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Self-tuning fuzzy logic control of quarter car and bridge interaction model 

Mustafa EROĞLU*1, Mehmet Akif KOÇ2, Recep KOZAN1, İsmail ESEN3 

Abstract 

In this study, active suspension control of the interaction between the bridge can be modeled 

according to the Euler-Bernoulli beam theory, and the quarter car model with three degrees of 

freedom is studied. The active suspension system consists of a spring, damper, and linear 

actuator. The active suspension control is designed using classical PID and self-tuning fuzzy 

PID (STFPID) to reduce the vehicle body's disruptive effects. To determine the performance of 

the designed controllers, two different road profiles with the bridge oscillations caused by the 

bridge flexibility were considered as the disruptive effect of the vehicle. When the simulation 

results were examined in terms of passenger seat displacement and acceleration, the proposed 

STFPID method significantly increased road holding and ride comfort. 

Keywords: Active vibration control, Quarter car model, Fuzzy logic, PID 

 

1. INTRODUCTION 

Suspension systems in vehicles are positioned 

between the wheels and the vehicle body. The 

suspension system generally consists of spring, 

damping, and their connections. The primary 

purpose of the suspension systems is to absorb the 

adverse effects that affect the vehicle. In this 

context, it is studied on the damping of vehicle 

vibrations in the automotive industry and 

academic studies. Car models can generally be 

modeled a quarter, half, and full car models. The 

suspension system can be divided into three 

categories: passive, semi-active, and active 

suspension. In classical passive suspensions, 
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spring and damping coefficients are constant, and 

they are successful to a limited extent. Therefore, 

an active suspension system is preferred for 

efficient damping in different conditions. Vehicle 

vibrations adversely affect passenger comfort and 

road holding. In order to improve these negatively 

affected parameters, active vibration control is 

performed with linear actuators added to the 

passive suspensions system. In the active 

vibration control, the system’s acting force is 

determined and applied by the controller at the 

desired performance. 

There are several approaches to increase the 

performance of the active controller. Many 

researchers have preferred PID control in the last 
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decades, which ease to design and has good 

performance. Güçlü has used a PID controller to 

increase driving comfort in full car models that he 

modeled as linear and nonlinear [1]. In Koç's 

study, an active suspension system with fuzzy 

logic controller has been modeled to reduce 

excessive vibrations in the train component[2]. 

The PID controller can be used alone or together 

with other controllers to improve its performance. 

The most preferred of these is the Fuzzy PID 

controller, where the PID coefficients are 

determined by fuzzy logic. Khodadadi and 

Ghadiri used fuzzy logic self-tuning PID as active 

controllers in the active suspension half-car 

model and compared it with PID, fuzzy logic, and 

H∞ controllers [3].  Swethamarai and Lakshmi 

are designed and compared to show the effect on 

vibration control, thereby increase ride quality for 

a 3 degree of freedom quarter car model[4]. Min 

et al. have performed the fuzzy adaptive output 

feedback control problem for the quarter-vehicle 

active suspension systems with electromagnetic 

actuator[5]. 

In one of their two different studies, Metin and 

Güçlü improved the passenger and driving 

comfort of 11 degrees of freedom rail car models 

with PID and fuzzy logic control separately[6], 

while in other studies, they compared PID and 

PID type fuzzy control in 6 degrees of freedom 

light rail transportation vehicles[7]. In many 

studies, PID and Fuzzy logic were used together 

or as separate controllers. In some studies, a 

hybrid controller that combines PID and fuzzy 

logic controllers have been used. Demir et al. 

ensured the ride comfort of the passenger in the 

half-car model by using a hybrid control 

approach[8]. Again using a hybrid control 

approach, Singh and Aggarwal have performed 

semi-active vibration control of passenger seat 

vibrations in the quarter car model[9]. Paksoy et 

al., using full car model with MR damper, 

performed semi-active control of vehicle 

vibrations with PID, fuzzy logic, and Self Tuning 

Fuzzy Logic controller (STFLC), which is a 

combination of both controllers, and the STFLC 

has given better results in vibration reduction 

performance compared to the other two 

controllers[10]. 

