 

In order to solve the integral equation, the limits of in-
tegration must be normalized. Now setting:

	
* * * * * * * *

1 1 1 1 1 1 1 1, , , ( ) ( ), 0 , .x x R t t R b b R p t p t x t b= = = = < <           
(13)

The integral equation (11a) and the equilibrium equati-
on (12) can be written as:

(14)

(15)

where

			       		       (16a-b)
The integration limit is normalized from ( )*0,b

 
to

( )1,1−   by the following change of variables: 

(17a-c)

Since the stamp profile is given as 
2
1

2 1 0( ,0) ,
2
xu x v
R

= − +  the function, ( )1f x  beco-

mes

(18)
The integral equation (14) can then be expressed in a 

normalized form by using Eqs. (17) as

(19)

On the solution of integral equations
For an accurate and efficient solution of the integral equ-
ation the corresponding weight function ( )w s  needs to 

be determined. By defining the complex potential 
[13,45,46]:

			     		             (20)

From Muskhelishvili [13] and by using the complex 
function theory, the dominant part of the integral equation 
can be written as

(21)

The index of the integral equation for the semi-circular 
punch is defined by:

(22)

where 
0 0, 1,0,1N M = −  are arbitrary integers and can 

be determined from the physics of the problem.  Since the 
semi circular stamp has a sharp corner at 1 0x =  and a smo-

oth contact at 1x b= , from the physics of the problem, we 

must require that  α  be positive and β   be negative. α and

β is found to be

(23a-d)

Now, one can assume a solution in terms of Jacobi Poly-
nomials as:

(24)

where ( ), 0,1,...nc n = are undetermined constants 

and ( , ) ( )nP sα β are Jacobi polynomials. Substituting Eq. (24) 

into Eq. (21) results in

	            				              (25)

* * *
1 1

0

( )
b Pp t dt

R

∗

=∫

( ) ( ) ( ) ( )
* * *

* * * *
1 1 1 1 01 , 1 , , 1 , 1.

2 2 2
b b bt s x r p t E s r sλ φ= + = + = − < <

1
1 2 1

1

( ) ( ,0) .xf x u x
x R
∂

= =
∂

1 , .A Bωη δ= = −

1

1

( )( ) 1.B sA r ds r
s r
φφ

π −

+ = +
−∫

1

1

1 ( )( ) .
2

sz ds
i s z

φ
π −

Φ =
−∫

1

1

( )( ) 1.B sA r ds r
s r
φφ

π −

+ = +
−∫

0 0( ) ( ) 0,N Mχ α β= − + = − + =

1

1

1

0 : , ,

0 : 0.5, 0.5,

0 : 1 , 1,

θ θωη α β
π π

ωη α β
θ θωη α β
π π

> = = −

= = = −

< = − = −

1

arctan >0, 0 .
2

δ πθ θ
ωη

= < <

( , )

0
( ) ( ) ( ), ( ) (1 ) (1 ) , 1 1,n n

n
s c w s P s w s s s sα β α βφ

∞

=

= = − + − < <∑

( )
* *

* * * *1
1 1 1 0 1* *

1 10

( )b p tBAp x dt E x
t x

λ
π

∗

+ =
−∫

1 ( , )
( , )

0 1

( ) ( )( ) ( ) 1.n
n n

w s P s dsBc Aw r P r r
s r

α β
α β

π

∞

−

 
+ = + − 

∑ ∫
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Using the following property of Jacobi polynomials:

(26)

 Eq. (25) can be expressed as

(27)

In this problem, after the application of a given load, 
one end of the contact length (i.e., *b ) is unknown. Howe-

ver, for a given value of the contact length (
*b ) Eq. (27) gives

1n + equations for 1n +  the unknowns. Expanding right

hand side of Eq. (27) into a series of Jacobi polynomials 
( , )

nP α β− −  
and observing that, we find:

(28)
where

(29a,b)
Therefore Eq. (27) can be written as:

(30)

Comparing right hand side and left hand side of Eq. 
(30), we have only two non-zero coefficients:

(31a,b)

Therefore, the solution becomes;

(32)

Using Eq. (15) the equilibrium equation (17c) may be 
expressed as:

(33)
Orthogonality condition of Jacobi Polynomials can be 

written as:

(34)
where

(35)

(36)

Using the orthogonality condition of the Jacobi Polyno-
mials, the relation between applied load P and the contact
length b can be found from Eq. (33) as:

			            (37)

0θ can be given as:

			             (38)

The load versus contact length relation may be obtai-
ned by substituting 0c  from Eq. (31a) and 

0θ  from Eq. (38)

into Eq. (37)

					            
(39)

Then the contact pressure distribution * *
1( )p t   beco-

mes:

					              
(40)

