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Abstract: This paper investigates the performance of a simplified wheel/rail contact modeling approach 

that can be implemented to dynamics analysis of railway vehicles. The scope is limited to a two-axle bogie 

system and the problem is investigated from the hunting instability perspective. Accordingly, a 

mathematical model of a two-axle bogie with elastically connected wheelsets is developed. The governing 

equations of the proposed four degree of freedom mathematical model are obtained. These equations are 

then first solved analytically by considering a simplified approach for the interfacial forces at the wheel/rail 

contact interface. Second, the contact forces are calculated by using Kalker’s linear theory, and the 

corresponding nonlinear governing equations are solved numerically. Based on the results, it is observed 

that the analytical and numerical solutions show a good match. Hence, it is concluded that the simplified 

wheel/rail contact modeling approach can represent the dynamics of the system successfully, especially 

when the system is in a stable state for hunting behavior. Third, the corresponding eigenvalue problem is 

formulated from the linear equations, and complex eigenvalues are calculated over the operational speed 

range of the bogie. It is observed that the natural frequencies of the system are speed-dependent, and either 

one or both of the wheelsets may become unstable at certain parameter sets. Finally, stability maps are 

generated for several parameters, and a better understanding of the effects of system parameters on the 

stability of two-axle bogie is obtained. 
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Basitleştirilmiş Tekerlek/Ray Temas Modelinin ve Kalker Doğrusal Teorisinin Demiryolu Taşıtı 

Sinüs Hareketi Kararlılığı Açısından Değerlendirilmesi 

 

Öz: Bu makalede, demiryolu taşıtlarının dinamik analizinde kullanılabilecek basitleştirilmiş bir 

tekerlek/ray temas modelinin performansı incelenmiştir. Bu amaçla, makalenin kapsamı iki tekerlek 

takımına sahip bir boji sistemi ile sınırlı tutulmuştur ve problem demiryolu taşıtının sinüs hareketi 

kararsızlığı açısından incelenmiştir. Buna göre, elastik olarak birbirine bağlı olan iki tekerlek takımına sahip 

bir bojinin matematiksel modeli geliştirilmiştir ve önerilen dört serbestlik dereceli matematiksel modelin 

hareket denklemleri elde edilmiştir. Bu denklemler ilk olarak tekerlek/ray temas arayüzündeki temas 

kuvvetlerinin basitleştirilmiş bir yaklaşım kullanılarak hesaplanması ile analitik olarak çözülmüştür. Daha 

sonra, temas kuvvetleri Kalker doğrusal teorisi kullanılarak hesaplanmıştır ve doğrusal olmayan hareket 

denklemleri sayısal olarak çözülmüştür. Analitik ve sayısal olarak elde edilen sonuçlar karşılaştırıldığında 

çözümlerin iyi bir şekilde eşleştiği görülmüştür. Bu nedenle, basitleştirilmiş tekerlek/ray temas modelleme 

yaklaşımının, özellikle sistemin sinüs hareketi davranışı açısından kararlı bir durumda olması halinde, 

sistemin dinamiğini başarılı bir şekilde temsil edebileceği sonucuna varılmıştır. Daha sonra, doğrusal 

hareket denklemlerinden elde edilen özdeğer problemi ile sistemin karmaşık özdeğerleri, bojinin 

operasyonel hız aralığı üzerinde hesaplanmıştır. Sistemin doğal frekanslarının hıza bağlı olduğu ve tekerlek 

takımlarından birinin veya her ikisinin belirli parametre setlerinde dinamik olarak kararsız hale gelebileceği 

gözlenmiştir. Son olarak, farklı parametreler için kararlılık haritaları üretilmiştir ve sistem parametrelerinin 

iki tekerlek takımına sahip bojinin dinamik kararlılığı üzerindeki etkileri daha iyi anlaşılmıştır. 

 

Anahtar kelimeler: Tekerlek/ray temas modellemesi, Ray taşıtı sinüs hareketi, Kritik hız 
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1. Introduction 

 

Kinematic relationships between rails and wheelsets due to their geometric forms cause the 

railway vehicles to exhibit an interesting oscillatory dynamic behavior. This self-excited vibratory 

motion is also known as hunting oscillation, and it is first described by Stephenson [1] as “an 

oscillatory but easy motion of the wheelset on the rails”. Major factors leading to this motion are 

given as: 1) Conicity of the wheels; 2) Nonconservative creep forces at rail/wheel contact 

interfaces, and 3) Force interactions between wheelset and bogie over the suspension system [2, 

3]. At higher speeds, hunting oscillations can become unstable, and thus the railway vehicles 

cannot operate above determined critical speeds. Therefore, the critical speed of the vehicle 

should be reasonably high in order to increase the operational speed range. 

