
fulfilling the transmission conditions 

Inverse scattering theory is concerned with methods 

for retrieving information on the geometry and 

the physical properties of obstacles from scattering 

of acoustic and electromagnetic wave. In the direct 

scattering problem the object is given and it is 

required to find the scattered wave. In the inverse 

scattering problem we want to receive information 

on geometry of the shape or physical parameters of 

the scattering object. 

The inverse obstacle scattering problem that we 

currently deal with is considered for time-harmonic 

waves. The scattering object is assumed to be a 

homogeneous scatterer and the inverse problem 

is to reconstruct an image of the scatterer. In this 

manuscript we are interested in dielectric obstacles and 

restrict ourselves to the sufficiently long cylinders. This 
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A B S T R A C T

The inverse obstacle scattering problem we are interested is to reconstruct the image 
of an infinitely long homogeneous dielectric cylinder from the far field pattern 

for scattering of a time-harmonic E-polarized electromagnetic plane wave. We extend 
the approach suggested by Kress and Lee [18] that combines the ideas of Hettlich and 
Rundell [10] and Johansson and Sleeman [14] for the case of the inverse problem for a 
perfectly conducting scatterer to the case of penetrable scatterer. The inverse problem 
is depended on a system of non-linear boundary integral equations associated with a 
single layer approach to solve the direct scattering problem. We show the mathematical 
foundations of the method and illustrate its feasibility by numerical examples. 
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INTRODUCTION

(1.1)

constrain provides us to reduce the inverse scattering 

problem into two dimensions. 

Let simply connected bounded domain  be subset 

of  with  boundary . It illustrates the cross section 

of a sufficiently long dielectric cylinder and has constant 

wave number  with real and imaginary part larger 

than zero.  and  denote the exterior positive wave 

number and the outward unit normal to the boundary . 

For a given one or several incident fields 

with incident direction  defined as a unit vector, for 

–polarized electromagnetic waves the forward problem

is assembled by the following Helmholtz equation with

the transmission boundary condition: We look for

solutions  and  to satisfy

the Helmholtz equations 

in the trace sense such that . To ensure 

the scattered wave  vanishes at infinity, it requires 

to fulfil the following radiation condition (1.2)
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It uniformly holds in all directions. The radiation 

condition can be rewritten as an asymptotic behaviour of 

the form 

The  is an analytic function defined on the unit 

circle  in  and is known far-field pattern of scattered 

field (see[8]). 

The inverse obstacle scattering problem we are 

interested in is to reconstruct the boundary  of the 

scattering dielectric  by knowing  for one or several 

incident fields with different incident direction . 

At this point we note that uniqueness results for this 

inverse transmission problem are only available for the 

case of infinitely many incident waves (see  [15]). A general 

uniqueness result based on the far field pattern for one or 

finitely many incident waves is still lacking. More recently, 

a uniqueness result for recovering a dielectric disk from 

the far-field pattern for scattering of one incident field was 

established by Altundag and Kress [2]. 

For a more stable and accurate solution of the inverse 

transmission problem we extend the approach suggested 

by Kress and Lee [18] that combines the ideas of Hettlich 

and Rundell [10] and Johansson and Sleeman [14] from 

the case of the inverse problem for an object that is perfect 

conductor to the case of the inverse problem for an object 

that penetrates the incident field. 

In order to transform the forward problem (1.1)–(1.3) 

to boundary integral equation, we represent the solution  

and  to the direct scattering obstacle problem in terms of 

single-layer potential in  and in  with the densities 

 and , respectively. Approaching the boundary and using 

the jump relation and transmission boundary condition 

(1.2) we obtain a system of two boundary integral equations 

on the boundary  for the corresponding densities. We will 

denote this system of integral equations as a field equations. 

For the inverse obstacle scattering problem, the given far 

field pattern  and the required coincidence ofthe far field 

of the single-layer potential provides a further equation. In 

the sequel, we will denote this equation as a data equation. 

