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Grain boundary (GB) thermal grooving is 

a capillary driven surface morphological 

evolution, and observed in the vicinity of the grain 

boundary- free surface junctions in polycrystalline 

materials at rather elevated temperatures. When the 

underlying bulk system is exposed to the external 

and/or internal stress fields the problem becomes 

much more complicated. One of the most widely 

employed method to study the effects force fields on 

the GB grooving, is to couple the capillary-driven 

surface diffusion with the steady state atomic flux 

induced by the normal component of the surface 
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traction acting on the GB layer.

Following this approach Genin et al. [1] extended 

Mullins’ [2] classical theory of thermal grooving to study 

the development of an isolated groove with constant GB 

flux due to normal compressive stress gradients (i.e., 

Herrings’ force) acting on the GB layer. They observed 

stagnation of the groove formation under compressive 

stresses.

In addition to GB grooving, the formation and 

development of ridges or hillocks is one of the most 

commonly observed surface reconstruction phenomena 

in polycrystalline thin films. In situ observations of thin 

films revealed that ridges generally form in the vicinity 

of GB TJs; and it is thought that they form under the 

influence of residual and/or thermo-mechanical 

compressive stresses, induced during the deposition 

A B S T R A C T

We investigated surface drift diffusion induced grain boundary (GB) grooving 
and ridge (hillock) formation and growth, under the combined actions of the 

capillary forces and applied uniaxial compressive stresses, in bi-crystal thin films with 
dynamical computer simulations. In the present theory, the generalized driving force 
for the stress induced surface drift diffusion includes not only the usual gradient of the 
elastic strain energy density, but also the elastic dipole tensor interaction energy. During 
the morphological evolution of GB ridge formation and growth, triple junction (TJ) 
displacement and its velocity are continuously tracked down in order to resolve precisely 
the crossover time and depth at which velocity sign inversion takes place. An incubation 
time for the onset of the ridge growth stage coupled to the GB-TJ displacement velocity 
inversion is defined and its dependence on the stress is investigated. This analysis implies 
that the ridge growth stage is not controlled by Ziegler’s ‘maximum entropy production 
principle’ but rather Prigogine’s ‘minimum entropy production hypothesis’ for the 
stationary non-equilibrium states in complex systems, which are exposed to external 
applied body forces and surface tractions.

Key Words: 
Grain Boundary Grooving; Non-Equilibrium Thermodynamics; Surface/Grain 
Boundary Diffusion; Compressive Stresses; Thin Films. 

INTRODUCTION
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and/or the thermal cycling processes, respectively [3–9]. 

One of the drawbacks of the study of Genin and 

coworkers [1, 6, 7] was the absence of long range surface 

diffusion into the ridge from the surroundings film area. 

Kim et al. [9] indicated the essence of long range diffusion 

by citing Chaudhari’s [10] ridge model in which an analysis 

of the lattice diffusion (Nabarro – Herring creep) was 

presented. Presland et al. [11], on the other hand, provided 

the evidence for the surface diffusion controlled mechanism 

during ridge growth in silver thin films. These authors 

directly adopt the results of the Hull-Rimmer theory 

[12] by noting the similarity between the two problems, 

ridge growth and GB void growth, after making suitable 

arrangements. As a result, they obtained a ridge growth rate 

which is linearly proportional with the applied stresses. Gao 

et al. [13] and Zhang and Gao [14] have studied constrained 

grain boundary diffusion coupled with the surface diffusion, 

leading to formation of crack-type wedges via mass transfer 

between grain boundary region and the free surface of 

the film. The proposed coupling relies on the crack tip 

curvature and its higher derivatives (See: Eqs. 13 and 14 of 

reference 14) where, the surface drift diffusion considered 

in their treatment is of Mullins type, which is completely 

controlled by the capillary forces acting along the free 

surfaces and there was no attempt to consider the gradient 

of hydrostatic part of stress tensor as a driving force. 

The elastic strain energy density (ESED) gradient 

driven instability is predicted to occur for stresses of either 

sign (quadratic stress dependence). However, for a kinetically 

driven instability, if the interface is unstable for a given stress 

state, then it should necessarily be stable for the opposite 

stress state or vice versa [15]. Lahiri [16] studied ridges on a 

Pb thin film and observed the effect of stress sign reversal: 

The ridges grow under compressive stresses and shrink in 

height under tensile stresses. Similarly, Barvosa-Carter et 

al. [15] demonstrated that the corrugated Si (001) interface 

is stable under tensile and roughens under compressive 

stresses. It is evident that ESED cannot play any role in the 

sign reversal behavior observed in surface morphological 

evolutions but a term with a linear stress dependence can. 

