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ABSTRACT: In this study, we have worked on GKM in order to obtain the soliton solutions of the 

generalized third-order nonlinear Schrödinger equation. Thus, we have acquired some new soliton 

solutions of the generalized third-order nonlinear Schrödinger equation which has an important usage 

area in optical fiber. Also, we have drawn some 2D and 3D surfaces of these obtained results by using 

Wolfram Mathematica 12. Then, we have shown the validity of the obtained solutions. 
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INTRODUCTION 

The nonlinear Schrödinger equations (NLSEs), a category of nonlinear evolution equations 

(NLEEs), are used in much areas of engineering and applied sciences kind of fluid mechanics, 

hydrodynamics, applied mathematics, biophysics, optical fibers, mathematical physics, plasma physics, 

fluid dynamics and so on (Ma, 2019; Liu et al., 2015; Chettouh et al., 2017; Chowdury et al., 2014; 

Azzouzi et al., 2009; Triki and Taha, 2012; Xu and Zhang, 2007; Triki et al., 2018; Arshad et al., 2017a; 

Arshad et al., 2017b; Biswas et al., 2017; Seadawy et al., 2018).  

Generalized third-order (NLSE), which is a class of the NLSEs, has been the subject of some 

research recently. Generalized third-order (NLSE) is given as: 

   

                                          𝑖 (
𝜕𝑢

𝜕𝑡
+

𝜕3𝑢

𝜕𝑥3
) + |𝑢|2  (𝛽1𝑢 + 𝑖𝛽2

𝜕𝑢

𝜕𝑥
) + 𝑖𝛽3

𝜕(|𝑢|2)

𝜕𝑥
𝑢 = 0.                              (1) 

Where value of   function is a complex and value of coefficients   and   are real. Generalized third-

order (NLSE) given by Eq. (1) is an important model which is used to model ultra-short pulses in optical 

fibers. Solitons and solitary wave solutions of this model have recently been tried to be found by many 

researchers. Various methods have been studied such as the extended simple equation method and the 

exp (−ϕ(ξ))-expansion method (Lu et al., 2019), the generalized Riccati mapping method (Nasreen et 

al., 2019), the exp-a function and unified methods (Hosseini et al., 2020), F-expansion method (Seadawy 

et al., 2020b) and modified extended direct algebraic method (Seadawy et al., 2020a).  

Our aim in this article is ascertain the soliton solutions of generalized third-order (NLSE) through 

GKM (Tuluce Demiray and Bulut, 2015; Pandir et al., 2016; Tuluce Demiray and Bulut, 2016; Tuluce 

Demiray and Bulut, 2017; Tuluce Demiray and Bulut, 2019). In Section 2, GKM’s basic structure is 

given. In Section 3, some soliton solutions of generalized third-order (NLSE) have been obtained by 

applying GKM. 

MATERIALS AND METHODS 

We take into account a general nonlinear partial differential equation (NLPDE) in the form: 

                                                         𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑡, … ) = 0.                                                        (2) 

Step1: Firstly, we consider the travelling wave solution as following form; 

                                        𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉)𝑒𝑖𝑃(𝑥,𝑡), 𝜉 = 𝑘𝑥 + 𝑤𝑡, 𝑃(𝑥, 𝑡) = 𝛿𝑥 + 𝜆𝑡.                             (3) 

Where 𝑘, 𝑤, 𝛿 and 𝜆 arbitrary constants. Equation (2) is turned into ordinary differential equation by Eq. 

(3): 

                                                                       𝑃(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, … ) = 0.                                                        (4)  

Where superscripts denote ordinary derivatives with respect to 𝜉. 

Step2: Suppose that we consider the solutions of Eq. (4) as: 

                                                      

                                                             𝑢(𝜉) =
∑ 𝑎𝑖𝑍

𝑖𝑁
𝑖=0 (𝜉)

∑ 𝑏𝑗𝑍𝑗  (𝜉)𝑀
𝑗=0

=
𝐴[𝑍(𝜉)]

𝐵[𝑍(𝜉)]
.                                                         (5) 
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Where 𝑍 is 
1

1±𝑒𝜉
 ‘dir. We should point out that 𝑍 is the solution to the following equation. 

   

                                                                                 𝑍𝜉 = 𝑍2 − 𝑍.                                                                           (6) 

Step3: We can ascertain the values of 𝑀 and 𝑁 in Eq. (5) through the homogeneous balance principle. 

Therefore we balance the highest order nonlinear terms in Eq. (4). 

Step4: We substitute Eq. (5) into Eq. (4). Thus we obtain a polynomial of 𝑅(𝑍) of 𝑍. Then equating the 

all coefficients of 𝑅(𝑍) to zero, we find an algebraic equation system. By solving this system, we 

determine 𝑐 and the variable coefficients of 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑀. Finally we can obtain the 

exact solutions of Eq. (4). 