Field and data equation can be considered as three equations 

for three unknowns, i.e., boundary curve and the two 

densities. The system of boundary integral equations is non-

linear with respect to the boundary and linear with respect 

to the two densities.This system of integral equations is ill-

posed. The ill-posedness of the inverse problem is reflected 

through the ill-posedness of the data equation. This open up 

variety approaches to solve the inverse scattering obstacle 

problem by linearization and iteration. The first approach 

applied in [2]. The idea of the approach described as follows: 

Given an approximation  for the boundary  in a 

first step the well-posed field equations can be solved for 

two densities on . Then in a second step, keeping 

the densities fixed, the ill-posed field equation can be 

linearised with respect to the boundary and the solution of 

the ill-posed linearised equation can be utilized to update 

the boundary approximation. Because of the ill-posedness 

the solution of this update equation requires stabilization. 

These two steps can be iterated until some suitable stopping 

criterion is satisfied. The second approach implemented in 

[3]. From the spirit of [20], the iteration scheme constructed 

as follows: Given an approximation  for the boundary 

 and approximations ,  for the densities 

 ,  we linearize both the field and the data equations 

simultaneously with respect to the boundary curve and 

the two densities. The linear equations are then solved 

to update both the boundary curve and the two densities. 

Because of the ill-posedness the solution of the update 

equations requires stabilization, for example, by Tikhonov 

regularization. This procedure is then iterated until some 

suitable stopping criterion is achieved. In the current paper, 

the third approach is carried out. In the spirit of [10], [14] 

and [18], given an approximation  for the boundary  

in a first step the well-posed field equations can be solved for 

two densities on . Then in a second step, keeping the 

densities fixed, the ill-posed data equation can be linearised 

with respect to the boundary and we solve the linearised 

first degree data equation for a predictor. In a third step, 

keeping the densities fixed, we solve non-linear quadratic 

equation recursively for some steps to obtain a corrector. 

In a fourth step, we update the boundary approximation by 

 and continue this procedure until some 

suitable criteria is achieved. Because of the ill-posedness the 

solution of linearised data equation and quadratic equation 

require stabilization. 

For a recent survey on the connections of the different 

approaches see Ivanyshyn, Kress and Serranho [12,13]. For 

related work for the Laplace equation we refer to Kress and 

Rundell [20] for the Dirichlet boundary condition and Eckel 

and Kress [9] Altundag and Kress [2,3] and Altundag [1,4] 

for the transmission condition and Altundag [5] for the 

transmision-impedance boundary condition. Finally, for 

a recent survey on the second degree Newton method see 

Hettlich and Rundell [10] Kress and Lee [18] Kress, Tezel 

and Yaman [22]. 

(1.4)

(1.3)
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Provided  is not a Dirichlet eigenvalue of the negative 

Laplacian for , (2.7) has at most one solution. For the 

existence analysis and uniqueness of a solution, we refer to 

[2]. 

Numerical solution of the forward problem

To solve (2.8) numerically and present the inverse 

algorithm we assume the boundary curve  is defined by 

where  is a –periodic and smooth function. By 

 representing the dependence of the operators 

on the boundary curve, we introduce the parametrized 

single-layer operator 

by

and the normal derivative operators

by

where  and . For the related mapping property, we cite to [17,23]. 

The scheme of the current manuscript is described as 

follows: In the second section we describe the solution of 

the forward problem via a single-layer potential approach 

as a base of our inverse algorithm. In the third section, we 

explain numerical solution of the forward algorithm. In the 

fourth section, the inverse algorithm is explained deeply. In 

the final section, we illustrate the feasibility of the method 

by demonstrating some numerical examples comparing the 

result with those for the Johansson and Sleeman method in 

[2], for the hybrid method in [4], and for the simultaneous 

linearization method in [3]. 

The forward problem

The forward problem (1.1)–(1.3) has at most one solution 

(see [7,19] for the three-dimensional case). Existence of 

a solution can be seen [7,19] for the three-dimensional 

case. The solution of the forward scattering problem 

is established in [2]. The forward scattering problem 

is solved via single-layer potential approach. The 

fundamental solution to the Helmholtz equation is given 

by 

where  represents wave number and  denotes the 

Hankel function of first kind and order zero. Using the 

notation of [8], in a Sobolev space setting, we introduce 

the single-layer potential operators 

By using the jump relations on the boundary , the 

single-layer potentials 

solve the forward problem (1.1)–(1.3) provided the 

densities  and  fulfil 

(2.5)

(2.6)

(2.7)

(2.8)

(3.1)
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by

and the parametrized normal derivative operators 

by 

for . We made use of  and  for any vector . The parameterized form of 

(2.8) has the representation as follows 

The kernels 

and 

of the operators  and  can be written in the form 

(3.2)

(3.3)
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impenetrable scatterer to the case of penetrable scatterer. 