In this paper, we considered the role of the gradient 

of the hydrostatic part the stress tensor generated by the 

applied uniaxial compressive stress system as a driving force 

on the surface drift diffusion (via isotropic surface point 

defects) through the elastic dipole tensor interaction (EDTI), 

which was proposed and elaborated by Ogurtani [22] and 

presented briefly in Appendix. The EDTI is accounted for 

the interactions in the bulk phases between the strain field 

of the mobile atomic carriers (mono-vacancies or paraelastic 

defects such as Frenkel defects) and the local stress fields. 

EDTI is also valid for the mobile defects ‘ad atoms’ lying 

at the surface layer as well as in the grain boundary region 

as demonstrated by Kirchheim [18] in his well-accepted 

classical work. Later, other authors also employed the 

concept for bulk [19] and grain boundary [20] diffusion. 

According to our best knowledge, excluding our recent 

work on the effects of applied uniaxial tension stresses on 

GB grooving [21], there exists neither gross scale simulation 

nor analytical work that reflects the dominant effect of long 

range surface drift-diffusion driven by the stress gradient in 

the literature. The main reason for this is that the surface is 

always assumed to be traction free, and thus the Herring’s 

force vanishes identically (see Appendix). 

The present computer simulation experiments 

emphasize the crucial role played by the EDTI as driving 

force for surface diffusion in explaining the GB grooving 

under compressive stresses as well as the ridge formation 

at the GBs. In these experiments, we did not take into 

account the particle flux coming from or going through the 

GB region (evaluated at the TJ) directly. In other words, we 

assumed that the material drainage at the GB-groove tip and 

transfer through the GB by the non-vanishing stress field 

gradients as well as by the concentration inhomogeneities 

of the mobile species is negligibly small compared to the 

material excavation and transport by the stress driven 

surface drift-diffusion operating along the groove surfaces 

via EDTI.

Physical and Mathematical Modeling

The thermodynamic composite system under 

consideration consists of two bulk regions, and a vapor 

phase. The bulk regions are connected by a GB, and the 

vapor phase is separated from the solid phase by a singly 

connected curved surface layer as illustrated in Figure 1. 

The surface layer and the GB region are both presumed 

to have finite and invariant thicknesses, denoted as sh  

and gh , respectively. 

Figure 1. Sketch of a grain boundary groove, which evolves on the 

upper triple junction, illustrating its width (w), depth (h and d), maxima 

(hmax) and dihedral angle (φ). Here W and L denote the half film width 

and length, respectively. The grain boundary extends along the origin. .
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a. The governing equation for the surface drift-

diffusion and growth

According to the micro-discrete formulation of the 

irreversible thermodynamics of surfaces and interfaces 

[22, 23], the evolution kinetics of traction free surfaces 

exposed to the elastostatic fields in addition to the 

capillary forces, may be described in terms of surface 

normal displacement velocities ordV  by the following 

well-posed moving boundary value problem in 2D 

space for ordinary points. In the following expression, 

normalized and scaled parameters and variables are used, 

and they are indicated by the bar signs over the letters:

(1)

In the above expression, / o  is the normalized 

curvilinear coordinate along the surface (arc length) in 

2D space. Here, o  is the arbitrary length scale, and is 

chosen as / 2 100 nmo oh  for the present simulation 

studies, Here, oh  is the thickness of the thin film having 

a length designated by oL , which is taken as equal to 

 
. This choice implies that the aspect 

ratio of the test module, denoted by /o oL h , is 15. 
o
vbg  

denotes the normalized thermal part of the volumetric 

Gibbs free energy density difference ( )o o
vb v bg g g  

between the realistic void phase (vacuum/vapor) and the 

bulk matrix ( o
vbg <0 evaporation or void growth). This 

normalization is done with respect to the specific surface 

Gibbs free energy of the surface phase denoted by sg , and 

it is given by /vb vb o sg g g , which also involves the 

length scale or the metric o . Similarly, the second group 

of terms in Eq. (1) is related to the surface growth process, 

which will not be employed in the present simulation 

studies ( 0;  0o
vb vbg ) to avoid further complications 

in data interpretations. 

In Eq. (1), o  is the local curvature and is taken 

to be positive for a concave solid surface (troughs). Similarly, 

the positive direction of the surface displacement is assumed 

to be towards the bulk (matrix) phase, which implies the 

growth of surface troughs or grooves, and the simultaneous 

shrinkage of crest regions. 