( )
( )

( )

( ) ( ) ( ) ( )

,1, ,

1

( ) ( )( ) ( ) 2 ( ),
sin

1 1, 1, 1, 0,1, ,

n
n n

P s w sB BAP r w r ds P r
s r

r

α β
α β α βχ

χπ πα
α β α

− −−
−−

+ = −
−

− < < ℜ > ℜ > ℜ ≠

∫


( , )

0
( ) 1, 1 1.

sin

n

n nc P r r rα βδ
πα

− −  = + − < <  
∑

( )( , ) ( , )
1 01 ( ) 1 ( )r P r P rα β α βα− − − −+ = + +

( , ) ( , )
1 0( ) , ( ) 1P r r P rα β α βα− − − −= − + =

( )( , ) ( , ) ( , )
1 0

0
( ) ( ) 1 ( ),

sin

n

n nc P r P r P rα β α β α βδ α
πα

− − − − − −= + +∑

( )
0 1

1 sin sin, .c c
α πα πα
δ δ

+
= =

( ) ( ) ( )

( ) [ ]

1
( , )

0 1
0

( ) ( ) ,

sin 1 2 .

n n
n

s w s c P s w s c c s

w s s

α βφ α

πα α
δ

=

= = + +  

= + +

∑

1

2
1 01

4( ) .Ps ds
E b R

φ
λ ∗

−

=∫

1 ( , ) ( , )
( , )1

0
( ) ( ) ( ) 0,1,2,n j

j

n j
P t P t w t dt j

n j
α β α β

α βθ−

≠
= = =

∫ 

11( , )
0 1

2 ( 1) ( 1)( ) ,
( 2)

w t dt
α β

α β α βθ
α β

+ +

−

Γ + Γ +
= =

Γ + +∫

1
( , ) 2 ( 1) ( 1) , 1,2,

(2 1) ! ( 1)j
j j j

j j j

α β
α β α βθ

α β α β

+ + Γ + + Γ + +
= =

+ + + Γ + + +


0 0 2
1 0

4 .Pc
E b R

θ
λ ∗=

( ),
0

2 .
sin

α β παθ
πα

=

( ) 21* *

0

1
.

2
PP b

E R
α παλ
δ

+
= =

( )

( )

*
* * *

1 1 0 1

* * ** 1
,1 1

1 0 * *
01

* * *
* 1 1

1 0 * *
1

( ) ,
2

2 1 ,
2

sin .

n n
n

bp t E t

b t tbE c P
t b

b t tE b
t b

α
α β

α

λ φ

λ

παλ α
δ

=

=

   −
= −   

  

   −
= +   

  

∑
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Using Eq. (10) and Eq. (13) the non-dimensional pressu-
re distribution pressure becomes:

	
* * * *

*22 1 1 1
1 * *

0 1

( ,0) sin .x b x xb
E x b

α
σ παλ α

δ
   −

= − +   
  

      (41)

The stress component *
11 1( ,0)xσ can be found by 

using 

(42)

where

					              (43)

Therefore

					   

  

(44)

(45)

where

             

(46)

(47)

Mode I stress intensity factors at the ends of the stamp 
for a homogeneous medium can be defined as:

					          (48a)

Defining the non-dimensional stress intensity factors 
as

( ) ( )

*

0
1

,*
1

0

*
1

(0)
(0)

1

sin

p
p

n n
n

k
k

E b

b c P

b

α

α βλ

παλ α
δ

=

=

= −

=

∑

       (48b)

Stress intensity factor in terms of the in-plane stress 
component can be defined as

1
1 1

0

*
1 0

(0 ) ( )lim

sin cos

q
x

k x q x

E b b C D

α

α πα παλ α
δ δ

+

+

→
=

 = + 
 

      (49a)

In non-dimensional form Eq. (49a) can be expressed as

					            (49b)

     (50a)

Similarly, in non-dimensional form Eq. (50a) can be 
expressed as:

                        (50b)

RESULTS AND DISCUSSION
Contact problem described in Fig. 1 is solved analytically 
to obtain results for the contact stresses and in-plane 

( ) ( )

1
1 1

0

1
,*

1 0
0

*
1 0

(0) ( )lim

1

sin

p
x

n n
n

k x p x

E b b c P

E b b

α

α βα

α

λ

παλ α
δ

→

=

=

= −

=

∑

( )
( ) ( )

( )

*

*

*
22 1* * * *

22 1 1 1* *
1 10*

11 1 *
22 1 * * *

1 1* *
1 10

,0
,0 , 0 ,

,0
,0

, 0, ,

b

b

tDC x dt x b
t x

x
tD dt x b

t x

σ
σ

π
σ

σ

π


 + < <

−
= 


 ∉  −

∫

∫

22

2 2

, .C Dω ηδν δ
λ λ

 
= + = 
 

( ) ( )
*

* * *
11 1 1 1 0 1( ,0)

2
bx q x E xσ λ ψ= − = −

( )

( ) ( ) ( ) ( )

{ }

{ }

( , ) ( , )
0 0 1 1

0 0 1 1

0 0 1 1

, 1 1,

,0
, 1.