 

Hunting instability has been extensively investigated by many researchers and several techniques 

have been employed in order to determine the critical speed of the vehicle. In one study by 

Wickens [3], it is suggested to reduce inertia of the wheelset, increase the stiffness of the 

suspension system, etc. in order to increase the critical speed. Lee and Cheng [4] investigated 

hunting phenomenon through a linear 10 DOF model where Kalker’s linear theory is used for the 

wheel/rail contact modeling. In this study, effects of several parameters (such as 

longitudinal/lateral stiffness of the primary suspension system, longitudinal/lateral damping of 

the secondary suspension system) on critical speed are investigated. Results are compared to a 

former 6 DOF formulation and it is observed that the 6 DOF model overestimates the critical 

speed. Furthermore, authors claim that the wheels with new treads (lower conicity) increase the 

critical speed, hence the critical speed reduces with aging due to the change in conicity. In yet 

another study by Lee and Cheng [5], an 8 DOF mathematical model of a half truck is developed 

with a single bogie including two wheelsets. In the model, the wheel/rail contact interface is 

modeled with the heuristic nonlinear creep model and authors observe that the longitudinal 

stiffness of the primary stiffness is an important parameter from the perspective of hunting 

instability. Cheng et al. [6] investigated the problem with a 21 DOF nonlinear model of single 

truck with two bogies. Similarly, the heuristic creep model is adopted for the modeling of the 

wheel/rail contact interface. This model is further simplified to different submodels (6 DOF, 14 

DOF and 20 DOF) through certain assumptions and the investigation is conveyed accordingly. It 

is observed that the critical speeds for the 6 DOF and 14 DOF models during curving are higher 

than those evaluated from the 20 DOF model. In addition, the critical speeds obtained using the 

heuristic nonlinear creep model are generally lower than those obtained from Kalker’s linear creep 

model. Furthermore, vertical stiffness and damping of the secondary suspension system are found 

to be important parameters that are effective on the critical speed. Finally, it is observed that the 

critical speed increases with the increase of the curve radius. Shabana et al. [7] studied the effect 

of wheel/rail geometric properties on the stability of railroad vehicles. Thus, two computational 

models (a constrained wheelset model and full nonlinear truck model) are proposed and the 

investigation is carried out on two different contact formulations. Authors conclude that the wheel 

profile may have a significant effect on critical speed. Moreover, it is stated that the contact model 

that allows only single point contact at wheel/rail interface leads to lower critical speeds due to 

its higher conicity. Kim et al. [8] developed a 31 DOF truck model with two bogies including two 

wheelsets at each. In the model, the heuristic creep model is used for wheel/rail contact interface 

and flange contact is also taken into consideration. Authors claim that the critical speed is highly 

sensitive to stiffness parameters of the primary suspension system and damping coefficients of 

the secondary suspension system. Furthermore, the nonlinear heuristic creep model is found to be 

crucial for the estimation of critical speed. Taheri and Ahmedian [9] developed a computational 

model of a bogie with two wheelsets and investigated the effect of system parameters on the 

hunting stability. It is observed that the friction coefficient at the carbody/bolster contact interface 

is the most significant parameter that alters the critical speed. Furthermore, authors claim that the 

critical speed estimated by a linear model using eigenvalue calculations are higher than the critical 

speed predicted by the nonlinear model in the time domain. Park et al. [10] investigated the 
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hunting dynamics of a 14 DOF truck model with two bogies and four wheelsets. Numerical results 

are obtained for both linearized and linear Kalker models and it is observed that the critical speeds 

of the linear Kalker model are slightly less than those of the linearized model. Furthermore, 

authors claim that the influences of the suspension parameters on the critical speeds are less than 

expected due the values of the suspension parameters being high. Hence, the model responded to 

wheel/rail contact characteristics with a higher sensitivity than suspension parameters. Nath and 

Jayadev [11] studied the dynamics of the wheelset with a nonlinear mathematical model, and 

suggest that an increase in the yaw stiffness shifts the critical speed to higher values. 

