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Abstract 

The aim of this paper is to investigate the buckling behavior of porous Functionally Graded 

Materiel (FGM) cylindrical shells based on Donnell shell theory. In this context, we develop an 

explicit analytical expression which takes into consideration the effect of porosities through the 

thickness of the structure and that of the elastic foundation using a modified power-law function 

and the models of Winkler and Pasternak, respectively. We use the modified rule of mixture to 

determinate the behavior of the porous FGM cylindrical shell. The effects of porosity volume 

fraction, power-law index, and Young’s modulus ratio are investigated. Moreover, we also 

discuss the influence of different parameters on the stability behavior of the porous FGM shell. 
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1. INTRODUCTION 

 

In materials science, among the most impressive discoveries are FGMs. The use of this kind of materials is 

dramatically increasing in several engineering structures (e.g., mechanics, civil engineering, aerospace, and 

nuclear) [1], what has prompted many scientists in recent years to expect the mechanical behavior of such 

structures [2-10]. FGMs are considered as advanced composite materials constituted of at least two different 

materials, the first one resists high temperatures as the ceramic and the second one with high mechanical 

rigidity as the metal [11]. In this kind of material, the variation of the properties over volume is continuous 

to avoid certain problems, as an example stress concentrations and delamination, encountered by the 

traditional composites which encounter many problems because of the existence an interface between 

metals and ceramics. Properties of FGMs can be affected considerably by the existence of porosities, 

therefore it is important to consider the effect of porosity for a more efficient manufacturing of FGMs and 

their technical design [12-16]. Porous FGMs [17-19] combine both FG characteristics and porosity and can 

be designed by producing porosities inside FGMs using the fabrication processes based on different 

technical issues. The porosity can evolve gradually through volume providing desirable properties for some 

areas of engineering such as the biomedical, and undesirable properties for other areas such as the 

aeronautical sector. Moreover, the porosity can be changed in one or more directions using the pore size 

alteration or the local density effects. Functionally Graded Porous (FGP) materials have a classified cell-

based structure, this classification can be closed or open. The most concerned structures for the analysis of 

porous materials behaviors are the beams, plates and shells. Several beam theories have been developed to 

study the response of porous materials under external loads and different types of boundary conditions, as 

examples Ebrahimi et al. (2015) [20] analyzed the nonlinear vibration of porous FGM beams, Chen et al. 

(2016) [21] examined the shear deformable sandwich beam made of FGP core, they are interested in this  
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study by the nonlinear free vibration of this kind of material, Atmane et al. (2017) [22] analyzed the 

mechanical response of a porous FGM beams embedded on elastic foundations, they investigate the effect 

of both thickness stretching and porosity and Berghouti et al. (2019) [23] presented the dynamic response 

of porous FGM nano-beams. Now we present some research works based on plates theories to model porous 

materials, Medani et al. (2019) [24] examined the behavior of porous plates made of sandwich polymer and 

reinforced by functionally graded carbon nanotubes, Kaddari et al. (2020) [25] developed a new theory 

based on quasi-3D hyperbolic shear deformation to discuss the statics and free vibration of FGP plates 

embedded in Kerr-type elastic foundation, Jena et al. (2020) [26] used Navier’s technique and shifted 

Chebyshev polynomial-based Rayleigh-Ritz method to study the vibration of a FGP beam resting on Kerr 

foundation and Tran et al. (2020) [27] analyzed a free vibration of the FGP plates embedded in an elastic 

foundation. The use of shell theories to model porous materials is not used much in the literature, Ebrahimi 

et al. (2019) [28] used an analytical method to analyze the vibration of an embedded cylindrical shell made 

of porous metal foam, they studied the influence of different models of porosity distribution, Jouneghani et 

al. (2017) [29] analyzed the free vibration of porous FGM doubly-curved shells using the first-order shear 

deformation theory, Wang et al. (2018) [30] identified the effect of temperature and that of porosities on 

the vibrations of FG cylindrical shells and Keddouri et al. (2019) [31] introduced a new displacement based 

high-order shear deformation theory to study the static behavior of FG sandwich plate taking into account 

a new expression of porosity distribution. For researchers in the literature, the theoretical researches on 

dynamic and stability of porous FGM beams, plates or shells are very interesting.  