The normalized hoop stress is denoted by, / o
h h h

, which was normalized with respect to the nominal stress 

applied at the edges of the specimen, o . The hoop stress in 

plane strain condition may be defined by ˆ ˆ. .h t t , where 

t̂  is the unit surface tangent vector, and  is 2D-stress 

tensor evaluated at the bulk region just adjacent to the 

surface layer. The hoop stress for the traction free surfaces 

may be given by the following exact connection: h Tr  

since ˆ ˆ. . 0n n  for traction free surfaces. The double under 

bars indicate tensor quantities.  designates the elastic 

dipole tensor interaction (EDTI) parameter, which is given 

by the expression 1  / 3o
o h sTr g . Here, Tr  is the 

trace of the elastic dipole tensor. For further applications 

of EDTI on the stress dependent surface growth mobility, 

one may refer to Ogurtani and Akyildiz [24], Ogurtani 

and Oren [23]. Similarly, the dimensionless parameter  

corresponds to the relative value (referred to the capillarity) 

of the intensity of the elastic strain energy density (ESED) 

contribution on the stress-driven surface drift-diffusion. 

For plain strain condition, ESED takes the following form: 
2 2: / 2 1 / 2h E . Here  is the strain tensor, E  is 

the Young’s modulus, and  is the Poisson’ ratio. Then one 

writes 
221 / 2o

o h sEg . 

The time and space variables ,t are scaled in 

the following fashion: first of all, ˆ /s s s sD h kT , an 

atomic mobility associated with the mass flow at the 

surface layer is defined and then a new time scale is 

introduced by 4 2 ˆ/o o s s sg . Here, s  and sD  are the 

mean atomic volume of chemical species in the surface 

layer and the isotropic part (i.e., the minimum value) of the 

surface diffusion coefficient respectively. The generalized 

mobility, ˆ
vb , associated with interfacial displacement 

reaction taking place during the surface growth process 

(adsorption or desorption) is also normalized with respect 

to the mobility of the surface diffusion, ˆ
s , and is given 

by 2ˆ ˆ/vb vb o s . The normalized time t and the test 

module thickness 
oh  used in the present simulations are 

defined by / ot t , and /o o oh h , respectively. 

TJ drift velocity along the rigid GB can be represented 

by [22, 23]: 

(2)

Here, ad , and g  are the interatomic distance and 

mean atomic volumes of chemical species in the GB layer, 

respectively. longM  is the longitudinal generalized mobility 

of the TJ, which is defined below.  and  are the dihedral 

angles as illustrated in Figure 1.  is the wetting parameter 

associated with the TJ, which is assumed to be isotropic in 

the present case study. It may be given by / 2g sg g , where 

gg  is the specific surface Gibbs free energy associated with 

the GB.

The following boundary conditions at the TJ in 

terms of right and left side fluxes associated with the sur-

face layer may be written;

(3)

In the above equation, the ( ) first group of terms 

2
2 2

2
o o

ord vb h h vb vb hV g g

2 2 cos cos
2

g along long
g

s g

d
V

h

2 2cos / 2 sin sin
2

long transa a
o g

s s

d dJ J
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represents the material lost from the TJ-edge of the GB 

layer due to shortening of its length caused by the GB-TJ 

longitudinal motion, and then injected equally into the 

both branches of the surface layer to extend its length 

(in situ 2D-phase transition). The last group of terms 

corresponds to the mass transfer from one side of the 

surface layer to another side through the GB-TJ region to 

compensate the asymmetry in the surface groove profile till 

the non-equilibrium stationary state having symmetrically 

disposed configuration is attained asymptotically. Here, the 

particular partition of the incoming GB flux gJ  between 

oJ  and oJ  at the GB-TJ is a matter of convenience; 

otherwise it is completely arbitrary as long as one satisfies 

the generalized law of conservation of particles including 

the in situ phase transformation at the TJ. Here, the positive 

direction of the surface flux oJ  is taken along the clock-

wise direction enclosing sidewalls of the finite specimen in 

2D space. Similarly, gJ  denotes the normalized atomic flux 

associated with the incoming GB mass flow evaluated just 

at the GB-TJ. In the present simulation studies, the atomic 

grain boundary flux term gJ  is not considered. 

trans  corresponds to the normalized transverse 

mobility of the TJ with respect to ˆ
s . The explicit 

expressions may be given by:

         ,                       ,                     (4)

Where, long  and trans  are the transition 

rates associated with the longitudinal and transverse 

displacements of the TJ, which may be calculated by Eyring 

[26] transition rate theory. 