Application of GKM to the equation 

To find the traveling wave solutions of Eq. (1) we consider the following transformation: 

                                       𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝜉)𝑒𝑖𝑃(𝑥,𝑡), 𝜉 = 𝑘𝑥 + 𝑤𝑡, 𝑃(𝑥, 𝑡) = 𝛿𝑥 + 𝜆𝑡.                                     (7) 

Replace Eq. (2) into Eq. (1) and we get the following 

                                               3𝑘2𝛿𝑢′′ + (𝜆 − 𝛿3)𝑢 + (𝛿𝛽2 + 𝛽1)𝑢3 = 0.                                           (8) 

And 

                                                       𝑘3𝑢′′ + (𝑤 − 3𝛿2𝑘)𝑢 +
𝑘(2𝛽3+𝛽2)

3
𝑢3 = 0.                                           (9) 

By using balance principle in Eq. (9), we obtain 

  

                                                     𝑁 − 𝑀 + 2 = 3𝑁 − 3𝑀 ⇒ 𝑁 = 𝑀 + 1.                                                    (10) 

If we select 𝑀 = 1 and 𝑁 = 2 we find the following solution 

                                                                 𝑢(𝜉) =
𝑎0 + 𝑎1𝑍 + 𝑎2𝑍2

𝑏0 + 𝑏1𝑍
,                                                                 (11) 

                           𝑢′(𝜉) = (𝑍2 − 𝑍) [
(𝑎1 + 2𝑎2𝑍)(𝑏0 + 𝑏1𝑍) − 𝑏1(𝑎0 + 𝑎1𝑍 + 𝑎2𝑍2)

(𝑏0 + 𝑏1𝑍)2
],                       (12) 

          

    𝑢′′(𝜉) =
𝑍2 − 𝑍

(𝑏0 + 𝑏1𝑍)2
(2𝑍 − 1)[(𝑎1 + 2𝑎2𝑍)(𝑏0 + 𝑏1𝑍) − 𝑏1(𝑎0 + 𝑎1𝑍 + 𝑎2𝑍2)] +

(𝑍2 − 𝑍)2

(𝑏0 + 𝑏1𝑍)3

+ [2𝑎2(𝑏0 + 𝑏1𝑍)2 − 2𝑏1(𝑎1 + 2𝑎2𝑍)(𝑏0 + 𝑏1𝑍)

+ 2𝑏1
2(𝑎0 + 𝑎1𝑍 + 𝑎2𝑍2)].                                                                                                  (13) 

We obtain the soliton solutions of Eq. (1) in the following different cases; 

Case1: 

                           𝑎0 = −
𝑖√3

2 𝑘𝑏0

√𝛽2 + 2𝛽3

, 𝑎1 = −
𝑎2

2
+

𝑖√6𝑘𝑏0

√𝛽2 + 2𝛽3

, 𝑏1 = −
𝑖𝑎2√𝛽2 + 2𝛽3

√6𝑘
,

𝑤 =
1

2
𝑘(𝑘2 + 6𝛿2).                                                                                                             (14) 
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Substituting the above values in Eq. (11), we acquire the soliton solution of Eq. (1) 

                                   𝑢1(𝑥, 𝑡) = −

𝑖√3
2 𝑘𝑡𝑎𝑛ℎ [

1
2 (𝑘𝑥 +

1
2 𝑘𝑡(𝑘2 + 6𝛿2))]

√𝛽2 + 2𝛽3

.                                            (15)  

  

                                   𝑢2(𝑥, 𝑡) = −

𝑖√3
2 𝑘𝑐𝑜𝑡ℎ [

1
2 (𝑘𝑥 +

1
2 𝑘𝑡(𝑘2 + 6𝛿2))]

√𝛽2 + 2𝛽3

.                                            (16)  

 

Figure 1: The 3D graph of the solution (15) for 𝑘 = 1, 𝛿 = 2, 𝛽2 = 2, 𝛽3 = 2, −20 < 𝑥 < 20, −20 < 𝑡 < 20 and 2D graph 

for this values and 𝑡 = 0.1. 

Case2: 

𝑎0 =
√3

2 (−3𝑘𝑏1√−𝛽2 − 2𝛽3 + √−𝑘2𝑏1
2(𝛽2 + 2𝛽3))

4(𝛽2 + 2𝛽3)
, 𝑎1 = −

√6𝑘𝑏1

√−𝛽2 − 2𝛽3

, 𝑎2 =
√6𝑘𝑏1

√−𝛽2 − 2𝛽3

, 

     𝑏0 = −
𝑏1

2
, 𝑤 =

1

4
𝑘 (5𝑘2 + 12𝛿2 −

3𝑘√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)

𝑏1√−𝛽2 − 2𝛽3

).                                                          (17) 

Substituting the above values in Eq. (11), we acquire the soliton solution of Eq. 
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𝑢3(𝑥, 𝑡) =
−√3