Another controller that draws attention in active 

vibration control studies is sliding mode control 

(SMC), which provides robustness against 

external and uncertain parameters. Zhang et al. 

and Bai and Guo showed that the SMC method 

proposed using a quarter car model achieved a 

good control performance for the active 

suspension system[11,12]. Du et al. proposed a 

terminal SMC approach to deal with the control 

issue for uncertain, full car active suspension 

systems [13]. Singh presented the effectiveness of 

a novel adaptive neuro-fuzzy inference system 

(ANFIS) based super twisting SMC in vibration 

suppression in an active quarter car model's 

suspension system[14]. 

Another control method is the Linear Quadratic 

Regulator (LQR). The LQR control theory, which 

is the optimal control theory, provides a dynamic 

system's best performance at minimum cost. In 

this regard, Ben et al. compared passive, semi-

active, and active suspension systems in terms of 

driving safety and road holding using a half car 

model[15]. They used LQR in the control of the 

active suspension system and indicated that the 

proposed method gives better results against 

random disturbing road input. Agharkakli et al. 

applied the LQR control technique to the active 

suspension system using the quarter car 

model[16]. There has been an improvement in 

driving comfort and better handling, thanks to 

active vibration control against different bump 

inputs. 

In addition, static output feedback control [17] 

and fuzzy logic controller based on particle 

swarm optimization controllers [18] can be used 

in the literature to provide vibration control and 

driving comfort in active suspension systems. 

This study's main purpose is to provide active 

vibration control of the quarter car model with 3 

degrees of freedom to increase the ride comfort 

and road holding by using PID and fuzzy logic. 

When the literature is examined, in studies 

conducted to determine vehicle models' dynamic 

responses, the flexibility of the ground, the 

vehicle passes through is generally neglected. In 

this study, the vehicle's passage over a flexible 

bridge and the disturbance effects on the car from 

the road while passing are also considered. The 

EROĞLU et al.

Self-tuning fuzzy logic control of quarter car and bridge interaction model

Sakarya University Journal of Science 25(5), 1197-1209, 2021 1198



mathematical model of 3 degrees of freedom 

quarter car model and Euler-Bernoulli bridge 

beam is obtained. Then, the first two natural 

frequency and mode shapes of the bridge beam 

were determined. The critical speeds of the 

vehicle corresponding to this natural frequency 

are calculated. The proposed active suspension 

control effect has been analyzed in detail, 

disturbing road input and vehicle speed. In this 

study, with the proposed method, the interaction 

between the flexible bridge and the car can be 

analyzed without the need for costly and time-

consuming experimental studies.  

2. MATHEMATICAL MODELING OF 

QUARTER CAR AND BRIDGE 

In this study, the dynamic interaction between the 

quarter car model with 3 degrees of freedom and 

the bridge beam will be examined. Since the car's 

pitch motion and roll motion are not considered in 

this model, the quarter model is used, and only the 

vertical displacements are examined. The quarter 

car model consists of 3 parts: car body, wheel, and 

passenger seat. The parameters mp, mv, and mw 

represent passenger seat mass, car body mass, and 

wheel mass, respectively. The spring coefficient 

between the passenger seat and the car body is 

defined as kp, the damping coefficient is defined 

as cp, the spring coefficient between the car body 

and the wheel is defined as kv, the damping 

coefficient is defined as cv, and the wheel spring 

coefficient is defined kw. The vertical 

displacement of the passenger seat, the vertical 

displacement of the vehicle body, and the wheel's 

vertical displacement are represented as rp rv rw, 

respectively. Here, the road disturbance is shown 

as rd. The bridge beam's oscillations are also 

added together with the road disturbance as an 

input of the system. The vertical movement of the 

bridge, wb(x,t), represents the displacement of any x 

point of the bridge beam at any t time, regarding 

the point where the vehicle enters the bridge. V 

represents the speed of the vehicle, moving at a 

constant speed. In the model, there is an actuator 

that can apply vertical force between the car body 

and the wheel to increase passenger comfort and 

driving safety. The controller determines this 

actuator force shown as u. 

 

Figure 1 Physical model of the bridge and quarter car model with 3 degrees of freedom.