 

We choose in this work to use the cylindrical shell theory based on Donnell shell theory [32-36] to describe 

mechanical behavior of porous FGM cylindrical shells. In this theory of circular cylindrical shells, the 

median surface of the shell and the thin shell assumption in the derivation, respectively, are used to calculate 

the induced stresses and to neglect the transverse-shear and rotary-inertia effects. This theory is based on 

the simplifying shallow-shell hypothesis where it has been widely used because it is practically accurate 

and relatively simple. The introduction of a stress function is the most used form of Donnell shell theory, 

the objective is to combine the three equations of equilibrium representing the shell displacements in the 

radial, circumferential and axial directions, which makes it possible to reduce the equilibrium in two 

equations as a function of the radial displacement w and the stress function. This theory gives accurate 

results if we take into consideration the following hypotheses: large aspect ratio (𝑟𝑎𝑑𝑖𝑢𝑠 𝑙𝑒𝑛𝑔𝑡ℎ⁄ ≥ 10), 
(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑑𝑖𝑢𝑠⁄ )2 ≪ 1 and (1 𝑛⁄ )2 ≪ 1 where 𝑛 is the circumferential half wavenumber.  

 

Buckling phenomenon can be studied analytically, numerically and experimentally [33-35, 37, 38]. The 

objective of this research is to purpose an analytical expression to study the buckling behavior of porous 

FGM cylindrical shell embedded in an elastic foundation. This expression is obtained using a continuum 

approach which is developed using the assumptions of Donnell’s cylindrical shell theory. We depend on 

the analytical minimization to derive the critical buckling load. The elastic foundation is modeled with 

Winkler and Pasternak models. We discuss the effects of power-law index, porosity volume fraction, 

Young’s modulus ratio, and elastic foundation parameters. Compared to the existing literature for buckling 

behavior of porous FGM cylindrical shell resting on an elastic foundation, the developments of this paper 

is the use of analytical modeling and Kerr foundation. 

 

2. GOVERNING EQUATIONS OF POROUS FGM CYLINDRICAL SHELL 

 

We consider that the porous FGM cylindrical shell as a circular cylindrical thin-walled shell of radius 𝑅, 

wall thickness ℎ which is much lower than 𝑅, and length 𝐿 (see Figure 1-(a)). Young’s modulus E and 

Poisson’s ratio 𝜐 of porous FGM shell are computed according to the modified rule of mixture  

[30]. The porous FGM shell is embedded in elastic foundation as shown in Figure 1-(b), which allows us 

to examine the effect of different parameters of the elastic foundation on the buckling behavior. These 

parameters are the lower spring modulus 𝐾𝑊 called also Winkler modulus, the shear layer modulus 𝐾𝐺 and 

the upper spring modulus 𝐾𝐶. 

 



150  Abdelaziz TIMESLI/ GU J Sci, 35(1): 148-165 (2022) 

 
 

 
(a): Thin-walled circular cylindrical shell 

 
(b): Porous FGM cylindrical shell resting on the Kerr foundation 

Figure 1. Porous FGM cylindrical shell resting on the elastic foundation 

 

 

The equilibrium equation the thin-walled circular cylindrical shell is based Donnell model and it can be 

written as [33-35]: 

 
𝜕2𝑀𝑥𝑥

𝜕𝑥2
 +

2

𝑅

𝜕2𝑀𝑥𝜃

𝜕𝑥𝜕𝜃
+

1

𝑅2
𝜕2𝑀𝜃𝜃

𝜕𝜃2
+
𝑁𝜃𝜃

𝑅
+𝑁𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+
2𝑁𝑥𝜃

𝑅

𝜕2𝑤

𝜕𝑥𝜕𝜃
+
𝑁𝜃𝜃

𝑅2
𝜕2𝑤

𝜕𝜃2
− 𝑓, (1) 

 

where Nxx and Nθθ are normal forces, Nxθ is the internal shear force, Mxx and Mθθ are bending moments 

and Mxθ is the twisting moment, w is the displacement of the reference surface and 𝑓 external load which 

is related to the elastic foundation model. Mxx,  Mθθ and Mxθ are given as follows: 

 

{
 
 

 
 𝑀𝑥𝑥 = −𝐷11

𝜕2𝑤

𝜕𝑥2
−
𝐷12

𝑅2
𝜕2𝑤

𝜕𝜃2

𝑀𝜃𝜃 = −𝐷12
𝜕2𝑤

𝜕𝑥2
−
𝐷22
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𝜕2𝑤

𝜕𝜃2

𝑀𝑥𝜃 = −2
𝐷66

𝑅

𝜕2𝑤

𝜕𝑥𝜕𝜃
               

, 

 

 

(2) 
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where 𝐷𝑖𝑗 are the bending stiffness coefficients of the shell, they are given by: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐷11 = 𝐷22 = ∫ (𝑧2

𝐸(𝑧)

(1 − 𝜈(𝑧)2)
) 𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

𝐷12 = ∫ (𝑧2
𝜈(𝑧)𝐸(𝑧)

(1 − 𝜈(𝑧)2)
) 𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

            

𝐷66 = ∫ (𝑧2
𝐸(𝑧)

2(1 + 𝜈(𝑧))
) 𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

            

. 