 

The main goal of this study is to investigate the performance of a simplified wheel/rail contact 

modeling approach through a two-axle bogie model. The time domain responses obtained with 

this approach are then compared with Kalker’s linear theory. Finally, a parametric stability 

analysis is conveyed in order to understand the effects of system parameters. Hence the objectives 

of the current paper are: 1) Develep a four degree of freedom model of a two-axle bogie, and 

obtain the governing equations of motion; 2) Develop a simplified approach for interfacial contact 

forces at wheel/rail contact interfaces and calculate the time histories analytically; 3) Implement 

Kalker’s linear theory for interfacial contact force calculation, and solve the corresponding 

nonlinear governing equations numerically; and 4) Formulate the corresponding eigenvalue 

problem, and observe the stability of the bogie for different parameter sets. 

 

2. Mathematical Modeling of the Two-Axle Bogie 

 

Schematic of the two-axle bogie model is shown in Figure 1. As seen in the figure, the front (𝑚𝑓, 

𝐼𝑓) and rear (𝑚𝑟, 𝐼𝑟) wheelsets are attached to the bogie with elastic (𝑘𝑥, 𝑘𝑦) and dissipative (𝑐𝑥, 

𝑐𝑦) elements, hence the system has the following four degree of freedom: 1) Lateral displacement 

of the front wheelset, 𝑦𝑓; 2) Lateral displacement of rear wheelset, 𝑦𝑟; 3) Yaw rotation of the front 

wheelset, 𝜓𝑓; and 4) Yaw rotation of the rear wheelset, 𝜓𝑟. The elastic (𝑘𝑥, 𝑘𝑦) and dissipative 

(𝑐𝑥, 𝑐𝑦) elements represent the stiffness and damping characteristics of the axleboxes, and they 

are assumed to be linear in the current study. Furthermore, 𝑠, 𝑠𝑎 and 𝑙 represent the track width, 

half of the distance between axleboxes, and the wheelbase, respectively. In this study, the bogie 

is assumed to move at a constant speed 𝑉, and the directions of elastic and dissipative forces are 

assumed to be intact with small angle approximation. Front and rear wheelsets are connected 

through a linear spring (𝑘𝑠), a linear damper (𝑐𝑠) and a torsional spring (𝐾𝑏) that are referred as 

shear stiffness, shear damping and bending stiffness, respectively. Finally, all the wheels are 

assumed to be purely coned and have a nominal conicity 𝛿0, which is a very small number. 

 

 
Figure 1. Proposed model of the two-axle bogie 
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The governing equations of the system shown in Figure 1 are obtained as follows: 

 

𝑚𝑓𝑦̈𝑓 + (2𝑐𝑦 + 𝑐𝑠)𝑦̇𝑓 − 𝑐𝑠𝑦̇𝑟 −
𝑐𝑠𝑙

2
(𝜓̇𝑓 + 𝜓̇𝑟) + (2𝑘𝑦 + 𝑘𝑠)𝑦𝑓 − 𝑘𝑠𝑦𝑟

−
𝑘𝑠𝑙

2
(𝜓𝑓 + 𝜓𝑟) + 𝑆1 + 𝑆4 = 0 

(1) 

𝑚𝑟𝑦̈𝑟 − 𝑐𝑠𝑦̇𝑓 + (2𝑐𝑦 + 𝑐𝑠)𝑦̇𝑟 +
𝑐𝑠𝑙

2
(𝜓̇𝑓 + 𝜓̇𝑟) − 𝑘𝑠𝑦𝑓 + (2𝑘𝑦 + 𝑘𝑠)𝑦𝑟

+
𝑘𝑠𝑙

2
(𝜓𝑓 + 𝜓𝑟) + 𝑆2 + 𝑆3 = 0 

(2) 

𝐼𝑓𝜓̈𝑓 −
𝑐𝑠𝑙

2
(𝑦̇𝑓 − 𝑦̇𝑟) + (

𝑐𝑠𝑙2

4
+ 2𝑐𝑥𝑠𝑎

2) 𝜓̇𝑓 +
𝑐𝑠𝑙2

4
𝜓̇𝑟 −

𝑘𝑠𝑙

2
(𝑦𝑓 − 𝑦𝑟)

+ (
𝑘𝑠𝑙2

4
+ 2𝑘𝑥𝑠𝑎

2 + 𝐾𝑏) 𝜓𝑓 + (
𝑘𝑠𝑙2

4
− 𝐾𝑏) 𝜓𝑟 −

𝑠

2
(𝑈1 − 𝑈4)

