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How Many Samples are Enough When Data are Unbalanced? 
Mehmet MENDEŞ1

Geliş Tarihi: 04.06.2004 

Abstract: A crucial component of the design of a study is the number of participants or observations (sample 
size) required. Taking too many samples will waste time and resources, both in collecting and analyzing the data. On 
the other hand, taking too small samples can make the whole study meaningless or lead to errors in interpritation. Equal 
group sizes are preferable. But, this is not always the case in practice. The aim of this study is to clarify some of the key 
issues regarding sample size and power (80 %) when data are unbalanced. For this aim, a simulation study was 
conducted. At the end of the 50,000-simulation trial it was seen that there are many different sample size combinations 
that make it possible to reach around 80% test power. On the other hand, as the numbers of observations were getting 
more different, we needed more observations to reach around 80 % test power. For instance, the test power we 
reached for the 16 observations in each group (n=16:16:16), total 48 observations, we can only reach with 72 
observations when sample sizes were unequal (n=12, 30, 30) and (n=12: 24: 36). As the variances were getting more 
heterogenous, the effect of unbalanced data on test power was getting more obvious. 
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Dengesiz Verilerle Çalışılması Durumunda Gruplardaki Gözlem Sayıları Kaç 
Olmalıdır? 

Öz: Deneme planlamasında en önemli aşamalardan birisi, gerekli olan örnek hacminin belirlenmesidir. Örnek 
hacminin gereğinden fazla olması kaynakların israfına neden olmaktadır. Gereğinden az olması durumunda ise 
parametre tahminlerinde oldukça büyük sapmalar meydana gelmekte ve karşılaştırılacak muamele grup ortalamaları 
arasında gerçekte var olan farklılıklar ortaya konulamamaktadır. Karşılaştırılacak gruplardaki gözlem sayılarının eşit 
olması  istenen bir durumdur. Ancak, uygulamada her zaman eşit hacimli örneklerle çalışmak mümkün olamamaktadır. 
Bu çalışmada, dengesiz denemelerin söz konusu olması durumunda hangi örnek hacmi kombinasyonlarının % 80’lik 
güç değerini sağlayabildiklerinin belirlenmesi amacıyla bir simülasyon çalışması yapılmıştır. Yapılan 50,000 simülasyon 
denemesi sonucunda, pek çok örnek hacmi kombinasyonu ile çalışılması durumunda % 80’lik güç değerine ulaşıldığı 
görülmüştür. Ancak, örnek hacimlerindeki dengesizliğin artması, araştırıcıyı daha fazla gözlem ile çalışmaya 
zorlamaktadır. Mesela varyanslar homojen iken n=(16, 16, 16) örnek hacmi kombinasyonu (toplam 48 gözlem) ile 
varılan güç değerine, dengesiz denemelerin söz konusu olması durumunda ancak n=(12, 30, 30) ve n=(12, 24, 36) 
(toplam 72 gözlem) örnek hacmi kombinasyonu ile çalışılması durumunda ulaşılmaktadır. Varyansların heterojenlik 
derecesinin artmasına paralel olarak örnek hacimlerindeki dengesizliklerin testin gücüne olan etkilerinin daha da 
belirginleştiği görülmüştür.  

Anahtar Kelimeler: Uygun örnek hacmi, testin gücü, etki büyüklüğü, dengesiz veriler 
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Introduction 

When conducting an experiment, a main concern is 
the sample size. The best sample size is the largest 
sample size. But, studying with the optimum sample size 
is strongly suggested. Working with a large data set may 
require extra time and resourses. On the other hand, too 
small of a sample size can make the whole study 
scientifically indefensible, or even worse, lead to errors in 
interpretation (Dupont et al. 1990, Dupont et al. 1998, 
Eckblad 1991, Winer et al. 1991, Mendeş 1998, Zar 1999, 
Lenth 2001, Mendeş 2002). The power of a test (1-ß) is a 
function of the sample size, effect size and defined as the 
probability of avoiding a type II error (Hicks 1993, Adcock 
1997, Horn and Vollandt 1998, Horn et al. 2000, 
Montgomery 2001, Hoening and Heisey 2001, Cook and 
Raj 2003, Mendes and Pala 2004). A type II error occurs 
when   you  retain  a  false  null  hypothesis.  Conventional 
practice is to determine the sample size that gives  80% 
power at the α=0.05 level (Cohen 1988, Eckblad 1991, Ott 
1998, Mendes 1998, Ferron and Sentovich 2002, Mendes  

2002). That is, optimum sample size is the minimum 
sample size reached when the power is around 80%. 
Elliott (1977) suggests a simple way, although limited in its 
applications, to estimate suitable sample size. Elliott 
(1977) suggests taking samples in 5 sample-increments 
(5, 10, 15, 20) and calculating the means of every 5 
samples until the point is reached where sample means 
do not vary much. The sample number used to reach that 
point can be considered a suitable sample size for the 
study. This method is a quick approach if a small pilot 
study is to be conducted. But, it is not useful in generally. 
There are many sample size tables, graphs and computer 
programs  available. For instance, Bratcher  et al (1970) 
and Nelson (1985) gives compact tables for designing 
balanced experiments. 