 

 

(3) 

 

Replacing the bending stiffness coefficients in Equation (1) and we obtain: 

 

−𝐷 (
𝜕4𝑤

𝜕𝑥4
 +

2

𝑅2
𝜕4𝑤

𝜕𝑥2𝜕𝜃2
+

1

𝑅4
𝜕4𝑤

𝜕𝜃4
) +

𝑁𝜃𝜃

𝑅
+𝑁𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+
2𝑁𝑥𝜃

𝑅

𝜕2𝑤

𝜕𝑥𝜕𝜃
+
𝑁𝜃𝜃

𝑅2
𝜕2𝑤

𝜕𝜃2
− 𝑓, (4) 

 

where 𝐷 = 𝐷11 = 𝐷22 = 𝐷12 + 2𝐷66. In the Donnell shell theory, the membrane forces can be connected 

to the stress function 𝜙 and we can write them as follows 𝑁𝑥𝑥 =
1

𝑅2
𝜕2𝜙

𝜕𝜃2
, 𝑁𝜃𝜃 =

𝜕2𝜙

𝜕𝑥2
 and 𝑁𝑥𝜃 =

1

𝑅

𝜕2𝜙

𝜕𝑥𝜕𝜃
. The 

study of different possible equilibrium configurations is based on the adjacent equilibrium criterion [33-

35]. For that the indices 0 and 𝑏 represent, respectively, pre-buckling and post-buckling quantities and the 

terms of second order in index 𝑏 are neglected, we can therefore show the equilibrium equation as follows: 
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2

𝑅2
𝜕4𝑤𝑏

𝜕𝑥2𝜕𝜃2
+

1

𝑅4
𝜕4𝑤𝑏

𝜕𝜃4
) +

1

𝑅
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𝑅
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𝑁𝜃𝜃0

𝑅2
𝜕2𝑤𝑏

𝜕𝜃2
− 𝑓𝑏 = 0. (5) 

 

The compatibility condition of the stress function 𝜙(𝑥, 𝜃) is given by: 

 

  

 

where 

 

{
 
 

 
 𝐶11

∗ = 𝐶22
∗ =

𝐶11
Δ
=
𝐶22
Δ
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(7) 

 

where 𝐶𝑖𝑗 are the extensional stiffness coefficients of the shell which are given by: 

 

{
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, 

 

 

(8) 
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with 

 

Δ = 𝐶11
2 = 𝐶12

2 . (9) 

 

The shear membrane forces, the axial compression and the circumferential membrane force are, 

respectively, given by 𝑁𝑥𝜃0 = 0, 𝑁𝑥𝑥0 = 𝑃, and 𝑁𝜃𝜃0 = 0, then the system (5)-(6) becomes: 

 

 

{
 
 

 
 −𝐷(

𝜕4𝑤𝑏
𝜕𝑥4

 +
2

𝑅2
𝜕4𝑤𝑏
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1
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𝜕𝜃4

) +
1

𝑅
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+ 𝜆
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𝜕𝑥2

− 𝑓𝑏 = 0

𝐶11
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𝜕4𝜙
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1

𝑅4
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𝜕𝜃4
) +

2
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(𝐶66
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𝜕4𝜙
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1

𝑅

𝜕2𝑤

𝜕𝑥2
= 0

. 

 

 

 

 

(10) 

3. PROPERTIES OF POROUS FGM CYLINDRICAL SHELL 

 

We consider that FGMs produced using ceramic and metal materials, we also suppose that the porosities 

are distributed in the area of the cross section of porous FGM shell. Using the modified rule of mixture 

[39], the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 of the porous FGM shell are expressed as follows: 

 

{
𝐸(𝑧) = 𝐸𝑚 (𝑉𝑚 −

𝛼

2
) + 𝐸𝑐 (𝑉𝑐 −

𝛼

2
)

𝜈(𝑧) = 𝜈𝑚 (𝑉𝑚 −
𝛼

2
) + 𝜈𝑐 (𝑉𝑐 −

𝛼

2
)

, 

 

 

 

(11) 

where 𝐸𝑚 and  𝐸𝑐 are the Young’s modulus of ceramic and metal, respectively. 𝜈𝑚 and 𝜈𝑐 are the Poisson’s 

ratio of ceramic and metal, respectively, and 𝛼(0 ≤ 𝛼 ≪ 1) is the porosity volume fraction. 𝑉𝑚 and 𝑉𝑐 are 

volume fraction of ceramic and metal, respectively, they are expressed by: 

 

{
𝑉𝑐(𝑧) = (

1

2
+

𝑧

ℎ
)
𝑛

𝑉𝑚(𝑧) = 1 − 𝑉𝑐(𝑧)
, 

 

 

 

(12) 

with the power-law index 𝑛 of material varies in the interval (0 ≤ 𝑛 ≤ ∞). 
 