To do that it requires to introduce far-field operator of the 

form  by 

By considering the equations (2.7) and (3.5) we deduce 

that far-field pattern for the solution to forward problem 

in terms of the solution to (2.8). Now, we can state the 

following theorem as a basis of inverse scattering problem. 

Theorem 4.1. Assume that far-field pattern  and 

an incident plane wave  are given. Assume  and , the 

boundary curve  fulfil the following equations 

The far-field pattern of the single-layer potential  

with density  is given by 

where 

Table 1 illustrates some numerical result for the far 

field pattern  with respect to forward direction  and 

 with respect to opposite direction .  is 

chosen as a direction of incident field and the wave numbers 

are  and . 

The inverse problem

We progressed to explain an iterative scheme for solving 

the inverse obstacle scattering problem. We extend 

the inverse algorithm suggested by by Kress and Lee 

[18] that combines the ideas of Hettlich and Rundell 

[10] and Johansson and Sleeman  [14] from the case of 

For the boundary integral equations with kernels of the 

form (3.3) a combined quadrature and collocation methods 

based on trigonometric interpolation, we refer to [8] or [21] 

and we also refer to [17] for the related error analysis. 

To illustrate a numerical example, we examine the 

scattering of an incident field from a sufficiently long 

homogeneous dielectric cylinder. Its cross section consists 

of a non-convex kite-shaped and it is expressed by the 

parametric form 

where 

 and  denote the Bessel functions of order zero and 

one respectively. The functions , and  turn out 

to be analytic with diagonal terms 

in terms of Euler’s constant  and 

(3.4)

(4.2)

(3.5) (4.1)

(4.3)
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Then the parametrized form of (4.3) is transformed of the form 

Then boundary curve  solves the inverse obstacle 

scattering problem. 

The system of boundary integral equations (4.3) is 

linear with respect to the densities and non-linear with 

respect to the boundary curve . What is more, it is ill-

posed. The ill-posedness of the inverse problem is reflected 

through the ill-posedness of the third integral equation, the 

far field equation denoted as data equation. In the current 

paper, we are going to proceed as follows: Given a current 

approximation  for  in a first step the well-posed 

field equations can be solved for two densities on 

. Then in a second step, keeping the densities fixed, the ill-

(4.4)

(4.5)

(4.6)

Table 1. Approximate numerical value for the forward scattering problem

    ]  

8 -0.6017247940 -0.0053550779 -0.2460323014 0.3184957768  

16 -0.6018967551 -0.0056192337 -0.2461831740 0.3186052686  

32 -0.6019018135 -0.0056277492 -0.2461946976 0.3186049949  

64 -0.6019018076 -0.0056277397 -0.2461946846 0.3186049951  

posed data equation can be linearised with respect to the 

boundary curve and we solve the linearised first degree data 

equation for  a predictor. In a third step, keeping the densities 

fixed, we solve non-linear quadratic equation recursively for 

some steps to obtain a corrector. In a fourth step, we update 

the boundary approximation by . To 

describe the procedure in more detail, we also require the 

parametrized version 

of the far field operator as given by 

For a fixed  the Fréchet derivative  of the operator  with respect to the boundary curve  in the direction  is 

given by 

for . Then the linearization of the third equation in (4.5) at  with respect to the direction  reads 

(4.7)

(4.7) is a linear equation for the predictor  but it is ill-posed. The ill-posedness is inherited from Fréchet derivative of 

the boundary. 

For a fixed  the Fréchet derivative  of the operator  with respect to the boundary curve  in the direction  can 

be deduced of the form 
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Using the second degree approximation the equation (4.7) is replaced by the quadratic equation 

As in the inspire of Hettlich and Rundell [10], the nonlinear quadratic equation (4.9) is solved in two steps, namely a 

predictor and a corrector step. The predictor step coincides with the Johansson and Sleeman method [14]. For this step, we 

solve ill-posed linearized data equation (4.7) via Tikhonov regularization with Sobolev penalty term  and regularization 

parameter  to obtain a predictor . After  obtained , in the corrector step the ill-posed linear equation can be 

expressed as follows 

Equation(4.10) is solved recursively for , 

. Since equation(4.10) is ill-posed, it requires stabilization. 