4√2𝑏1(−𝛽2 − 2𝛽3)
3

2⁄
(−2𝑘 (−1 + 3𝑐𝑜𝑠ℎ [𝑘𝑥 +

1

4
𝑘𝑡 (5𝑘2 + 12𝛿2 −

3𝑘√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)

𝑏1√(−𝛽2 − 2𝛽3)
)])

× 𝑐𝑠𝑐ℎ [𝑘𝑥 +
1

4
𝑘𝑡 (5𝑘2 + 12𝛿2 −

3𝑘√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)

𝑏1√(−𝛽2 − 2𝛽3)
)] 𝑏1(𝛽2 + 2𝛽3)

− 2𝑐𝑜𝑡ℎ [
1

2
(𝑘𝑥 +

1

4
𝑘𝑡 (5𝑘2 + 12𝛿2 −

3𝑘√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)

𝑏1√(−𝛽2 − 2𝛽3)
))]

× √−𝛽2 − 2𝛽3√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)).                                                                                                             (18) 

𝑢4(𝑥, 𝑡) =
−√3

4√2𝑏1(−𝛽2 − 2𝛽3)
3

2⁄
(−2𝑘 (−1 + 3𝑐𝑜𝑠ℎ [𝑘𝑥 +

1

4
𝑘𝑡 (5𝑘2 + 12𝛿2 −

3𝑘√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)

𝑏1√(−𝛽2 − 2𝛽3)
)])

× 𝑐𝑠𝑐ℎ [𝑘𝑥 +
1

4
𝑘𝑡 (5𝑘2 + 12𝛿2 −

3𝑘√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)

𝑏1√(−𝛽2 − 2𝛽3)
)] 𝑏1(𝛽2 + 2𝛽3)

− 2𝑡𝑎𝑛ℎ [
1

2
(𝑘𝑥 +

1

4
𝑘𝑡 (5𝑘2 + 12𝛿2 −

3𝑘√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)

𝑏1√(−𝛽2 − 2𝛽3)
))]

× √−𝛽2 − 2𝛽3√−𝑘2𝑏1
2(𝛽2 + 2𝛽3)).                                                                                                             (19) 

           

Figure 2: The 3D graph of the solution (18) for 𝑘 = 0.5, 𝛿 = 2,  𝑏1 = 1, 𝛽2 = 0.2, 𝛽3 = 4, −20 < 𝑥 < 20, −2 < 𝑡 < 2    and 

2D graph for this values and 𝑡 = 0.5. 

Case3: 

                          𝑎0 = −
√6𝑘𝑏0

√−𝛽2 − 2𝛽3

, 𝑎1 =
2√6𝑘𝑏0

√−𝛽2 − 2𝛽3

, 𝑎2 = −
2√6𝑘𝑏0

√−𝛽2 − 2𝛽3

,                                              

                          𝑏1 = −2𝑏0, 𝑤 = (2𝑘3 + 3𝑘𝛿2).                                                                                             (20) 
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Substituting the above values in Eq. (11), we acquire the soliton solution of Eq. (1) 

                                            𝑢5(𝑥, 𝑡) = −
√6𝑘𝑐𝑜𝑡ℎ[𝑘𝑥 + 𝑡(2𝑘3 + 3𝑘𝛿2)]

√−𝛽2 − 2𝛽3

.                                                (21)  

                                            𝑢6(𝑥, 𝑡) = −
√6𝑘𝑡𝑎𝑛ℎ[𝑘𝑥 + 𝑡(2𝑘3 + 3𝑘𝛿2)]

√−𝛽2 − 2𝛽3

.                                                (22)  

 

Figure 3: The 3D graph of the solution (21) for 𝑘 = 0.2, 𝛿 = 2,  𝛽2 = 0.2, 𝛽3 = 3, −25 < 𝑥 < 25, −25 < 𝑡 < 25 and 2D 

graph for this values and 𝑡 = 0.5 

RESULTS AND DISCUSSION 

We obtained some soliton solutions of the generalized third-order (NLSE) equation by applying 

GKM. We proved their accuracy by graphically representing these obtained results by aid of Wolfram 

Mathematica 12. Several methods were previously applied by some authors to obtain the solutions of 

the generalized third-order (NLSE) equation. When we check the solutions we found with those of other 

authors, our (15) and (22) solutions are similar to the (19) and (37) solutions given by Lu et al., the (12) 

solution given by Nasreen et al. and the (19) solution given by Seadawy et al. In addition to our (16) and 

(21) solutions are similar to the (17) solution given by Lu et al., the (13) solution given by Nasreen et al. 

and the (42) solution given by Seadawy et al. According to our research our (18) and (19) solutions are 

not given before and are new. 

CONCLUSION 

In this made study, We obtained the soliton solutions of generalized third-order (NLSE) describing 

ultra-short pulses in optical fiber. Thus, GKM, which is easier to apply than other methods, is a very 

effective and reliable method for finding solutions to NLEEs. In addition, the accuracy of the obtained 

solutions has been shown with graphical representations.  
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