= 0 

(3) 

𝐼𝑟𝜓̈𝑟 −
𝑐𝑠𝑙

2
(𝑦̇𝑓 − 𝑦̇𝑟) +

𝑐𝑠𝑙2

4
𝜓̇𝑓 + (

𝑐𝑠𝑙2

4
+ 2𝑐𝑥𝑠𝑎

2) 𝜓̇𝑟 −
𝑘𝑠𝑙

2
(𝑦𝑓 − 𝑦𝑟)

+ (
𝑘𝑠𝑙2

4
− 𝐾𝑏) 𝜓𝑓 + (

𝑘𝑠𝑙2

4
+ 2𝑘𝑥𝑠𝑎

2 + 𝐾𝑏) 𝜓𝑟 −
𝑠

2
(𝑈2 − 𝑈3)

= 0 

(4) 

 

where 𝑆𝑖 and 𝑈𝑖 are the lateral and longitudinal creep forces that are developed at the wheel/rail 

contact interfaces. Note that the subscripts (𝑖 = 1, 2, 3, 4) used to label these forces denote the 

number of the wheel as also depicted in Figure 1. 

 

In order to evaluate the creep forces (𝑈𝑖 and 𝑆𝑖), longitudinal (𝜉𝑥), lateral (𝜉𝑦) and spin (𝜉𝑠) 

creepages [12] at all wheels are first obtained from the corresponding velocity vectors as follows: 

 

𝜉𝑥,1 = −
𝑠𝜓̇𝑓

2𝑉
−

𝛿0𝑦𝑓

𝑟0
−

𝑙𝛿0𝜓𝑓

2𝑟0
 

 

𝜉𝑦,1 =
𝑦̇𝑓

𝑉
+

𝑙𝜓̇𝑓

2𝑉
− 𝜓𝑓 𝜉𝑠,1 =

𝜓̇𝑓

𝑉
 (5a) 

𝜉𝑥,2 = −
𝑠𝜓̇𝑟

2𝑉
−

𝛿0𝑦𝑟

𝑟0
+

𝑙𝛿0𝜓𝑟

2𝑟0
 𝜉𝑦,2 =

𝑦̇𝑟

𝑉
−

𝑙𝜓̇𝑟

2𝑉
− 𝜓𝑟 𝜉𝑠,2 =

𝜓̇𝑟

𝑉
 (5b) 

𝜉𝑥,3 =
𝑠𝜓̇𝑟

2𝑉
+

𝛿0𝑦𝑟

𝑟0
−

𝑙𝛿0𝜓𝑟

2𝑟0
 𝜉𝑦,3 =

𝑦̇𝑟

𝑉
−

𝑙𝜓̇𝑟

2𝑉
− 𝜓𝑟 𝜉𝑠,3 =

𝜓̇𝑟

𝑉
 (5c) 

𝜉𝑥,4 =
𝑠𝜓̇𝑓

2𝑉
+

𝛿0𝑦𝑓

𝑟0
+

𝑙𝛿0𝜓𝑓

2𝑟0
 𝜉𝑦,4 =

𝑦̇𝑓

𝑉
+

𝑙𝜓̇𝑓

2𝑉
− 𝜓𝑓 𝜉𝑠,4 =

𝜓̇𝑓

𝑉
 (5d) 

 

where 𝑟0 is the nominal rolling radius of the wheels. Here, it should be mentioned that wheels in 

the current study are assumed to be purely conical. Therefore, wheel flange is not modeled, hence 

the flange contact is not considered. 

 

3.Analytical Solutions with a Simplified Interfacial Contact Force Modeling Approach  

 

In order to obtain a set of linear governing equations, creep forces 𝑈𝑖 and 𝑆𝑖 are approximated 

with linear expressions as follows: 
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𝑈𝑖 = 𝜇𝑥𝑄𝜉𝑥,𝑖 (6a) 

𝑆𝑖 = 𝜇𝑦𝑄𝜉𝑦,𝑖 (6b) 

 

Here, 𝜇𝑥 and 𝜇𝑦 are defined as longitudinal and lateral adhesion coefficients. Importing Equations 

(5) and (6) to the Equations (1) to (4), one can obtain the corresponding equations of motion in 

linear form as follows: 