We use Tikhonov regularization with Sobolev penalty term 

 and regularization parameter . 

Now, we can describe the algorithm as follows: 

given an approximation for the boundary curve  with 

parametrization , each iteration step of the proposed 

inverse algorithm consists of fourth parts. 

1. We solve the first two well-posed equations of 

(4.5), i.e., the field equations for the densities  

and . 

2. Keeping  fixed, we solve the ill-posed linearized 

data equation (4.7) for a predictor . Since the 

kernels of the integral operators in (4.7) are smo-

oth, for its numerical approximation the compo-

site trapezoidal rule can be employed. Because 

of the ill-posedness the solution of (4.7) requires 

stabilization, for example, by Tikhonov regulari-

zation. 

3. Keeping  fixed, we solve the linearized second 

degree equation (4.10) via Tikhonov regularizati-

on recursively in  steps to obtain the corrector 

. 

4. We update the boundary approximation by  

and return to first step until some suitable criteria 

is achieved. The following stopping criterion is 

implemented and it is given by the relative error 

where  is the computed far field pattern for after  

iteration steps and where  

and . 

We represent the boundary parametrization of the 

form 

with a non-negative function . The increments are of 

the form 

with a real function . For the approximation procedure, 

we assume that  and its update  have the form of a tri-

gonometric polynomial of degree , 

The linearised equations (4.7) and (4.10) are solved in the 

least squares sense, penalized via Tikhonov regularization, 

for the unknown coefficients  and  of 

the trigonometric polynomial representing the update . 

From the our numerical example, we observe that it is more 

advantageous to use an  Sobolev penalty term rather 

than an  penalty term in the Tikhonov regularization. 

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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We interpret the operators  and  as an ill-posed 

linear operator having the mapping properties of form 

for some small . 

As a theoretical basis for the application of Tikhonov 

regularization we refer to [11]. Under the assumption of star-

for . The inverse algorithm can be described as follows: Given an approximation , we firstly solve the first 

two equations in (4.16) for  to obtain  densities  and . Secondly, we solve the 

linearised equation 

for the predictor  by interpreting them as one ill-posed equation with an operator from  and 

applying Tikhonov regularization. Thirdly we solve linearized second degree equation 

(4.15)

like boundaries, the operator  and  are injective if  is 

not a Neumann eigenvalue for the negative Laplacian in . 

We also extend the above algorithm for finitely many 

incident plane waves. Let  are  incident plane 

waves with different incident directions and  

be the corresponding far-field patterns for scattering from 

. The inverse scattering problem is to reconstruct the 

unknown . This is equivalent to solve 

(4.16)

Numerical examples

As proof of concept rather than a documentation of 

a fully developed code, in this final section we present 

some numerical examples exhibiting the feasibility 

of our approach. In order to prevent an inverse crime, 

the synthetic far-field data were obtained by using the 

boundary integral equations based on a combined single- 

and double layer potential approach (see [7,19]). We use the 

numerical algorithm explained in [8,17,16] 64 quadrature 

points are used. The linearised data equation (4.7) and 

linearised second degree data equation (4.10) were solved 

by Tikhonov regularization with an H2 penalty term, 

i.e., p=2 in (4.15). The regularized equation is solved by 

Nyström’s method with the composite trapezoidal rule. 

The table 5.2 illustrates the types of contour given by 

corresponding representation formula.

In all our five examples we used R=8 as a number of 

incident waves with the directions d=(cos(2 r/R), sin(2 r/R), 

r=1,..., R  and J=10 as degree for the approximating trigo-

nometric polynomials in (4.14) and M=10 as the number of 

recursion and the wave numbers k
o
=1 and k

d
=5 + 1i. The 

initial guess is given by the dotted line, the exact boundary 

curves are given by the dashed (blue) lines and the recons-

tructions by the full (red) lines. For simplicity, for the stop-

ping rule we chose the same for all noise levels since 

this already gave satisfactory reconstructions. In according 

with the general convergence results on regularized Gauss–

Newton method (see [6]) for the regularization parameters 

we used decreasing sequences 

with  positive and  chosen by trial and 

error. The iteration numbers and the regularization 

parameters  and  for the Tikhonov regularization 

of (4.7) and (4.10), respectively, were chosen by trial and 

error. However, to illustrate the feasibility and stability of 

our method we used the same regularization parameter 

in all examples. These were chosen as  

and . 