Gatti and Harwell (1998) discuss how computer 
programs can be used effectively to compute power. Also, 
Desu and Raghavarao (1990) give formulas for calculating 
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power are available for those instructors wishing to include 
a more rigorous treatment of power. It is known that 
balance designs have many advantages in terms of easy 
analysis and interpretation.  Additionally, balance designs 
help lessen the effects of unequal variances. Therefore, a 
general recommendation would be to design with balance. 
However, in practice, we may come across unbalanced 
data. If unbalance occurs, due to lost data or participant 
drop out, then one must deal with that in the subsequent 
analysis.  One can also compute the power that can be 
achieved with the unbalanced data. At this stage, the 
question of “What is the degree of deviation from 
balance?” is critical. That is, “How many subjects 
(experimental units) do I require in each group?” is very 
critical (Adcock 1997, Dupont et al. 1998, Horn et al. 2000, 
Vollandt et al. 2000, Hoening and Heisey 2001). The main 
objective of this study is to determine at least how many 
observations we need in each group at the beginning of 
the experiment when sample sizes are unequal.  

 
 
Materials and Methods 
 
We used IMSL (1994) library in FORTRAN 90 

software to generate the data from normal distribution and 
compute F (ANOVA F) test statistic. Using IMSL RNNOA 
(1994) function, we generated data for each group 
(Anonymous, 1994). For each condition, we generated 
50,000 replications. For each replication, we analyzed the 
data using F test statistic. Performance of the F test was 
evaluated by computing test power for conditions in which 
the null hypothesis was false. At the end of simulation, the 
optimum sample size is reached when the power is 
around 80%.  

 
In this study data were generated from normal 

distribution. Because from Glass, Peckham and Sanders 
(1972) parametric statistical tests such as the t test and F 
test are robust under violations of normal theory that are 
no too extreme. Also, many of the dependent variables we 
deal with are commonly assumed to be normally 
distributed in the population. In other words, if we were to 
obtain a whole population of observations, we could 
assume that the resulting distribution is similar to the 
normal distribution. So, for the normally distributed 
conditions, we generated random samples (of size n2= 
cn1, n3= cn1, and n4= cn1, c=1.5, 2, 2.5, 3). If the standard 
deviation ratio is , Fenstad (1983) argues 

that having R as large as 4 is not extreme and a survey of 
studies reported by Wilcox et al. (1986) supports his view. 
Brown and Forsythe (1974) considered , while Box 

(1954) limited his numerical results to
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For this study, two levels of variance patterns were 

considered. The first condition specified equal variances 

across group (  and 

), sample scores were then 
multiplied by a constant to create two additional conditions 
(variance heterogeneity) in which the standard deviations  
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4,3,21,σ = . Therefore, variance ratio was  

 for k=3, and 

 for k=4 (k is the number 
of group). The effect sizes (standardized mean difference) 
of 0.8 and more standard deviation approximate those 
suggested by Cohen (1969, 1988) to represent large effect 
sizes. In this study, we used 1.0 standard deviation to 
represent large effect size. To create a difference between 
the population means, specific constant numbers in 
standard deviation form (δ=1.0) was added to the random 
numbers of the first population (population which has the 
smallest variance) to obtain information about upper 
bound of sample sizes of each group to reach around 80 
% test power, then added to the last population 
(population which has the largest variance) to obtain lower 
bound of sample sizes of each group to reach around 80 
% test power under variance heterogeneity.   
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The total sample sizes (N) ranged from 48 (n1=16, 

n2=16, n3=16) to 272 ((n1=34, n2=34, n3=102, n4=102). 
Ferron and Sentovich (2002) estimated statistical power 
for three randomization tests using multiple-baseline 
designs. They stated that they used > 80 % as the 
sufficient power level for comparing the tests. Therefore, 
80 % was assumed to be the sufficient power level in this 
study.  

 
 
Results and Discussion 
 
As the numbers of observations were getting more 

different, we needed more observations to reach around 
80 % test power (see Table 1). This is valid for four-group 
case (see Table 2). For example, the test power we 
reached for the 16 observations in each group (16:16:16), 
total 48 observations, we can only reach with 72 
observations when sample sizes were unequal (12: 24: 
36). We need more observations to reach a test power of 
80% when variances were heterogeneous. For instance, 
while the test power reached with 48 observation 
(16:16:16) under variance homogeneity (1:1:1), we need 
84 observations (28:28:28) to reach the same test power 
under variance heterogeneity (1:2:3). Under the same 
conditions, as the deviation from the balance is increases, 
we have more observations in each group. For example, 
in the first condition the test power we reached of the 
(24:48:48) sample size combinations (total 120), in the 
second conditions we only reached of the (20:40:40) 
sample size combination (total 100) (see Table 1). In this 
case, it will be more effective to consider the second 
condition.  Because, the optimum sample size is the 
minimum sample size reached when the power is around 
80% (Ferron and Sentovich 2002). All in all, we would say 
that the test power decreased as heterogeneity of 
variances increased. The effect of heterogeneity on test 
power obviously decreased as sample sizes of each group 
get close to each other. These results are consistent with 
Eckblad (1991), Mendeş (1998), Horn et al. (2001), and 
Lenth (2001). As the deviation from balanced increased, 
we    require    more    observation     to      reach   around 
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80 % test power. The simulation results are  consistent 
with Wilcox et al (1986), Wilcox (1988), Algina et al (1994), 
Alexander and Govern (1994), Schneider  and Penfield  
(1997), Mendes and Tekindal (2002).  