b. Numerical methods

In the evaluation of the hoop stresses at the top and 

bottom free surfaces of the thin metallic bicrystal 

film including GB groove faces we utilize the simplest 

implementation of the indirect boundary element 

method (IBEM) [27] which utilizes the mid-positions 

of the straight line elements in two dimensional space 

as collocation points. This guarantees the surface 

smoothness conditions for the validity of the governing 

Fredholm integral equation of the second kind at the 

corners and edges. Neumann boundary conditions are 

employed along the top and bottom surfaces (i.e., surface 

tractions are zero, ˆ. 0n ) and prescribed surface 

normal tractions (i.e., uniaxial compression defined as 

ˆxx L
x  at L  ) at the specimen edges. The explicit 

Euler’s method combined with the adaptive time step 

auto-control mechanism is employed in connection with 

Gear’s stiff stable second-order time integration scheme 

[28] with the initial time step selected in the range of 
8 910 10  in the normalized time domain. This so-

called adaptive time step procedure combined with the 

self-recovery effect of the capillary terms guarantees the 

long-time numerical stability and accuracy of the explicit 

algorithm even after performing 
75 90 272 2 10 steps. 

An adaptive mesh refining procedure is continuously 

applied using the criteria advocated by Pan and Cocks 

[29]. Typically, the number of active collocations points 

in our discretization scheme varied from 400 to about 

550 depending on the normalized applied stress and TJ- 

longitudinal mobility. The curvature and the normal line 

vector are evaluated at each node for each time step by 

using discrete geometric relationships in connection with 

the fundamental definitions of the radius of curvature in 

differential geometry. 

In our calculations, a few percent unavoidable mass 

leakage is observed at low stress levels 0.1  to the 

system, which shows appreciable improvements at the 

moderate to high stress levels 1 . This leakage arises 

from both edges of the test modulus even though we are 

employing insulating boundary conditions:

 2 0Edges h h
L

J

The main reason is associated with the fact that one 

doesn’t have enough number of collocation points at 

the critical spots of the test modulus such as edges and 

corners, where the extreme high stress concentrations take 

place. We have also used a special program to compensate 

this mass leakage at the edges, which adds to or subtracts 

material from the upper and lower surfaces, respectively, 

using a well-defined scaling factors. On the other hand, the 

genuine mass accumulations at the ridges mainly come 

from the upper and lower surfaces of the specimen, which 

results as the thinning of the film. This thinning is very 

hardly noticeable since the sample has a very high length to 

thickness aspect ratio.

In the next section, while discussing on the 

simulation results we would often encounter with the 

time constant and thus it is beneficial to get some idea on 

the magnitude of the tentative time constant based on the 

available experimental data in the literature. According 

to the definitions of the time constant o  and the surface 

mobility ˆ
sM  introduced previously, one may write 

4 / ( )o
o o s s s skT D h g , which may be easily calculated 

using the published physico-chemical data available in the 

literature. Using the values tabulated for copper in Table 

1, one finds that 2 65.72 10 10  so  depending upon 

the selected scale length o  100 1000 nm nm  at 573oT K
, which is the standard device accelerated test temperature. 

At room temperature, 300oT K , one obtains about eight 

orders of magnitudes higher values for the normalized time 

such as 10 141.2 10 10  so .

ˆ
long

glong

g

h
kT

ˆ
trans

trans s

s

h
kT

ˆ s s
s

s

D h
kT
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RESULTS AND DISCUSSIONS

In this section, first we will compare general features of 

the profiles obtained under the low uniaxial compressive 

stress field and the one deduced from the thermal 

grooving experiment presented in Figure 2d, where only 

the capillary forces are in action. Then the topological 

effects of the increase in the applied uniaxial compressive 

stress are examined critically by altering EDTI parameter 

covering a wide range of values: [Ξ = –0.1, … ,1,.. –10].

In the present simulations ESED contribution is 

ignored due to the fact that the EDTI term is at least a few 

orders of magnitude larger; especially for the medium and 

low stress levels. Using the values tabulated in Table 1; for a 

copper film having a thickness of oh 200 nm with a scaling 

length o =100 nm, the given EDTI interval corresponds to 

[σ
Cu

=13.25–1325] MPa, and for aluminum: [σ
Al

=2.96–296] 

MPa. These stress ranges yield for ESED, respectively: 

Cu
=3.5x 510 ,…, 3.5x 110  and 

Al
=6.3x 610 ,…, 6.3x

210 . However, as we mentioned previously, the difference 

between these two parameters decreases as the stress level 

increase. This is due to the quadratic dependence of ESED 

rather than the linear dependence of EDTI to the stress. It 

was found by Ogurtani [22] that the threshold level of the 

stress was about 21 GPa for the silicon and 15.6 GPa for 

copper thin crystal films, and above which the elastic strain 

energy ESEDw  starts to dominate the elastic dipole tensor 

interaction energy denoted by EDTIu , according to the 

relationship: 1/ 2 / 3EDTI ESED ou w ETr . The upper stress 

level employed for the present simulations for 200 nm thick 

samples can be comparable with findings of Friesen et al. 