Random errors are obtained by 

(5.1)

(4.17)

(4.18)
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with the random variable  and .  

In the first Figure 1, second Figure 2, third Figure 3, 

fourth Figure 4, and fifth Figure 5 examples illustrate re-

constructions obtained after 13, 15, 15, 10, and 15 iterations 

respectively. 

Table 3 illustrates the convergence behaviour of the 

proposed algorithm. The first column represents iteration 

number N and the other columns represent relative error 

determined by (4.11) for each contour 5.2. 

Our examples clearly indicate the feasibility of the 

proposed algorithm with a reasonable stability against noise. 

From our further numerical experiments it is observed 

that using more than one incident wave improved on the 

accuracy of the reconstruction and the stability. 

Furthermore, an appropriate initial guess is important 

to ensure numerical convergence of the iterations. Our 

examples also indicate that the proposed algorithm with the 

numerical reconstructions are superior to those obtained 

via by Johonsson and Sleeman method [14] in [2] to those 

obtained via by the hybrid method in [4]. Moreover, the 

proposed algorithm has as the same efficiency of accuracy 

and stability as the simultaneous linearization method 

in [3]. However, the proposed algorithm requires less 

computational effort than the simultaneous linearization 

method. Therefore, it is superior the simultaneous 

linearization method with respect to computational cost. 
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Table 3. Relative error at each iteration step

N Apple-Sh. Dropped-Sh. Kite-Sh. Peanut-Sh. R. Triangel  

1 0.6757221101 0.6360551737 0.6368500557 0.2148574440 0.8949045371  

2 0.1643964696 0.1657433896 0.2976995503 0.0503726493 0.3733278852  

3 0.0422092172 0.0281626370 0.1881878713 0.0067460381 0.2176997240  

4 0.0142325900 0.0161566231 0.1346324897 0.0025621311 0.0940590296  

5 0.0096240121 0.0137267005 0.1076783088 0.0024559183 0.0415419160  

6 0.0081622629 0.0124983950 0.0910946349 0.0023434131 0.0205255193 

7 0.0062161463 0.0114739054 0.0796446254 0.0022429730 0.0115610162 

8 0.0043983846 0.0105610342 0.0710851110 0.0021531523 0.0078191797  

9 0.0031519393 0.0098295139 0.0643294142 0.0020709805 0.0062761911  

10 0.0024892871 0.0093579625 0.0587910366 0.0019941389 0.0055382041  

11 0.0021832518 0.0091470771 0.0541263151 Terminated 0.0050712243 

12 0.0020280692 0.0091156042 0.0501207838 0.0047028951 

13 0.0019307739 0.0091655215 0.0466334592 0.0043807490  

14 Terminated 0.0092326307 0.0435672694 0.0040879823  

15 0.0092904674 0.0408523510 0.0038178513  

16 Terminated Terminated Terminated 

Table 2. Boundary Curves

Types Representations

Dropped-shaped :   

Apple-shaped :    

Kite-shaped :

Peanut-shaped :
   

Rounded triangle :    
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Figure 1. Reconstruction of the apple-shaped contour 5.2 for exact data (left), 3% noise (middle) and 5% noise (right)

Figure 2. Reconstruction of dropped-shaped contour 5.2 for exact data (left), 3% noise (middle) and 5% noise (right)

Figure 3. Reconstruction of kite-shaped contour 5.2 for exact data (left), 3% noise (middle) and 5%  noise (right)

Figure 4. Reconstruction of peanut-shaped contour 5.2 for exact data (left), 3% noise (middle) and 5% noise (right)

Figure 5. Reconstruction of rounded-triangle-shaped contour 5.2 for exact data (left), 3% noise (middle) and 5% noise (right)
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