The natural frequency of vibration modes for the 

flexible bridge beam shown in Figure 1 is given 

as in Equation (1) [19]. 
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In Equation (1), the parameter ωj is the circular 

natural frequency of the bridge beam (rad/s), 

parameter j represents a number of the mode, the 

parameter E represents the elastic modulus 

(N/m2) of the beam, I represent the moment of 

inertia (m4) of the cross-section of the beam. 

Using Equation (1), the natural frequency of a 

simply supported beam in Hz is expressed as 

follows: 

1/22

2
(Hz.),

2 2

j

j

j EI
f

L

w p

p m

æ ö
÷ç ÷= = ç ÷ç ÷çè ø  (2) 

The excitation frequency of the vehicle moving 

on the bridge beam with ωj natural frequency is 

expressed as in Equation (3). Using Equation (2), 

the critical speed of the vehicle is determined as 

in Equation (4). 
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The first two vibration modes of the flexible 

structure modeled as Euler-Bernoulli beam using 

the bridge parameters given in Table 1 are 

f1=0.1852 Hz, f2=0.7407 Hz. On the other hand, 

the vehicle's critical speeds corresponding to 

these frequencies were determined as Vcr1=22.22 

m/s, Vcr2=88.88 m/s. The following assumptions 

were accepted in the quarter vehicle and bridge 

interaction analysis. 

- Bridge beam is modeled as a simply-

supported beam according to Euler-Bernoulli 

beam theory. 

- Quarter car is modeled with 3 degrees of 

freedom. 

- Only one vehicle passes over the bridge at 

constant v velocity. 

- The car wheel is always in contact with the 

bridge beam and does not jump. 

With these assumptions, the kinetic and potential 

energies of the quarter car and bridge interaction 

seen in Figure 1, as well as the damping function, 

are given in the equations below. 
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In the Equations (5-7), μ is the mass of the unit 

length of the beam, and EI is the flexural rigidity 

of the beam. The expression Galerkin for wb(x,t), 

which is the displacement of any x point on the 

beam at time t, is given below. 

Here qi represents the generalized coordinate 

representing the beam element's displacement, φi 

represents the oscillation form obtained with 

boundary conditions of the bridge beam, and φij 

represents Kronecker delta. The conditions of 

orthogonality between these oscillation patterns 

are given in Equation (9). Rayleigh dissipation 

function for the combined car bridge system is 

presented in Equation (7). Here c is the equivalent 

viscous damping coefficient of the bridge beam. 
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Lagrange expression is the distinction between 

kinetic energy and potential energies obtained in 

Equations (5-6). Lagrange expression can be 

defined as (L=Ek-Ep). 
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Generalized coordinates are given as in Equations 

(12-13). 
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The motion equation of the 3 degrees of freedom 

quarter car model seen in Figure 1 was obtained 

using the orthogonality conditions given in 

Equation (9) and the Galerkin’s approach of the 

beam displacement expressed in Equation (8). 

Equations of motion for the passenger seat, wheel, 

and bridge are given below. 
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In Equation (18), the second-order equation of the 

bridge beam is given. Here, fg value shows the 

static forces applied to the bridge beam by the car 

and is calculated as in Equation (19). 

( )g p v wf m m m g= + +  
(19) 

Table 1 Quarter car and bridge parameters 

Parameters of car 

Passenger seat mass (mp) 80 kg 

Car body mass (mv) 350 kg 

Wheel mass(mw) 40 kg 

Stiffness coefficient of primary 

suspension (kp) 

8000 N/m 

Stiffness coefficient of secondary 

suspension (kv) 

20000 N/m 

Tire stiffness (kw) 180000 N/m 

Damping coefficient of primary 

suspension (cp) 

800 Ns/m 

Damping coefficient of secondary 

suspension (cv) 

1550 Ns/m 

Parameters of bridge 

Elasticity module (E) 2.07 GPa 

Bridge length (L) 60 m 

Cross-section inertia moment (I) 0.17 m4 

Mass of unit length (µ) 2000 kg/m 

Equivalent damping coefficient (c) 1750 Ns/m 

The quarter car and bridge model's motion 

equations examined in this study are obtained by 

the Lagrange method given in Equations (10-11). 