Cw r c P r Cw r c P r
D c L c L r

r
D c L c L r

α β α β

π

ψ

π

 +

+ + − < <
= 
 + >




( )
1

0
1
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stress distributions beneath semi-circular punch profile 
under various restrictions. In the results, the contact 
stresses are normalized by 

0E . Results are given for the 

following range of parameters ( 0.1 5κ− ≤ ≤ , 
40.2 5,δ≤ ≤ 3 7ν =  and 0 0.9η≤ ≤ ). There are certa-

in limitations on the material parameters of orthotropic 
materials. These restrictions require that >0,κ ν+  (see 

Eq.(1) and (2), 0< <1ν  and 1.κ > −

Fig. 2-4 illustrate the contact pressure, 
22 1( ,0)xσ  un-

der semi-circular punch. Note that the contact pressure is 
bounded and zero at the smooth end of semi-circular punch 
( )1x b= . However, at the leading or another words sharp 

end, the contact stress is singular.  In-plane stresses, 

11 1( ,0)xσ  are bounded and discontinuous at the leading 

edge   ( )1 0 .x =  In the distribution of 
11 1( ,0)xσ  as ( )1x b→

near leading edge needle-like spikes distribution is observed. 

This case, obviously results in crack nucleation and as a 
result component total service life may be reduced because 
of contact fracture [47]. It is interesting that neither the stiff-
ness ratio, ,δ  nor the shear parameter, ,κ  has effect on the

distribution of  in-plane stress, 
11 1( ,0),xσ at the leading 

edge ( )1x b→ because of the formulation as

					               (51)

Fig. 6a shows the dependence of various material para-
meters δ  and the κ  on the powers of stress singularities,

α  and β  for fixed value of the coefficient of friction,

Figure 2. Contact pressure, 22 1( ,0)xσ , and in-plane stress, 11 1( ,0)xσ   distributions at the contact surface under semi-circular 

punch for various values of the parameters 
122

E
G

κ ν= − with 0.5,η = 3 7ν = , 0.01,b R = 4 11 12

22 21

E
E

νδ
ν

= = where E  and ν   are

given in equations (1) and (2) a) 22 1( ,0)xσ for 4 0.2δ = ;b) 22 1( ,0)xσ  for 4 1δ = ; c) 22 1( ,0)xσ for 
4 5δ = ; d) 11 1( ,0)xσ for 4 0.2δ = ; e)

11 1( ,0)xσ for 4 1δ = ; f) 11 1( ,0)xσ for 4 5δ = .

( )
*

*11
1

0

( ,0) 1
2

b b b
E

σ λ ψ η= − =
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Figure 4. Contact pressure, 
22 1( ,0)xσ  and in-plane stress 

11 1( ,0)xσ distributions at the contact surface under semi-circular punch for various 

values of the friction coefficients parameters ,η with 
122

E
G

κ ν= − , 3 7ν = , 0.01,b R =
4 11 12

22 21

0.2E
E

νδ
ν

= = = where E andν are given equati-

ons (1) and (2) a) 22 1( ,0)xσ for 0.1κ = − ; 1κ = ;c) 22 1( ,0)xσ  for 5κ = ; d) 11 1( ,0)xσ  for 0.1κ = − ;e) 11 1( ,0)xσ  for 1κ = ;f) 11 1( ,0)xσ  for 

5κ = .

Figure 3. Contact pressure, 
22 1( ,0)xσ , and in-plane stress, 

11 1( ,0)xσ   distributions at the contact surface under semi-circular punch 

for various values of the parameters 

122
E
G

κ ν= − with 0.5,η = 3 7ν = , 0.01,b R = 4 11 12

22 21

E
E

νδ
ν

= = where  E  and ν  are given in equa-

tions (1) and (2)  a) 
22 1( ,0)xσ for 0.1κ = − ; b) 

22 1( ,0)xσ  for 1κ = ; c) 
22 1( ,0)xσ for 5κ = ;d) 

11 1( ,0)xσ for 0.1κ = − ; e) 
11 1( ,0)xσ

for  1κ = ;f) 
11 1( ,0)xσ for 5κ = .
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0.5,η =   and effective Poisson’s ratio, 3/ 7ν = . As the she-

ar parameter, ,κ  increases, α  increases for fixed values of 

the stiffness ratio parameter, .δ  Note that, for 3κ >  the 

change of the δ has no effect on the curves. Fig. 6b depicts 

the dependence of κ  and  δ  on the powers of stress singu-

larities, α  and β  for fixed value of the coefficient of friction, 

0.5,η =  and effective Poisson’s ratio, 3/ 7ν = . As the stiff-

ness ratio parameter, ,δ  increases, α  increases for fixed 

values of the shear parameter, .κ  Note that, for 3δ >  the 

curves do not sensitive to the change of the .κ

Table 1 shows some examples of the stress intensity 
factors obtained for a semi-circular stamp. The values of 
stress intensity factors increase both shear parameter and 
stiffness ratio decreases.