 

4. BUCKLING BEHAVIOR OF POROUS FGM CYLINDRICAL SHELL RESTING ON 

ELASTIC FOUNDATION 

 

We can solve directly the problem of the interaction between FGP cylindrical shell and an elastic foundation 

as an external medium. In the contact surface, the displacement at any point can be calculated as function 

of pressure throughout the zone contact, which causes the challenges of elastic contact 

stress theory. In this case we must find the solution of an integral equation for the pressure. When we cannot 

consider the external medium as an elastic material, we cannot write its behavior using the equations of 

elasticity, which leads to another problem. We can avoid the difficulties mentioned above if the response 

of the cylindrical shell is more interesting then the stresses distribution and displacements in the external 

medium. We can avoid the difficulties mentioned above if we are very interested by the response of the 

cylindrical shell then the stresses distribution and displacements in the external medium. So the effect of 

the external medium on the lateral surface of the shell can be expressed by a relatively simple foundation 

models using the shell displacements. Various foundations models are collected in [40-43]. The design of 

these models is based on the replacement of an external medium by springs coupled with dissipative 

elements. If we consider that there are just springs and taking into account their shear interactions, the 

relationship between contact pressure and porous FGM cylindrical shell can be expressed, according to the 

foundation deflection, as follows: 
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{
 

 
𝑓 = 𝐾𝑊𝑤          𝑓𝑜𝑟 𝑡ℎ𝑒 𝑊𝑖𝑛𝑘𝑙𝑒𝑟 𝑚𝑜𝑑𝑒𝑙                                                

𝑓 = 𝐾𝑊𝑤 − 𝐾𝐺∇
2𝑤          𝑓𝑜𝑟 𝑡ℎ𝑒 𝑃𝑎𝑠𝑡𝑒𝑟𝑟𝑛𝑎𝑘 𝑚𝑜𝑑𝑒𝑙                       

𝑓 =
1

1+
𝐾𝑊
𝐾𝐶

(𝐾𝑊𝑤 − 𝐾𝐺∇
2𝑤 −

𝐷𝐾𝐺

𝐾𝐶
∇6𝑤)           𝑓𝑜𝑟 𝑡ℎ𝑒 𝐾𝑒𝑟𝑟 𝑚𝑜𝑑𝑒𝑙

, 

 

 

(13) 

 

where 𝐾𝑊 is the Winkler modulus of lower spring, 𝐾𝐶 is the Kerr modulus of upper spring, 𝐾𝐺 is the 

Pasternak modulus of the intermediate shear layer. For the Winkler model the reaction force of FGP 

cylindrical shell, at each point in the foundation, is given in terms of the foundation deflection, which 

amounts to modeling the foundation by a juxtaposition of elastic springs [42]. The Pasternak model assumes 

that there is a shear interaction between the springs [43]. In the Kerr model, another parameter has been 

added for the enrichment of the foundation model [41], where the surrounding elastic medium is envisaged 

to be a sandwich material consisting of lower and upper spring beds and a shear layer in the middle (see 

Figure 1-(b)), this gives more flexibility for the continuity of the foundation between unloaded and loaded 

area of porous FGM cylindrical shell.  

 

Using the systems (10) and (13), the displacement 𝑤(𝑥, 𝜃) in the transverse direction and the stress 

functions 𝜙(𝑥, 𝜃) are solutions of the equilibrium problem given by the two equations below: 

 

{

−𝐷 (
𝜕4𝑤𝑏

𝜕𝑥4
 +

2

𝑅2
𝜕4𝑤𝑏

𝜕𝑥2𝜕𝜃2
+

1

𝑅4
𝜕4𝑤𝑏

𝜕𝜃4
) +

1

𝑅

𝜕2𝜙

𝜕𝑥2
+ 𝜆

𝜕2𝑤𝑏

𝜕𝑥2
−

1

1+
𝐾𝑊
𝐾𝐶

(𝐾𝑊𝑤 − 𝐾𝐺∇
2𝑤 −

𝐷𝐾𝐺

𝐾𝐶
∇6𝑤) = 0

𝐶11
∗ (

𝜕4𝜙

𝜕𝑥4
 +

1

𝑅4
𝜕4𝜙

𝜕𝜃4
) +

2

𝑅2
(𝐶66

∗ + 𝐶12
∗ )

𝜕4𝜙

𝜕𝑥2𝜕𝜃2
++

1

𝑅

𝜕2𝑤

𝜕𝑥2
= 0                                                                

, 

 

 

 

(14) 

 

One can express the solution of the problem (14) as follows: 

 

{
𝑤(𝑥, 𝜃) = 𝐴𝑒

(𝑖
𝑚𝜋

𝐿
𝑥)
cos (𝑛𝜃)

𝜙(𝑥, 𝜃) = 𝑎𝑒
(𝑖
𝑚𝜋

𝐿
𝑥)
cos (𝑛𝜃)

. 