[30] namely, the instantaneous stress level at the initiation 

of the Volmer–Weber growth of polycrystalline Cu films 

was lower in the pre-coalescence regime (of order 1 GPa), 

and increased monotonically up to the film continuity, and 

then remained constant thereon (of order 10 GPa). Still the 

100 nm Cu film deposited on the backside of each cantilever 

to improve the laser reflectivity did not show any plastic 

deformation, and showed rather reversible stress evolution 

during the growth. 

Here, the initial configurations of the reported test 

modulus are always a flat surface having a freshly formed 

GB cutting the crystal into two pieces. Accordingly; the 

groove tip displacement is measured with respect to the 

original surface and the positive direction is chosen towards 

the bulk phase (Figure 1). In this paper, only the upper 

half of the test modulus is illustrated, which has reflection 

symmetry with respect to the mid-plane of the bicrystal. 

Successive profiles, given in Figure 2a-b, show that the 

evolution under a uniaxial compressive stress (Ξ=−0.1) is 

tend to form a ridge (hillock) at the GB. The groove depth ‘h’, 

which is measured from the initial flat surface towards the 

bulk region, is presented in Figure 2e on a semi log scale with 

respect to the normalized time. A close inspection shows 

that the depth follows up a t1/4 trajectory after an initial 

transient stage, which can be categorized as Mullins’ type, 

up to a certain depth where one observes a very pronounce 

peaking on the plot. This peaking depth may be called as 

the crossover depth designated by ‘ ch ’, and similarly the 

corresponding normalized time may be designated as the 

crossover time for a good reason, and denoted by ‘ ct ’. If one 

zooms into the termination region of Figure 2c, it is observed 

that the GB-TJ displacement velocity is crossing the zero 

line and changes its sign, and then continues upwards to 

take negative values but ever decreasing in magnitude, and 

finally approaches zero line, asymptotically. This peculiar 

behavior is more pronounced in Figure 3b-4b, where a few 

orders of magnitude much higher stress is employed. Thus, 

the crossover time ct , where the depth, velocity and hoop 

stress versus log(time) plots, all show extremal behavior may 

be designated as the signature for the incubation time for 

the ridge formation and growth process. 

Another characteristic length that was adopted by 

Mullins for his classical analytical theory; is the depth 

measured from the position of the peak maxima to the GB-

root (d=h+hmax), and designated by ‘d’. It is also illustrated 

in Figure 3b in log-log scale together with the similar plot 

for the peak maxima maxh . The simulation results presented 

in Figure 3 are obtained for a factor of ten increase in the 

Table 1. Physicochemical properties of Al, Cu, Sn, and Pb [38].  

Al Sn Pb

-1)

|tr( )| 

Qs( eV) -

0
s

 2s-1) -

hs -

S
3) 
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applied nominal stress =1.0, compared to the previous 

simulation experiment. Figure 3b clearly indicates that the 

distance from the groove root to the maxima ‘d’ shows a 

well-defined plateau during the ridge growth, even though 

the peak maxima doesn’t show any sign of stagnation but 

rather elevation. Here a slight overshooting also takes place 

before the dihedral angle reaches to the non-equilibrium 

stationary value (Figure 3d-4d). All these indicate that 

the ridge translates into a nonequilibrium stationary state 

(according to the definition of Prigogine [31], when the 

Mullins’ depth and width parameters enter into the well-

defined plateau regime as may be also seen in Figure 2c-d 

by zooming if one filters out the white noise associated with 

the local internal entropy production.

In Figure 3c-4c the kinetics of the groove width and 

Figure 2. (Color online) Isotropic grain boundary grooving for λ=0.5, 0.25long trans  and 

Ξ=−0.1. a) 3D representation of the groove evolution, b) successive 2D profiles; curvature and hoop stress 

distributions corresponding to t=3.11 (black profile), c) kinetic data for groove depth (‘d’), maxima and TJ 

velocity, d) comparison of the stress free and groove under tension profiles given by Genin et al. [1] at t=1.0; 

curvature and hoop stress distributions at t=1.0, e) kinetic data for groove depth (‘h’), width and TJ stress, f) 

energy changes and the kinetic data for the dihedral angle in semi-log scale. 
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the value of the hoop stress at the TJ are also demonstrated. 