A total of 7 second-order differential equations, 3 

belonging to the car and 4 equations belonging to 

the bridge, are created. These equations are 

reduced to 14 first-order differential equations 

with the help of state-space forms. Then, to solve 

these equations, the fourth-order Runge Kutta 

method is used. The dynamic responses that 

occurred during the car's passage over the bridge, 

which can be modeled as the Euler-Bernoulli 

beam, are analyzed with the commercial analysis 

program MATLAB. The parameters of the car 

and bridge beam for analysis are given in Table 1. 

In this study, an active suspension system is used 

to increase passenger comfort, which is adversely 

affected by road irregularity. Road disturbances 

that adversely affect the vehicle can be in different 

geometric shapes. In this study, two different road 

disturbances are added to the system as an input. 

These are in the form of hump and sinus. 

3. DESIGN OF CONTROLLER 

Control algorithms designed for active and semi-

active suspension systems have been used 
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extensively in recent years. Active suspension 

systems are created by adding an actuator to 

passive suspension systems. The actuator 

represented by u in Figure 1 provides the 

necessary vertical force to the system. The 

controller force is given in Equations (16-17). In 

this study, car body displacement is used in 

system feedback to provide the desired 

performance. Here, car body displacement is 

expected to be zero displacements. 

Figure 2 A simple controller design. 

In this study, two different controller designs have 

been made and compared to reduce passenger seat 

vibrations and displacement in the quarter car 

model. The first of these is the classic PID 

controller, which is extensively used in the 

industry and provides easiness of design. In the 

classical PID controller, kp, ki, and kd gain 

parameter values are constant and does not 

change. The other controller is the Self-tuning 

Fuzzy PID (STFPID) controller, which allows the 

classical PID parameters to be adjusted according 

to stabilization. 

3.1. PID Controller 

The type of controller with the broadest usage 

area in the literature is the (Proportional-Integral-

Derivative) PID type controller. The PID 

controller generates a control signal using the 

error signal of the system. The PID controller is 

expressed by the equation given in (20). 

Figure 3 A simple controller design. 

0

( )
( ) ( )   

( ) ( ) ( )

t

p i d

r v

de t
u k e t k e t dt k

dt

e t r t r t

= + +

= −

  (20) 

In the above equation, u, e, rr, and rv represent the 

control force, error signal, a reference 

displacement value, and actual car body 

displacement. The coefficients kp, ki, and kd 

represent the proportional gain, integral gain, and 

derivative gain of the PID controller. 

There are several methods for determining PID 

controller coefficients. The well-known of these 

methods is the Ziegler-Nichols method. In this 

study, the parameters kp=5*104, ki=1*104, 

kd=0.5*104 are chosen to provide the desired 

settling time and short rising time. 

The proportional gain in the PID control system 

decreases the rise time of the system, but it may 

create steady-state error. Integral control 

negatively affects the transient response while 

eliminating the steady-state error. Derivative 

control can predict the future state of the system 

and correct the transient response. While these 

controllers can be used alone, they are often used 

together to increase system stability. 

3.2. Self-tuning Fuzzy PID controller 

In this section, the self-tuning fuzzy PID 

(STFPID) controller, which allows the PID gains 

that determine the controller force to be updated 

within the system requirements' scope, will be 

examined. The control gains determined in 

classical PID control sometimes cannot provide 

the desired performance while controlling the 
system. Therefore, fuzzy logic is used to provide 

the appropriate gains while maintaining the 

system. In this study, the STFPID controller 

designed to control the vibration caused by the 

interaction between the quarter vehicle model and 

the bridge is shown in Figure 4. 

Figure 4 Structure of STFPID control. 
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The concept of fuzzy logic, which determines 

how to control a system with the intuitive 

knowledge of people, was first introduced by 

Lotfi Zadeh in 1965 [20]. Fuzzy logic consists of 

3 different design stages: fuzzification, rule base, 

and defuzzification. In the fuzzification interface, 

appropriate linguistic variables are defined for the 

system inputs examined. The rule base is created 

by making use of expert experience. In the 

defuzzification interface, a precise control signal 

is provided to the active controller using the first 

two interfaces. 