 

 

 

(15) 

where 𝐴 and 𝑎 are arbitrary constants, 𝑛 is the circumferential half wavenumbers of porous FGM cylindrical 

shell and 𝑚 is its axial half wavenumbers. The substitution of the solution (15) in the problem (14) leads 

to: 

 

{
 
 

 
 
−𝐷( p4 + 2p2q2 + q4)A − ρp2a + 𝜆p2A                                                      

−
1

1+
𝐾𝑊
𝐾𝐶

(𝐾𝑊 −𝐾𝐺(p
2+q2) +

𝐷𝐾𝐺

𝐾𝐶
(𝑝6 + 3p4q2 + 3p2q4 + q6))𝐴 = 0

 𝐶11
∗ (p4 + q4)a + 2(𝐶66

∗ + 𝐶12
∗ )p2q2a −

1

𝑅
p2𝐴 = 0                                    

, 

 

 

 

(16) 

where ρ = 1 R⁄  is the curvature and p = mπ L⁄  and q = n R⁄  are the wave numbers in axial and 

circumferential direction, respectively. The second equation of the system (16) leads to determine the 

constant a: 

 

a =
ρp2A

𝐶11
∗ (p4+q4)+2(𝐶66

∗ +𝐶12
∗ )p2q2

. (17) 

 

Using the value of “a”, the first equation of the system (16) can be writtenin the following form: 
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−𝐷( 1 + 2β2 + β4)p4 −
ρ2

𝐶11
∗ (1+β4)+2(𝐶66

∗ +𝐶12
∗ )β2

+ 𝜆p2 −
1

1+
𝐾𝑊
𝐾𝐶

(𝐾𝑊 + 𝐾𝐺(1+β
2)p2 +

𝐷𝐾𝐺

𝐾𝐶
(1 + 3β2 + 3β4 + β6)p6) = 0, 

(18) 

 

where β = q p⁄  is the aspect ratio. So, we can determine the expression of the 

buckling load 𝜆 as a function of two variables β and p as follows: 

 

𝜆(𝛽, 𝑝) = 𝐷( 1 + 2β2 + β4)p2 + (
ρ2

𝐶11
∗ (1+β4)+2(𝐶66

∗ +𝐶12
∗ )β2

+
𝐾𝑊

1+
𝐾𝑊
𝐾𝐶

)
1

p2
+
𝐾𝐺(1+β

2)

1+
𝐾𝑊
𝐾𝐶

+

𝐷𝐾𝐺
𝐾𝐶

(1+3β2+3β4+β6)

1+
𝐾𝑊
𝐾𝐶

p4. 

(19) 

 

 

The minimization of the buckling load 𝜆(𝛽, 𝑝) in Equation (19) compared to " 𝑝" allows us to determinate 

the critical buckling load 𝜆𝑐𝑟 : 
 
𝜕𝜆(𝛽,𝑝)

𝜕𝑝
|
β fixed

= 0, (20) 

 

This minimization gives the polynomial (21) of degree 6 in 𝑝 

 

𝐷( 1 + 2β2 + β4)p4 − (
ρ2

𝐶11
∗ (1+β4)+2(𝐶66

∗ +𝐶12
∗ )β2

+
𝐾𝑊

1+
𝐾𝑊
𝐾𝐶

) + 2

𝐷𝐾𝐺
𝐾𝐶

(1+3β2+3β4+β6)

1+
𝐾𝑊
𝐾𝐶

p6 = 0. 
(21) 

 

By putting Λ = p2, we can reduce the degree of the polynomial and rewrite Equation (21) as follows: 

 

𝑏1Λ
3 + 𝑏2Λ

2 + 𝑏3 = 0, (22) 

 

where 

 

{
  
 

  
 𝑏1 = 2

𝐷𝐾𝐺
𝐾𝐶

(1+3β2+3β4+β6)

1+
𝐾𝑊
𝐾𝐶

                           

𝑏2 = 𝐷( 1 + 2β
2 + β4)                               

𝑏3 = −(
ρ2

𝐶11
∗ (1+β4)+2(𝐶66

∗ +𝐶12
∗ )β2

+
𝐾𝑊

1+
𝐾𝑊
𝐾𝐶

)

, 

 

 

(23) 

 

If we divide by "𝑏1" and we put  Λ = X −
𝑏2

3𝑏1
, it is then reduced to the form: 

 

X3 + 𝑑1X + 𝑑2 = 0, (24) 

 

with 𝑑1 = −
b2
2

3b1
2 and 𝑑2 =

2b2
3

27b1
3 +

b3

b1
. The only real root of Equation (29) is given by: 

 

X = √−
d2

2
+√

d2
2

4
+
d1
3

27

3

+ √−
d2

2
−√

d2
2

4
+
d1
3

27

3

, 

(25) 

 

So we can conclude the critical axial wave number pcr which is equal: 
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pcr  = (X −
b2

3b1
)

1

2
. 