 

𝑚𝑓𝑦̈𝑓 + (2𝑐𝑦 + 𝑐𝑠 +
2𝜇𝑦𝑄

𝑉
) 𝑦̇𝑓 − 𝑐𝑠𝑦̇𝑟 + (

𝜇𝑦𝑄𝑙

𝑉
−

𝑐𝑠𝑙

2
) 𝜓̇𝑓 −

𝑐𝑠𝑙

2
𝜓̇𝑟

+ (2𝑘𝑦 + 𝑘𝑠)𝑦𝑓 − 𝑘𝑠𝑦𝑟 − (
𝑘𝑠𝑙

2
+ 2𝜇𝑦𝑄) 𝜓𝑓 −

𝑘𝑠𝑙

2
𝜓𝑟 = 0 

(7) 

𝑚𝑟𝑦̈𝑟 − 𝑐𝑠𝑦̇𝑓 + (2𝑐𝑦 + 𝑐𝑠 +
2𝜇𝑦𝑄

𝑉
) 𝑦̇𝑟 +

𝑐𝑠𝑙

2
𝜓̇𝑓 + (

𝑐𝑠𝑙

2
−

𝜇𝑦𝑄𝑙

𝑉
) 𝜓̇𝑟 − 𝑘𝑠𝑦𝑓

+ (2𝑘𝑦 + 𝑘𝑠)𝑦𝑟 +
𝑘𝑠𝑙

2
𝜓𝑓 + (

𝑘𝑠𝑙

2
− 2𝜇𝑦𝑄) 𝜓𝑟 = 0 

(8) 

𝐼𝑓𝜓̈𝑓 −
𝑐𝑠𝑙

2
(𝑦̇𝑓 − 𝑦̇𝑟) + (

𝑐𝑠𝑙2

4
+ 2𝑐𝑥𝑠𝑎

2 +
𝜇𝑥𝑄𝑠2

2𝑉
) 𝜓̇𝑓 +

𝑐𝑠𝑙2

4
𝜓̇𝑟

− (
𝑘𝑠𝑙

2
−

𝜇𝑥𝑄𝑠𝛿0

𝑟0
) 𝑦𝑓 +

𝑘𝑠𝑙

2
𝑦𝑟

+ (
𝑘𝑠𝑙2

4
+ 2𝑘𝑥𝑠𝑎

2 + 𝐾𝑏 +
𝜇𝑥𝑄𝑠𝑙𝛿0

2𝑟0
) 𝜓𝑓 + (

𝑘𝑠𝑙2

4
− 𝐾𝑏) 𝜓𝑟 = 0 

(9) 

𝐼𝑟𝜓̈𝑟 −
𝑐𝑠𝑙

2
(𝑦̇𝑓 − 𝑦̇𝑟) +

𝑐𝑠𝑙2

4
𝜓̇𝑓 + (

𝑐𝑠𝑙2

4
+ 2𝑐𝑥𝑠𝑎

2 +
𝜇𝑥𝑄𝑠2

2𝑉
) 𝜓̇𝑟 −

𝑘𝑠𝑙

2
𝑦𝑓

+ (
𝑘𝑠𝑙

2
+

𝜇𝑥𝑄𝑠𝛿0

𝑟0
) 𝑦𝑟 + (

𝑘𝑠𝑙2

4
− 𝐾𝑏) 𝜓𝑓

+ (
𝑘𝑠𝑙2

4
+ 2𝑘𝑥𝑠𝑎

2 + 𝐾𝑏 −
𝜇𝑥𝑄𝑠𝑙𝛿0

2𝑟0
) 𝜓𝑟 = 0 

(10) 

 

Observe that Equations (7)-(10) are all second order linear ordinary differential equations, and 

can be solved analytically. Though, these equations are all coupled; hence they should be solved 

simultaneously. Note that the analytical solutions of these equations are given in the following 

sections of the paper while comparing the results to the numerical solutions of nonlinear 

governing equations. 