The compressive hoop stress value reported in these plots 

increase in magnitude as the groove deepens to ch and then 

decreases as the grain boundary length increases with the 

ridge formation. On the contrary to the local hoop stress, 

the groove width stays constant during the plateau region. 

These are all strong indications for the existence of the 

ridge as a non-equilibrium stationary state under the given 

applied constant compressive stress system (isothermal 

isobaric natural process).

The solution proposed by Genin et al. [1] have also been 

presented in Figure 2d by reproducing it (using equations 

23-27 of aforementioned article) for an arbitrary constant 

grain boundary flux of j=0.4, and for λ=0.5, B=1.0, and t=1.0. 

Although there are some fundamental differences, there 

exists a qualitative agreement between the Genin’s analytic 

solution and the simulated profile in Figure 2. This is due 

to the fact that the dihedral angle and the GB-TJ velocity 

reported in Figure 2c-f follow trajectories very similar to the 

equilibrium trajectories employed in Mullins theory, during 

the natural evolution of the grain boundary groove at this 

moderately low stress levels. In the present case, the applied 

stress directly acts on the surface drift diffusion through 

the EDTI, while the GB region assumed to play no active 

role (no gradient driven matter flux is coming out from the 

GB to the TJ or vice versa, 0gJ ) in the overall process. 

The GB region has only one active role that is the direct 

involvement in the 2D-phase transition (in situ material 

exchange) taking place at the GB-TJ during its longitudinal 

displacement. 

The free energy changes presented here in several 

plots are formulated recently [32] in great details for the 

isobaric composite system. Such a system is enclosed by 

external flexible and diathermal boundaries that allow not 

only establishing thermal equilibrium in the system, but 

also permitting to have a direct contact with the external 

constant surface tractions and body forces. That means 

the work done on the system is non-vanishing, 0W
. For such a system having a discrete free surface contour 

line, letting n to designate the total number of nodes, one 

may write down the rate of total strain energy relaxation 

(dissipation power) at a given time step i during the evolution 

Figure 3. (Color online) Isotropic grain boundary grooving for λ=0.5, 0.25long trans
 and Ξ=−1.0. a) 

successive 2D profiles; curvature and hoop stress distributions corresponding to t=0.39 (black profile), b) kinetic data for 

groove depth (‘d’), maxima and TJ velocity, c) kinetic data for groove width, depth (‘h’) and TJ stress, d) energy changes 

and the kinetic data for the dihedral angle in semi-log scale. 
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as: 

(5)

Here, i o iP P  and 2 2(1 ) / 2o ow E  is the nominal 

elastic strain energy density, and 2/ (1 )E  is the plain 

strain elastic modulus, i  is the total scaled temporal 

length of the top surface of bi-crystal modulus including 

groove region at a given time step i, and with j standing for 

the collocation nodes of discrete surface. , ,( / )h ij h ij o  

and ijv  are the calculated normalized hoop stresses and 

velocities at each node. The summation is performed 

over the free surface contour line exposed to the surface 

drift diffusion. Then, the cumulative elastic strain energy 

relaxation (dissipation) of the body E <0, which is 

according to Clapeyron’s theorem [32, 33] compensated by 

one-halve of the work done on the isobaric system, may be 

calculated as a function of discrete normalized time it  by 

a simple integration (i.e., summation) procedure applied to 

above expression: 

<0                                                                (6)

The relationship in Eq. (6) is utilized to compute the 

total elastic strain energy relaxation, which is equal to the 

cumulative strain energy stored 
e

iW  in the body with 

an inverted sign e
i iW E >0, and then the results are 

plotted in Figure 4d. The corresponding change in the bulk 

Gibbs free energy of a Hookian elastic solid is given by [33] 
b Th e
i i i iG F W E <0, assuming that the entropy 

density is not a sensitive function of strain. Here, 0Th
iF  

is the thermal part of Helmholtz free energy, which is 

identically equal to zero for the isothermal changes. On 

the other hand, the global variations in the film surface free 

energy (capillary) including the shortening of the GB layer 

may be computed by the following equation:

(referred to the initial 

dead loaded state) (7)