(26) 

 

We can simplify the expression of buckling load for the Porous FGM cylindrical shell resting on Winkler 

or Pasternak elastic mediums as follows: 

 

𝜆(𝛽, 𝑝) = 𝐷( 1 + 2β2 + β4)p2 + (
ρ2

𝐶11
∗ (1+β4)+2(𝐶66

∗ +𝐶12
∗ )β2

+ 𝐾𝑊)
1

p2
+ 𝐾𝐺(1+β

2). (27) 

 

By minimizing this buckling load 𝜆(𝛽, 𝑝) compared to “𝑝”, we obtain a polynomial of degree 4 in “𝑝”: 

 

𝐷( 1 + 2β2 + β4)p4 − (
ρ2

𝐶11
∗ (1+β4)+2(𝐶66

∗ +𝐶12
∗ )β2

+ 𝐾𝑊) = 0. 
(28) 

 

Equation (28) leads to the critical axial wave number pcr which is equal: 

 

𝑝𝑐𝑟 = (

ρ2

𝐶11
∗ (1+β4)+2(𝐶66

∗ +𝐶12
∗ )β2

+𝐾𝑊

𝐷( 1+2β2+β4)
)

1

4

. 

(29) 

 

Finally we can obtained the critical buckling load of porous FGM cylindrical shell resting on an elastic 

medium, according to the critical axial wave number 𝑝𝑐𝑟, as follows 𝜆𝑐𝑟 = 𝜆(𝑝 = 𝑝𝑐𝑟). 
 

5. NUMERICAL ANALYSIS  

 

In this section of the numerical analysis, some studies of the buckling of porous FGM cylindrical shell 

subjected to an axial compression are presented. We consider that the porous FGM shell is made of steel 

(ceramic) and aluminum (metal). The geometrical and material properties are: the inner diameter 𝑅 =
100𝑚𝑚, the thickness 𝐻 = 10𝑚𝑚, the length 𝐿 = 10𝑅, the Young’s moduli 𝐸𝑐 = 207𝐺𝑃𝑎 and 𝐸𝑚 =
69𝐺𝑃𝑎, the Poison’s ratio 𝜈 = 0.3. The porosity volume fraction 𝛼 is defined in the range of 0 ≤ 𝛼 ≪ 1 

and the power-law index 𝑛 in the range of 0 ≤ 𝑛 ≪ 1. In the buckling analysis of porous FGM cylindrical 

shell presented in this work, we compute the results by a dimensionless form of the critical buckling load 

parameter as: 

 

𝜆̅𝑐𝑟 =
λcr

C110
, (30) 

 

and also by dimensionless forms of the Winkler, Pasternak and Kerr constants as: 

 

{
 
 

 
 𝛽𝑊 =

𝐾𝑊L
2

C110

𝛽𝐺 =
𝐾𝐺

C110

𝛽𝐶 =
𝐾𝐶L

2

C110

, 

 

 

(31) 

 

where C110 is the extension stiffness of the ceramic material only given by: 

 

C110 = ∫ (
𝐸𝐶

(1−𝜈𝐶
2)
)𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

. 
(32) 

 

 

In the analysis, we investigate the effect of power-law index, porosity volume fraction, and Young’s 

modulus ratio ( 𝑀 = 𝐸𝑚 𝐸𝑐⁄  ). 
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5.1. Analysis of the Effect of Power-Law Index 

 

In this study, five power-law indices (n = 0, 1, 2, 3, 4, 5) and two porosity volume fraction values (α =
0, 0.1) are considered to examine the effect of power-law index 𝑛 on the buckling behavior of a straight 

porous FGM cylindrical shell. Figures 2(a)-(b) explain the effect of the power-law index on 

critical buckling load versus the aspect ratio 𝛽 for two porosity volume fraction values. From Figures (a)-

(b), the increase of the power-law index 𝑛 leads to the decrease of the critical buckling load of the porous 

FGM, which shows that the increase of 𝑛 leads to the decrease of the porous FGM rigidity. 