 

4. Numerical Solutions with Kalker’s Linear Theory 

 

Based on Kalker’s linear theory [13-16], contact forces are calculated as 𝑈𝑖 = 𝑎𝑖𝑏𝑖𝐺𝐶11𝜉𝑥,𝑖 and 

𝑆𝑖 = 𝑎𝑖𝑏𝑖𝐺𝐶22𝜉𝑦,𝑖 + 𝑎𝑖𝑏𝑖𝐺𝐶23𝜉𝑠,𝑖 where 𝑎 and 𝑏 are the principal radii of the contact ellipse for 

the corresponding wheel, 𝐺 is a combined shear modulus of the wheel and rail materials, 𝐶11, 𝐶22 

and 𝐶23 are the Kalker coefficients determined from tables [13-16]. Principal radii 𝑎 and 𝑏 are 

evaluated from the Hertzian contact theory as below [17]: 

 

𝑎𝑖 = 𝛼𝑖 √
3𝜋𝑄(𝐾1 + 𝐾2)

4𝐾3

3

 (11a) 
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𝑏𝑖 = 𝛽𝑖 √
3𝜋𝑄(𝐾1 + 𝐾2)

4𝐾3

3

 (11b) 

 

where 𝑄 is the normal load on wheels that is assumed to be the same at each wheel, 𝐾1 and 𝐾2 

are material dependent constants for the wheel and rail, respectively. These constants are 

calculated as 𝐾1 = (1 − 𝜈𝑤
2 ) 𝜋𝐸𝑤⁄  and 𝐾2 = (1 − 𝜈𝑟

2) 𝜋𝐸𝑟⁄ , where 𝜈 and 𝐸 are the Poisson’s 

ratio and elasticity modulus for the contacting bodies, respectively. The parameter 𝐾3 in Equation 

(11) depends on the geometric properties of the contacting bodies and defined as follows: 

 

𝐾3 =
1

2
(

1

𝑟𝑖
+

1

𝑟𝑖
′ +

1

𝑟𝑟
+

1

𝑟𝑟
′
) (12) 

 

where, 𝑟𝑖 and 𝑟𝑟 are the principal rolling radii of the 𝑖𝑡ℎ wheel and rail at the point of contact, 

respectively. Furthermore 𝑟𝑖
′ and 𝑟𝑟

′ are the principal transverse radii of curvature of the 𝑖𝑡ℎ wheel 

and rail at the point of contact, respectively. The coefficients 𝛼𝑖 and 𝛽𝑖 in Equation (11) are found 

from the empirical formulas [18] with respect to the nondimensional parameter 𝜃 as below: 

 

𝛼𝑖(𝜃𝑖) = 𝐴𝑚 tan (𝜃𝑖 −
𝜋

2
) +

𝐵𝑚

𝜃𝑖
𝐶𝑚

+ 𝐷𝑚 (13a) 

𝛽𝑖(𝜃𝑖) =
1

𝐴𝑛 tan (𝜃𝑖 −
𝜋

2
) + 1

+ 𝐵𝑛𝜃𝑖
𝐶𝑛 + 𝐷𝑛 sin(𝜃𝑖) (13b) 

 

Here, 𝜃 = cos−1(𝐾4 𝐾3⁄ ) and 𝐾4 is a coefficient depending on the curvatures of the contacting 

bodies. 
 

𝐾4 =
1

2
√(

1

𝑟𝑖
−

1

𝑟𝑖
′)

2

+ (
1

𝑟𝑟
−

1

𝑟𝑟
′
)

2

+ (
1

𝑟𝑖
−

1

𝑟𝑖
′) (

1

𝑟𝑟
−

1

𝑟𝑟
′
) cos(2𝜙) (14) 

 

The parameter 𝜙 in Equation (14) is the angle between the normal planes of the curvatures of the 

contacting bodies, and 𝐴, 𝐵, 𝐶 and 𝐷 in Equation (13) are empirical constants given in [18]. 

 

Observe that the Kalker coefficients 𝐶11, 𝐶22 and 𝐶23 are determined from the principal radii of 

contact ellipse 𝑎 and 𝑏 (Equation (11)), which depend on the state variables through the 

parameters 𝐾3 and 𝐾4. Therefore, the Kalker coefficients are not constant and are nonlinear 

functions of the state variables. Consequently, the governing equations given with Equations (1) 

to (4) become nonlinear and they are solved numerically. 

 

5. Time Domain Solutions of the Nonlinear and Linear Models 

 

Time domain responses for the linear (Equations (7)-(10)) and nonlinear (Equations (1)-(4)) are 

obtained for the two-axle bogie system as depicted in Figure 1. The solutions are obtained at two 

different speeds of the bogie (𝑉) and corresponding time histories are shown in Figures (2) and 

(3). 
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Figure 2. Time domain responses for 𝑉 = 55 𝑚/𝑠. (a) 𝑦𝑓 vs. 𝑡; (b) 𝑦𝑟 vs. 𝑡; (c) 𝜓𝑓 vs. 𝑡; (d) 𝜓𝑟  vs. 𝑡. 