While the fuzzy logic shown in Figure 4 uses the 

vertical displacement of the vehicle body (

r ve r r= − ) and its derivative ( r ve r r= − ) as input, 

it gives the PID parameters as output. Here, 

reference values ( ,r rr r ) are desired to be zero. 

 

Figure 5 The membership functions of input and 

output parameters. 

The membership functions created for the 

(STFPID) controller used in this study are shown 

in Figure 5. As seen in the figure, input values 

have been represented by five membership 

functions, namely NL (Negative Large), NS 

(Negative Small), ZE (Zero), PS (Positive Small), 

and PL (Positive Large). In comparison, output 

values have been represented by seven 

membership functions, namely VS (Very Small), 

S (Small), MS (Middle Small), M (Medium), ML 

(Medium Large), L (Large), and VL (Very 

Large). All membership functions are selected in 

triangular geometry. 

In the input variables given in Figure 5, the 

membership function of the error is selected in the 

intervals [-0.03, 0.03], while the change of the 

error was selected in the intervals of [-0.2, 0.2]. 

On the other hand, output variables kp, ki, and kd 

are determined in the ranges [0, 105], [0, 2 * 104], 

and [0, 104], respectively. The rule base defining 

the relationship between input and output of these 

membership functions is given in Table (2-4). 

Table 2 Rule base for the kp 

𝒌𝒑 

𝒅𝒆(𝒕)

𝒅𝒕
 

NL NS ZE PS PL 

𝒆(𝒕) 

NL VL VL VL VL VL 

NS VL VL M VS VS 

ZE VL ML M ML VL 

PS MS M VL VL VL 

PL ML L VL VL VL 

 

Table 3 Rule base for the ki 

𝒌𝒊 

𝒅𝒆(𝒕)

𝒅𝒕
 

NL NS ZE PS PL 

𝒆(𝒕) 

NL VL VL VL VL VL 
NS VL VL ML VS VS 
ZE VL ML M ML VL 
PS MS M VL VL VL 
PL ML L VL VL VL 

 

Table 4 Rule base for the kd 

𝒌𝒅 

𝒅𝒆(𝒕)

𝒅𝒕
 

NL NS ZE PS PL 

𝒆(𝒕) 

NL VL VL VL VL VL 
NS VL VL ML S VS 
ZE VL L L L VL 
PS S M VL VL VL 
PL VL VL VL VL VL 

4. SIMULATION RESULTS AND 

DISCUSSION 

In this section, the interaction between the quarter 

car model with 3 degrees of freedom and the 

bridge that can be modeled according to the 

simple supported Euler-Bernoulli beam theorem 
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is examined. For the simulation model, the 

differential equations given in Equations (15-18) 

Moreover, the parameters given in Table 1 are 

taken into account. In the quarter car model, the 

bridge beam's oscillation is added with two 

different road inputs as input for the system. 

4.1. Bridge displacement input 

The bridge is forced to vibrate by the vehicle 

passing over it at a certain speed. Bridge 

vibrations also affect the dynamic behavior of the 

vehicle. In this section, only the bridge beam's 

oscillations were added to the quarter car as input, 

and active suspension control was not applied. 

The parameters of the bridge examined in the 

simulation are given in Table 1. The modes of the 

bridge beam, resonance frequencies, and critical 

speeds of the vehicle are provided in section 1. 

In Figure 6, four different velocities, V=54, 

V=108, V=162, V=216 km/h, are examined. In 

Figure 6a, when the displacement of the bridge 

beam midpoint is reviewed, it is seen that the 

midpoint of the bridge beam makes more 

displacement at lower speeds of the vehicle. 

However, as vehicle speed increases, it takes 

more time for bridge oscillations to damping. In 

Figures 6b-c, the passenger seat displacement and 

acceleration values are given, respectively. While 

the passenger seat displacement values are similar 

to the bridge midpoint's displacement, the 

acceleration values and oscillations increase as 

the speed increases. It is seen that the maximum 

displacement time of the bridge and the passenger 

seat rises as the vehicle's speed increases. It is also 

observed that passenger vertical acceleration 

values due to bridge flexibility exceed the 

accepted comfort standards with the increase of 

vehicle speed. According to the ISO 2631 

standard, the low comfort acceleration value that 

affects the human being is 0.49 m/s2, and the 

medium comfortable acceleration value is 0.37 

m/s2 [21]. 