 

 

 
(a) : Dimensionless critical buckling load 𝜆̅𝑐𝑟 versus aspect ratio 𝛽 for 𝛼 = 0 

 
(b): Dimensionless critical buckling load 𝜆̅𝑐𝑟 versus aspect ratio 𝛽 for 𝛼 = 0.1 

Figure 2. Analysis of the effect of power-law index 𝑛 on the critical buckling load of porous FGM shell 

with two porosity volume fraction values 𝛼 = 0 and  0.1 

 

5.2. Analysis of the Effect of Porosity Volume Fraction (α) 

 

The analysis of the effect of porosity volume fraction α on the critical buckling load of porous FGM shell 

is presented in Figures 3(a)-(b). Two power-law index values (n = 0, 1) are considered. We observe from 

Figures 3(a)-(b) that 𝜆̅𝑐𝑟 is affected considerably by the porosity volume fraction α. When the value of 

power-law index n is fixed, the results indicate that the increase in the porosity volume fraction α leads to 



157  Abdelaziz TIMESLI/ GU J Sci, 35(1): 148-165 (2022) 

 
 

the decrease of critical buckling loads. This behavior shows that the porosity distribution affect the stiffness 

of the porous FGM shell. 

 
(a) : Dimensionless critical buckling load 𝜆̅𝑐𝑟 versus aspect ratio 𝛽 for 𝑛 = 0 

 
(b): Dimensionless critical buckling load 𝜆̅𝑐𝑟 versus aspect ratio 𝛽 for 𝑛 = 1 

Figure 3. Analysis of the effect of porosity volume fraction α on the critical buckling load of porous FGM 

shell with two power law indices values 𝑛 = 0 and  1 

 

5.3. Analysis of the Effect of Young’s Modulus Ratio (𝑀) 

 

In this study, five Young’s modulus ratio values (n = 0.25, 0.5, 1, 5, 10) and the aspect ratio 𝛽 = 0.6 are 

considered. In Table 1 we present the dimensionless critical buckling with several values of Young’s 

modulus ratio (𝑀). We can observe in this table that 𝜆̅𝑐𝑟 increases with increasing 𝑀 for a constant value 

of 𝑛. Moreover, if the power-law index increases, we can notice that the critical buckling load decreases if 

𝑀 < 1, increases if 𝑀 > 1 and it is not affected when 𝑀 = 1. 

 

Table 1. Dimensionless critical buckling load 𝜆̅𝑐𝑟 of porous FGM cylindrical shell 

Α M   n   

  2 4 6 8 10 

0.0 
0.25 

0.5 

0.0181 

0.0236 

0.0152 

0.0217 

0.0138 

0.0207 

0.0129 

0.0201 

0.0123 

0.0197 
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1 

5 

10 

0.0345 

0.1219 

0.2311 

0.0345 

0.1369 

0.2647 

0.0345 

0.1444 

0.2817 

0.0345 

0.1493 

0.2926 

0.0345 

0.1526 

0.3002 

0.1 

0.25 

0.5 

1 

5 

10 

0.0159 

0.0209 

0.0309 

0.1109 

0.2109 

0.0130 

0.0190 

0.0309 

0.1258 

0.2444 

0.0115 

0.0180 

0.0309 

0.1333 

0.2613 

0.0107 

0.0174 

0.0309 

0.1381 

0.2721 

0.0100 

0.0170 

0.0309 

0.1415 

0.2797 

0.4 

0.25 

0.5 

1 

5 

10 

0.0093 

0.0130 

0.0204 

0.0792 

0.1527 

0.0064 

0.0111 

0.0204 

0.0939 

0.1857 

0.0049 

0.0102 

0.0204 

0.1014 

0.2025 

0.0040 

0.0096 

0.0204 

0.1061 

0.2133 

0.0034 

0.0092 

0.0204 

0.1095 

0.2208 

 

5.4. Analysis of the Effect of Elastic Foundation Parameters 

 

To analyze the potential impact of the elastic medium parameters on the buckling response of the porous 

FGM cylindrical shell, we consider the aspect ratio 𝛽 = 0.6 and we study three different types of 

foundations which are given as follows (𝛽𝑊 = 5, 𝛽𝐺 = 0, 𝛽𝐶 = 0), (𝛽𝑊 = 5,𝛽𝐺 = 0.5, 𝛽𝐶 = 0) and 
(𝛽𝑊 = 5,𝛽𝐺 = 0.5, 𝛽𝐶 = 1). Table 2 explains the effect of elastic foundation parameters on the 

dimensionless critical buckling load of the porous FGM cylindrical shell. We can see in Table 2 that by 

varying the porosity volume fraction for a fixed value of the power-law index, the porous FGM shell 

exhibits large deformation with a small porosity volume fraction, the same remark can be observed by 

varying the power-law index with a fixed value of the porosity volume fraction. These remarks remain valid 

for the three types of foundations.  