Key: , Nonlinear model, , Linear model 
 

 Figure 3. Time domain responses for 𝑉 = 65 𝑚/𝑠. (a) 𝑦𝑓 vs. 𝑡; (b) 𝑦𝑟 vs. 𝑡; (c) 𝜓𝑓 vs. 𝑡; (d) 𝜓𝑟  

vs. 𝑡.  
 

Key: , Nonlinear model, , Linear model 

 

The numerical solutions of the nonlinear governing equations are obtained through a 4th order 

Runge-Kutta technique. First, observe that the lateral displacement and yaw rotation responses 

are bounded for 𝑉 = 90 𝑚/𝑠. Hence, the system is at a stable state. As 𝑉 increases, response 

amplitudes increase in time and the system is unstable. This behavior shows that there is a critical 

speed in between the speed values 90 𝑚/𝑠 and 100 𝑚/𝑠, where the bogie goes from a stable to 

an unstable state. Second, it is seen that the simplified linear approach can successfully represent 

the dynamics of the nonlinear model, especially at stable region. Though, the simplified linear 

model underestimates response amplitudes when the bogie is unstable. This is due to Kalker 
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coefficients being state variable dependent. In the unstable state, variation of Kalker coefficients 

is higher due to high response amplitudes; hence these coefficients cannot be represented with a 

constant as being done in the simplified linear model. 
 

4. Stability Analysis of the Two-Axle Bogie Model 

 

Since the simplified linear model and the nonlinear model show a good match, the stability of the 

system is determined from the complex eigenvalue solution of the linear model. First the 

Equations (7) to (10) are written in state-space form as below: 

 

{𝜂̇} = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] {𝜂} (15) 

 

where 𝜂 = [𝑦𝑓 𝑦𝑟 𝜓𝑓 𝜓𝑟 𝑦̇𝑓 𝑦𝑟̇ 𝜓̇𝑓 𝜓̇𝑟 ]
𝑇

 and 𝑀, 𝐶 and 𝐾 are mass, damping and 

stiffness matrices, respectively. A close investigation of these matrices reveals that the system is 

damping and stiffness coupled, and both 𝐶 and 𝐾 matrices are asymmetric. Thus, the system is 

prone to loss of stability. Therefore, the complex eigenvalues are obtained from the Equation (15), 

and the stability of the system is determined through the real parts of these complex eigenvalues. 

In other words, a positive real part of a complex eigenvalue (𝜆) corresponds to the unstable state 

of the given system. First, the speed (𝑉) of the bogie is varied from 55 𝑚/𝑠 to 65 𝑚/𝑠 in order 

to determine the critical speed of the system of Figure 1, and the real parts of the eigenvalues are 

shown in Figure 4. As seen in the figure, 𝑅𝑒(𝜆) for all eigenvalues are velocity dependent and 

they increase as 𝑉 increases, which is also observed by Klingel [19]. Furthermore, one of the 

𝑅𝑒(𝜆) is positive for 𝑉 > 58.66 𝑚/𝑠. Thus, 𝑉𝑐𝑟 = 58.66 𝑚/𝑠 is the critical speed of the bogie. 

 

 
  Figure 4. Real parts of calculated eigenvalues with respect to 𝑉. 

 

In order to further investigate the effects of system parameters on the stability of the proposed 

bogie model, stability maps in which two parameters are simultaneously varied while others kept 

intact are generated. In these maps, critical speed thresholds are given for various speed levels, 

hence the effects of selected parameters on the critical speed is obtained. First, the inertia terms 

𝐼𝑓 and 𝐼𝑟 are studied and the corresponding stability map is given in Figure 5. As seen in the 

figure, reducing 𝐼𝑓 and 𝐼𝑟 increases 𝑉𝑐𝑟, which is also suggested by Wickens [3]. In the second 

case, masses of the front (𝑚𝑓) and rear (𝑚𝑟) wheelsets are varied over a given range, and the 

stability map is shown in Figure 6. Observe that the stability of the system is more sensitive to 