Figure 7a shows the displacement of the midpoint 

of the bridge beam, the vertical displacement of 

the passenger seat, and the passenger seat's 

vertical acceleration when the vehicle speed 

changes from 1 m/s to 100 m/s in 1 m/s interval. 

 

Figure 6 Dynamic responses of quarter car for bridge 

oscillation (a) Bridge midpoint displacement (b) 

Passenger displacement (c) Passenger acceleration. 

Figure 7 The effect of car velocity upon dynamic 

response (a) Bridge midpoint displacement (b) 

Passenger displacement (c) Passenger acceleration. 

In Figure 7a, the maximum displacement of the 

bridge midpoint is determined as 0.3 m when the 

vehicle speed is 15 m/s. In Figure 7b, if the 

vehicle speed is approximately 50 m/s, the 

passenger seat displacement takes its maximum 

value. At more or less than this speed, the 

maximum displacement values decrease. In 

Figure 7c, as the vehicle speed increases, the 

passenger seat's acceleration values increase, and 

the acceleration values occurring at speeds above 
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40 m/s exceed the vibration values affecting 

humans according to ISO 2631 standard. 

4.2. Sinusoidal input 

As seen in Figure 8, a sinusoidal input with an 

amplitude of 0.02 m and a frequency of 3.14 rad/s 

is applied to the quarter car model for the vehicle's 

passage across the bridge of 60 m length. 

Sinusoidal input and bridge displacement input is 

given as disturbing input to the quarter car. The 

active controller's performance has been 

investigated using PID and STFPID controllers 

for passenger seat displacement and acceleration 

against disturbance input. 

Figure 8. Sinusoidal input. 

Figure 9 Error signal of car body for a sinusoidal 

input. 

In order to increase passenger comfort in the 3 

degree of freedom vehicle model, the vertical 

displacements of the vehicle body are aimed to be 

zero. Therefore, the control signal is generated by 

using the vertical displacements of the vehicle 

body. In Figure 9, the error signal graph obtained 

at different vehicle speeds for the sinusoidal input 

is given. According to the graph, when PID and 

STFPID controllers are used, it is seen that the 

error signal value of the vehicle body is 

considerably reduced compared to the passive 

control. 

Figure 10 The response of passenger seat 

displacement for a sinusoidal input. 

Figure 11 Response of passenger seat acceleration for 

sinusoidal input. 

Figures 10-11 shows the effect of four different 

vehicle speeds, 30, 60, 90, and 120 km/h, on 

passenger seat displacement and acceleration. 

According to the graphics, it is seen that the 

STFPID controller gives better results than both 

the PID controller and the uncontrolled system. 

While the displacement values were relatively 

high in the simulation studies without a controller, 
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they decreased thanks to the PID, especially the 

STFPID controller. Also, in Figure 11, the 

passenger seat's acceleration values exceed the 

acceleration values affecting humans according to 

ISO 2631 standard. Figure 12 shows the control 

forces generated for STFPID and PID controllers. 

Figure 12 Control force for hump input. 

4.3. Hump input 

When the quarter car model with 3 degrees of 

freedom in Figure 1 passes over the bridge, it is 

exposed to two bumps with a height of 10 cm and 

a width of 5 m. These hump inputs shown in 

Figure 13 are located 20 m and 50 m away from 

the bridge's left reference. The equations of these 

inputs are determined according to the height and 

width of the hump and the vehicle's speed and are 

calculated in Equation (21) Here, the expression 

Y represents the height of the hump, ω represents 

the angular frequency, and rd represents the value 

of the hump at time t. T time is calculated as the 

time the vehicle passes the hump. 

sin( ),             0 t T,           T=d

L
r Y t

V
=    (21) 

In this case, the frequency of the sine wave given 

for the hump is as follows. 

V

L


 =  (22) 

Figure 13 Hump input. 