Here, 
1

o  is the characteristic length, ih  is the 

Figure 4. (Color online) Isotropic grain boundary grooving for λ=0.5, 0.25long trans  and Ξ=−3.0. a) successive 2D 

profiles; curvature and hoop stress distributions corresponding to t=0.062 (black profile), b) kinetic data for groove depth (‘d’), 

maxima and TJ velocity, c) kinetic data for groove width, depth (‘h’) and TJ stress, d) energy changes and the kinetic data for the 

dihedral angle in semi-log scale. 
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temporal normalized depth measured from the original flat 

surface, and oL  is the initial flat top surface length. Then 

the global Gibbs free energy variations during GB grooving 

process as referred to the initial dead loaded state may be 

calculated from the following formula in real time and 

metric space, where 2s s
i o iG G  and b b

i o iG G :

(referred to the initial 

dead loaded state) (8)

The free energy changes, which are normalized with 

respect to common cofactor 2
o ow  are given in Figure 2f, 

indicate that the absolute value of the cumulative strain 

energy relaxation increases monotonically as the surface 

roughness increases. On the contrary, the change in the 

global Gibbs free energy strictly follows the change in 

the surface free energy (due to the increase in the surface 

area), which makes a minima in negative scale and then 

monotonically increases to assume positive values. This 

anomalous situation as may be seen from Figures 3d and 

4d is more critical for the higher stress levels, where one 

hardly can observe any dip in the global Gibbs free energy 

change. The global Gibbs free energy plots clearly show that 

the isothermal ridge growth process taking place above the 

TJ-velocity inversion point (See; the cross-over in Figures 3d 

and 4d) is energetically unfavorable. 

Therefore, it is rather a kinetically driven process, 

which dominates the whole ridge growth stage. This also 

gives us a hint that the ridge growth stage is not controlled 

by Ziegler’s [34] ‘maximum entropy production principle, 

designated as , but by the 

‘minimum entropy production hypothesis, characterized 

by , as formulated by 

Prigogine [31] for the stationary weakly non-equilibrium 

states in linear complex systems, which are now exposed to 

fixed body forces and surface tractions.

In Figures  3 and 4, we presented the effect of an 

increase in the stress (EDTI) on the growth kinetics of a GB 

groove by surface diffusion under compressive stress fields. 

In each case distance ‘d’ reaches a constant value, which is 

inversely proportional to the applied stress and similarly the 

value of the crossover depth decreases as stress increases. 

The amplitude of the secondary oscillations on both sides 

of the groove root rapidly increases with the applied stress 

during this kinetically driven evolution so that one may 

speak of extremely high surface instability above certain 

values. 

An analysis of crossover depths ‘hc’ and inversion-times 

collected for different levels of applied stresses may provide 

an analytical expression for the incubation time for ridge 

formation or may give an estimation of the time and depth, 

where grain boundary migration may start to occur if it is 

possible, as in the case of Genin’s [6] model. 

Such an analysis is presented in in Figure 5 and 

following equations are obtained by linear regression:

(9)

(10)

Reverting back into the real time and space the above 

equations yield into:

(11)

(12)

Figure 5b clearly shows that the crossover time plot 

has a very sharp knee at / 1c o EDTI su g . Based on 

Figure 5. (Color online) Analysis of the crossover depth ‘hc’ and corresponding time as a function of the applied 

stress. 
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this information one can conclude that this parameter, in 

addition to the size of the specimen, is directly connected 

to the ratio of the EDTI and the surface Gibbs free energy 

densities. Thus it may be used as a threshold signature to 

separate the capillary and stress dominating regimes for the 

GB-ridge growth process under the uniaxial compressive 

stresses. This parameter also shows that the small specimen 

size pushes the system towards the capillary regime where 

the incubation time for the ridge formation stretches to 

longer times in logarithmic scale (i.e., apparent stagnation), 

just the contrary to the one should expect a priory.

CONCLUSIONS

In this study, we simulated and analyzed the surface 

morphological evolution kinetics associated with the GB-

ridge formation and growth, in finite size bicrystal thin 

films under the applied uniaxial compressive stresses. 

In our simulations, the elastic dipole tensor interaction, 

between the strain field of mobile atomic species at the 

surface layer and the local stress field induced by the 

applied constant surface tractions and body forces, is 

considered to be the primary driving source rather 

than the gradient of the elastic strain energy density 

inhomogeneities. The most important outcomes of the 

extensive computer simulation studies may be outlined 

as follows:

1. On the contrary to the ESED, the use of gradient 

of the EDTI energy between the stress field and 

the mobile atomic species as a driving force for 

the surface drift-diffusion provides direct means 

to observe effects of compressive stresses on the 

evolution of bicrystal thin films for relatively small 

strength levels 13.25( ) and 2.86 (Al)  MPao Cu .