 

Table 2. Effects of porosity on buckling of porous FGM shell with different foundation parameters 

(𝛽
𝑊
, 𝛽

𝐺
, 𝛽

𝐶
) 𝛼  n  

  2 6 10 

Winkler foundation  
(5, 0, 0) 

0 

0.1 

0.4 

0.0232 

0.0208 

0.0136 

0.0195 

0.0171 

0.0099 

0.0181 

0.0157 

0.0085 

Pasternak foundation 
(5, 0.5, 0) 

0 

0.1 

0.4 

0.7032 

0.7008 

0.6936 

0.6995 

0.6971 

0.6899 

0.6981 

0.6957 

0.6885 

Kerr foundation 

(5, 0.5, 1) 

0 

0.1 

0.4 

0.2208 

0.2086 

0.1723 

0.1998 

0.1876 

0.1512 

0.1930 

0.1808 

0.1444 

 

For Kerr elastic medium, we conclude from Figure 4 that 𝜆̅𝑐𝑟 decreases most rapidly with the increase of 

the porosity volume fraction 𝛼 compared to Winkler and Pasternak elastic mediums. 
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Figure 4. Effects of porosity on buckling with different foundation parameters (𝑛 = 2)   

 

Variation of critical buckling loads with dimensionless Winkler and Pasternak parameter is depicted in 

Figure 5. It can be observed from the figure that the effect of the Pasternak foundation parameter is more 

significant for porous FGM cylindrical shell than the Winkler foundation parameter. 

 

 
Figure 5. The variation of critical buckling loads with nondimensional foundation 

parameters (𝑛 = 2, 𝛼 = 0.1 )   
 

As shown in Figure 6, we observe that the Winkler medium makes the porous FGM shell less rigid 

compared to the Pasternak medium. But the comparison between Kerr and others mediums depends on the 

value of 𝛽𝐶, where for great values of 𝛽𝐶 the Kerr model tends to that of Pasternak. 
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Figure 6. Dimensionless critical buckling load 𝜆̅𝑐𝑟 of porous FGM shell versus aspect ratio 𝛽 for the 

three foundations models 

 

The influence of the elastic matrix on 𝜆̅𝑐𝑟 is illustrated in Figure 7. This figure shows 𝜆̅𝑐𝑟 versus moduli of 

elastic foundations. It is very clear that 𝜆̅𝑐𝑟 rises most rapidly with the increase of 𝛽𝑊 and 𝛽𝐺 for Winkler 

(see Figure 7-(a)) and Pasternak (see Figure 7-(b)) elastic mediums, respectively. In the case of Kerr 

medium (see Figure 7-(c)), 𝜆̅𝑐𝑟 rises most quickly with the increase of 𝛽𝐶, if the value of 𝛽𝐶 exceeds a 

certain value the increase of 𝜆̅𝑐𝑟 slows gradually. 

 

 
(a) : 𝜆̅𝑐𝑟 versus 𝛽𝑊  for the Winkler foundation model 
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(b) : 𝜆̅𝑐𝑟 versus 𝛽𝐺  for the Pasternak foundation model 

 
(c): 𝜆̅𝑐𝑟 versus 𝛽𝐶   for the Kerr foundation model 

 

Figure 7. Critical buckling load  𝜆̅𝑐𝑟 of porous FGM shell versus the elastic foundation parameters 

 

 

6. CONCLUSION 

 

In this article, buckling behaviors of porous FGM cylindrical shell resting on Winkler, Pasternak and Kerr 

foundations are investigated. The influences of power law index (n), porosity volume fraction (α), Young’s 

modulus ratio (M) and elastic foundation parameters on buckling are explored. The following results are 

obtained: 

 

➢ Critical buckling load values of porous FGM shell decrease with increasing power law exponent. 

Therefore, increasing the value of power law index makes the porous FGM shell less rigid. 

 

➢ Increasing of the porosity volume fraction α results in a lower critical buckling load for porous 

FGM cylindrical shell. Therefore, the porous FGM shell becomes lighter when α increases, which 

explains that the porosity distribution effect must be taken into account in the study of porous FGM 

shells. 
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➢ The critical buckling load decreases with increasing the Young’s modulus ratio and for a given 

value of Young’s modulus ratio, as the power law index increases, the critical buckling load 

decreases for M < 1 and increases if M > 1. It is noticed that when M = 1, critical buckling load 

is note affected by the change of values of power law exponent. 

 

➢ Winkler, Pasternak and Kerr foundation parameters increase the critical buckling loads of the 

porous FGM shell. 

 

➢ Porous FGM cylindrical shell resting on Pasternak foundation has the highest critical buckling load 

values. The effect of the Pasternak foundation parameter is more significant for porous FGM shell 

than the Winkler foundation parameter. 

 

➢ The effect of the power law exponent on the values of critical buckling loads reduces with the effect 

of elastic foundation.  

 

➢ For great values of upper spring modulus the Kerr model tends to that of Pasternak. 

 

➢ The power law exponent effects are more considerable for porous FGM shell resting on Kerr 

foundation. 

 

Although this document deals with the analysis of buckling response, the extension of this study is also 

envisaged by considering the effects of spatial curvature of the geometry of shells, such as spherical shells, 

flat plates or other geometries as in the reference [44]. 
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