𝑚𝑟 than 𝑚𝑓, especially at lower speeds. Hence, reducing 𝑚𝑟 is a more effective solution for 

increasing 𝑉𝑐𝑟. In the third case, the effect of axlebox rigidity is investigated by varying 𝑘𝑥 and 
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𝑘𝑦 (Figure 7). As opposed to inertial terms, increasing the rigidity of the axlebox seems to increase 

𝑉𝑐𝑟. Furthermore, at high critical speeds; the sensitivity of the system stability to 𝑘𝑦 is higher, 

which means that the rigidity of the axlebox in lateral direction can alter the system response 

drastically. In the next case, effect of shear (𝑘𝑠) and bending (𝐾𝑏) stiffness on system stability is 

investigated, and the corresponding stability map is given in Figure 8. Observe that at low 𝐾𝑏 

values and when 𝐾𝑏 < 𝑘𝑠, the stability is highly sensitive to 𝐾𝑏 and changing 𝑘𝑠 at this parameter 

region does not change 𝑉𝑐𝑟. Similarly, at low 𝑘𝑠 values and when 𝑘𝑠 < 𝐾𝑏, 𝑘𝑠 is the only 

parameter that can increase 𝑉𝑐𝑟. In addition, increasing both 𝑘𝑠 and 𝐾𝑏 improves the critical speed, 

though there seems to be a set of parameters where 𝑉𝑐𝑟 is at a maximum. A further increase in 𝑘𝑠 

and 𝐾𝑏 leads to a reduction in 𝑉𝑐𝑟. Those regions where the critical speed is at maximum locate 

at high 𝑘𝑠 – low 𝐾𝑏 and low 𝑘𝑠 – high 𝐾𝑏 values. Note that, similar observations are also suggested 

by Whitman in [20]. Figure 9 shows the change in 𝑉𝑐𝑟 with respect to 𝑠𝑎 and 𝑠. Increasing both 

terms shifts the 𝑉𝑐𝑟 to higher values, though at high 𝑠𝑎 and low 𝑠 values, stability becomes 

independent from 𝑠𝑎. Finally, effect of 𝑄 and 𝛿0 is investigated and the results are shown in Figure 

10. Similar to the previous case, again higher 𝑄 and 𝛿0 values lead to higher 𝑉𝑐𝑟. 
 

 
Figure 5. Change in critical speed with respect to 𝐼𝑓 and 𝐼𝑟 . 

 

 
Figure 6. Change in critical speed with respect to 𝑚𝑓 and 𝑚𝑟. 
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Figure 7. Change in critical speed with respect to 𝑘𝑥 and 𝑘𝑦. 

 

 
Figure 8. Change in critical speed with respect to 𝑘𝑠 and 𝐾𝑏. 

 

 
Figure 9. Change in critical speed with respect to 𝑠𝑎 and 𝑠. 
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Figure 10. Change in critical speed with respect to 𝑄 and 𝛿0. 

 

5. Conclusion 

 

In this paper, the stability of a two-axle bogie with elastically connected wheelsets is investigated. 

First, a mathematical model of the bogie is developed, and the nonlinear governing equations are 

solved numerically. Second, the nonlinear model is reduced to a linear system with the assumption 

of a simpler contact model, and the time domain responses are obtained analytically. A good 

match between numerical and analytical solutions is observed, especially for the stable state of 

the bogie, thus it is shown that the linear model can represent the dynamics of the nonlinear model 

successfully. Third, the eigenvalue problem is formulated from the linear model and the effect of 

bogie speed on stability is observed. It is shown that eigenvalues are speed dependent, hence the 

stability of the system can be disturbed above critical speeds. Finally, a parametric study is carried 

out, and effects of system parameters, such as geometric dimensions, inertial terms, elastic 

properties, etc., on the stability of the bogie are investigated in details. Even though the model 

proposed in the current paper is simple, it is useful to present the trends in terms of parameter 

changes that lead to unstable motion. 

 

In this paper, observe that the wheels are assumed to have a purely coned profiles whereas the 

rails are defined as a single point. Therefore, complex contact cases, such as two-point or 

conformal contact do not emerge. The model proposed in this paper can be extended through a 

complicated wheel/rail contact interface modeling, where both the wheel and rail profile 

geometries are considered. Furthermore, the degree of freedom of the model can be increased by 

considering a wagon body, which is attached to the developed bogie model through the secondary 

suspension system. Hence, the critical speed estimations could reveal more realistic results. 
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