2. The effect of an applied stress field on GB grooving 

in thin film bamboo lines is studied in a wide range 

of EDTI parameters: Ξ = [–0.1, … , –10], which 

correspond to [–13.25, … , –1325] MPa for copper 

and [–2.96, … , –296] MPa for aluminum with scaling 

length of ℓ
o
=0.1 μm. The application of compressive 

stresses slows down the groove penetration but 

rather favors development of grain boundary ridge 

profiles that are in accord with the results obtained 

by Genin et al. [1]. 

3. The present non-equilibrium thermokinetics theory 

has shown great potential for describing the growth 

kinetics of experimentally observed ridges in thin 

films through surface diffusion. However, there is 

still room for improvement by considering the grain 

boundary flux injection to GB-TJ by the applied 

stress system.

4. The grain boundary area increases during the ridge 

growth and such a process through an immobile 

boundary (normal to the initial film surface) is 

energetically unfavorable. Thus, a more complete 

model should be accounted for the GB migration 

(grain growth), which will be our future objective 

via the incorporation of TJ transverse motion. Yet 

in this study, an incubation time for hillock growth 

and a crossover depth, over which GB migration 

becomes energetically favorable, are defined and 

discussed by staying within the limits of the present 

model. For λ=0.5, the crossover depth is found to 

be proportional with 
1/3

. It is also found that the 

stress dependence of the incubation time for hillock 

growth distinguishes between high and low stresses, 

and is proportional to 
3/2

and 
4/5

, respectively.

5. Since the global Gibbs free energy increases rather 

than the decrease monotonically, the ridge growth 

stage is not controlled by Ziegler’s ‘maximum 

entropy production principle’ [34] but rather by 

the ‘minimum entropy production principle’ as 

postulated by Prigogine [31] for the stationary 

weakly non-equilibrium states in complex systems, 

which are now exposed to preset fixed body forces 

and surface tractions.

6. These results indicate that, the application of bi-

axial compressive stresses to the ultra-fine grain 

poly-crystalline thin films might be a good strategy 

to develop network of honeycomb shape ridge 

structures (quasi-quantum rings), which may show 

strong interface confinement to achieve certain 

unusual electronic and optical properties due to 

their particular 3D topology. This type of ridge 

assembly having almost honeycomb style pattern 

after the elevated temperature annealing treatment 

may offer a chance to study the magnetic behavior 

of susceptibility and the Aharonov-Bohm effect [35].
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Appendix

The elastic dipole tensor concept was first introduced 

by Late Professor Kröner [36] for the elastic strain 

field interaction between point defects and the applied 

stress fields in bulk phases, which may be formulated 

as :EDTI au  The tetrahedral elastic dipole 

tensor associated with these so-called paraelastic 

defects may be described by: ˆ 1 ( ) ( )q n q n mI  

where 3q  denotes direction of the symmetry axis 

and 3 1 1/  is closely related to the shape 

factor. 3 1 2,   are the principal values of the 

tetragonal elastic dipole tensor, along the symmetry 

axis denoted by q̂  and in the interface tangent 

plane (transverse components), respectively. ( )n q  is 

Kronecker deltafunction, q̂  denotes the direction of 

the tetragonal axis, which is parallel to the interface 

normal n̂  for the present case, and .  indicates that the 

Einsteinsummation rule for the repeated indices is not 

valid. Then one can easily show that the EDTI energy may 

be given by the following expression :EDIu  

1( )qqTr  for the general stress systems, 

where ˆ ˆ. .qq q q , and it is equal to zero for the 

traction free surfaces. As a special case; the uniaxial 

stress system acting in the surface tangent plane in the 

direction of t̂ , one can obtain the following expression 

for EDTI energy: ˆ̂1EDI ttu , where ˆ̂ttTr  is 

called hoop stress in engineering applications. The 

general formula given previously, clearly shows that one 

cannot consider the application of the pure hydrostatic 

stress (whether it is hydrostatic pressure or triaxial 

tension) pI  on the composite system (solid/fluid 

and solid/amorphous), without violating the mostly 

used traction free boundary conditions. In the case 

of biaxial stress system acting in the surface tangent 

plane one can also obtain the following expression 

for EDTI energy: ˆ̂12EDI ttu . This shows that the 

biaxial in-plane stress has twice the effect of uniaxial 

stress as confirmed experimentally by Hong et al. [37].