Table 1.The normalized stress intensity factors for a ho-
mogeneous orthotropic medium under contact stresses for 
the semi-circular punch, 3 7ν = .

Figure 5. The load, 
0

P
E R

 and the contact length b , an orthotropic homogeneous medium under semi-circular punch for various values of the friction 

coefficients ,η with 
122

E
G

κ ν= − , 3 7ν = , 0.01,b R =
4 11 12

22 21

E
E

νδ
ν

= = where E  and ν  are given equations (1) and (2) a) 0.1,κ = − 4 0.2δ =

;b) 1,κ = 4 0.2δ = c) 5,κ = 4 0.2δ = ; 0.1κ = − ;f ) 4 5δ = , 0.1κ = − .

Figure 6. Strength of stress singularity at 
1x b=  , α  and 

1 0x = ,  β  with 0.5,η =  , 3 7ν =  for various values of a)  ,			 

b) 		               

 
where E  and ν  are given in  equations (2) and (3)  for semi-circular punch where  ( ) 0χ α β= − + = .

4 11 12

22 21

E
E

νδ
ν

= =

122
E
G

κ ν= −
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Table 1. The normalized stress intensity factors for a homogeneous orthotropic medium under contact stresses for the semi-circular punch, ν = 3 7 ..

Stiffness 
ratio η = 0.5 η = 0.9

κ = −0.1 κ =1 κ = 5 κ = −0.1 κ =1 κ = 5

δ 4 = 0.2
0.00426 0.00316 0.00197 0.003232 0.00267 0.00181

δ 4 =1
0.00315 0.00225 0.00136 0.002668 0.00203 0.00129

δ 4 = 5
0.00224 0.00156 0.00092 0.002028 0.00146 0.00090

Stiffness 
ratio η = 0.5 η = 0.9

κ = −0.1 κ =1 κ = 5 κ = −0.1 κ =1 κ = 5

δ 4 = 0.2
0.00251 0.00186 0.00116 0.002941 0.002433 0.001650

δ 4 =1
0.00360 0.00257 0.00155 0.003904 0.002974 0.001892

δ 4 = 5
0.00534 0.00371 0.00221 0.005474 0.003964 0.002429

Stiffness 
ratio η = 0.5 η = 0.9

κ = −0.1 κ =1 κ = 5 κ = −0.1 κ =1 κ = 5

δ 4 = 0.2
0.002009 0.00216 0.00230 0.00300 0.00344 0.00387

δ 4 =1
0.002166 0.00227 0.00236 0.00345 0.00377 0.00407

δ 4 = 5
0.002274 0.00234 0.00241 0.00378 0.00401 0.00421
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CONCLUSION
In this paper, an analytical solution to the plane contact 
problem is given on orthotropic homogeneous medium 
is intended by a sliding rigid semi-circular stamp. The 
given problem is reduced to a second kind singular integ-
ral equation, which is solved using of Jacobi Polynomials. 
The effect of orthotropic material parameters and fric-
tion coefficient on the contact stress are presented. The 
following conclusions can be drawn from the results fo-
und in this study:

• In sliding contact problems orthotropic
homogeneous materials the weight functions ( )w x

describing the asymptotic behavior of the contact stresses 
are dependent, as in the isotropic homogeneous materials, 
on the coefficient of frictionη  and the surface value of the 

Poisson’s ratio ν  (or the shear parameter κ ) only, and are 

independent of all other material constants and length 
parameters. 
• In-plane stress tensile spike occurs on the surface at
the trailing end of the contact region. The magnitude of
the tensile spike increases with the increasing coefficient
of friction, η  stiffness ratio, δ  and shear parameter .κ

• In all cases the resultant force P  increases with
increasing contact area in a parabolic manner.
• The shear parameter ,κ  and the stiffness ratio .δ  do 

not affect the length of the contact zone.
• The Poisson ratio ν has only negligible influence on

the 22 1( ,0)xσ contact pressure distribution for 0.1κ ≤ −

• Results have relevance to surface crack initiation
and propagation in load transfer components.
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