 
 
Conclusion 
 
Simulation results indicated that there are many 

different sample size combinations that make it possible to 

reach around 80% test power. On the other hand, as the 
numbers of observations were getting more different, we 
needed  more observations to reach  around  80 %  test 
power.  Also, we need more observations to reach a test 
power of 80% when variances were heterogeneous. 

 
Simulation Results: Sample sizes combinations 

met 80% test power (enough test power) was given in 
Table 1-Table 2. 

 
 

Table 1. Determining optimum sample size based on variance ratio and mean difference, k=3                      

                Equal variance (1:1:1)                                                 Unequal variance   (1:2:3) 
                                                                                      Condition I                                   Condition II 

                         =1:0:0                        =1:0:0                      =0:0:1 321 µ:µ:µ 321 µ:µ:µ 321 µ:µ:µ
    

     c               n1:n2:n3            Power(%)         n1:n2:n3                   Power (%)        n1:n2:n3                   Power (%)    
1:1:1           16:16:16     80.0              28:28:28                    80.3               32:32:32                 80.0 
1:1.5:1.5            14:21:21            81.1                  26:39:39                    81.8               24:36:36                 79.8 
1:2:2                  14:28:28            84.3                  24:48:48                    80.3               20:40:40                 80.3 
1:2.5:2.5            12:30:30            80.0                  24:60:60                 82.7               18:45:45                 83.6 
1:3:3                  12:36:36            80.8                  24:72:72                    82.7               14:42:42                 80.0 
1:1:1.5               15:15:23            81.4                  28:28:42                    82.0               26:26:39                 79.5 
1:1:2                  14:14:28            81.2                  28:28:56                    82.0               24:24:48                 81.0 
1:1:2.5               14:14:35            83.2                  28:28:70                    82.1               22:22:55                 81.5 
1:1:3                  13:13:39            81.0                  26:26:78                    80.0               20:20:60                 80.2 
1:1.5:2               14:21:28            82.6                  26:39:52                    81.8               22:33:44                 82.6  
1:1.5:2.5            14:21:35            84.4                  26:39:65                    81.7               20:30:50                 81.9 
1:1.5:3               12:18:36            78.6                  26:39:78                    81.9               18:27:54                 80.9 
1:2:2.5               12:24:30            79.0                  24:48:60                    79.8               18:36:45                 81.6 
1:2:3                  12:24:36            80.0                  24:48:72                    80.0               16:32:48                 79.6 
1:2.5:3               12:30:36            81.1                  24:60:72                    81.0               16:40:40                 82.9  
c: relationship among the sample size   
 
 
Table 2. Determining optimum sample size based on variance ratio and mean difference, k=4                      

   
                   Equal variance (1:1:1:1)                                                 Unequal variance   (1:2:3:4) 
                                                                                      Condition I                                   Condition II 

                      =1:0:0:0          =1:0:0:0              =0:0:0:1 4321 µµ:µ:µ : : :4321 µµ:µ:µ 4321 µµ:µ:µ
    

 
     c             n1:n2:n3:n4          Power(%)     n1:n2:n3:n4 (max)    Power (%)     n1:n2:n3:n4 (min)       Power (%)     
1:1:1:1          16:16:16:16       81.1          34:34:34:34              81.7              42:42:42:42                 80.0 
1:1:1.5:1.5        16:16:24:24       83.9               34:34:51:51              81.6              32:32:48:48                 80.0  
1:1:2:2              14:14:28:28       80.3               34:34:68:68              81.5              26:26:52:52                 80.0  
1:1:2.5:2.5        14:14:35:35       82.0               34:34:85:85              82.2              24:24:60:60                 81.9 
1:1:3:3              14:14:42:42       83.0               34:34:102:102          82.5              20:20:60:60                 79.8 
1:1.5:2:2.5        14:21:28:35       82.3               32:48:64:80              80.8              22:33:44:55                 80.0 
1:1.5:2:3           14:21:28:42       83.4               34:51:68:102            82.9              20:30:40:60                 79.8 
1:2:2:3              14:28:28:42       83.6               32:64:64:96              81.7              20:40:40:60                 82.9 
1:2:2.5:3           14:28:35:42       83.5               32:64:80:96              82.5              20:40:50:60                 83.5 
1:1.5:2.5:3        14:21:35:42       83.9               32:48:80:96              80.0              20:30:50:60                 81.1 
1:1.5:1.5:3        14:21:21:42       82.4               34:51:51:102            82.6              22:33:33:66                 82.2 
1:2:2:3             14:28:42:42        84.0               32:64:96:96              82.6              18:36:54:54                 79.5 
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