Figure 14 Error signal of car body for hump input. 

Figure 15 The response of passenger seat 

displacement for hump input. 

In Figure 14, the error signal graph of the vehicle 

body is given for the hump input. According to 

the graph, if a controller is used, as in Figure 9, 

the error signal of the vehicle body is considerably 

reduced. In Figures 15-16, the controllers' 

performance proposed in this study for the hump 

input in passenger seat displacement and 
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acceleration values is examined. Like the 

sinusoidal input, four different speeds were 

evaluated and compared with STFPID and PID 

controllers. If the vehicle speed is 30 km/h, it is 

seen that the vertical displacement of the 

passenger seat is approximately 0.1 m, while it is 

about 0.05 m at other speeds. Thanks to the active 

suspension control, these relatively high 

displacement values have been reduced to very 

reasonable levels. In the case of increased vehicle 

speed, the passenger seat's vertical acceleration 

values also increase considerably. In Figure 17, 

both controller forces generated corresponding to 

the input values with hump and bridge 

displacement are given. 

Figure 16 The response of passenger seat acceleration 

for hump input. 

Figure 17 Control force for hump input. 

5. CONCLUSION 

In this study, it is investigated that disturbing road 

irregularities, which adversely affect the driving 

safety and passenger comfort parameters of the 

quarter car model, will be absorbed by the active 

suspension system. Modeled 3 degrees of the 

freedom car model were examined with 

uncontrolled and STFPID and PID type 

controllers. Uncontrolled and controlled systems 

are compared with each other using different 

system inputs. In the simulation results, it was 

determined that the STFPID controller performs 

much better than the others. 

Table 5 RMS results for error signal (e(t)=rr(t)-rv(t)) 

 Hump input (m) Sinusoidal input (m) 

30 km/h 60 km/h 90 km/h 120 km/h 30 km/h 60 km/h 90 km/h 120 km/h 

Passive 0.0227 0.0189 0.0180 0.0163 0.0192 0.0156 0.0176 0.0181 

PID 0.0055 0.0050 0.0048 0.0046 0.0052 0.0041 0.0045 0.0044 

Self-tuning FPID 0.0039 0.0036 0.0039 0.0040 0.0038 0.0033 0.0036 0.0036 

Improvement  27.96% 28.34% 18.72% 12.55% 27.56% 18.77% 18.93% 17.49% 

Table 6. RMS results for passenger displacement 

 Hump input (m) Sinusoidal input (m) 

30 km/h 60 km/h 90 km/h 120 km/h 30 km/h 60 km/h 90 km/h 120 km/h 

Passive 0.0256 0.0205 0.0208 0.0167 0.0208 0.0178 0.0207 0.0234 

PID 0.0064 0.0056 0.005 0.0047 0.0054 0.0043 0.0049 0.0049 

Self-tuning FPID 0.0045 0.0041 0.0038 0.0037 0.0039 0.0035 0.0039 0.004 

Improvement  29.3% 27.4% 24.3% 21.7% 28% 19.2% 20% 19.1% 
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Table 7 RMS results for passenger acceleration 

 Hump input (m/s2) Sinusoidal input (m/s2) 

30 km/h 60 km/h 90 km/h 120 km/h 30 km/h 60 km/h 90 km/h 120 km/h 

Passive 0.5161 0.5599 0.6503 0.6322 0.1345 0.1638 0.2071 0.3004 

PID 0.2288 0.3865 0.5685 0.5327 0.0357 0.0567 0.0733 0.0872 

Self-tuning FPID 0.1667 0.2987 0.3858 0.5021 0.0298 0.0493 0.06 0.0631 

Improvement 27.2% 22.7% 17.6% 5.7% 16.3% 13.1% 17.2% 27.6% 

 

This study's primary purpose is to reduce the 

passenger seat's displacement and acceleration 

values through controllers. In this context, error 

signal of car body, the passenger seat 

displacement, and acceleration values are 

compared under different speeds and disturbance 

inputs in Table (5-7). Root mean square (RMS) 

values of the uncontrolled results with both 

controllers are given in the table for comparison. 

After comparing the classical PID controller and 

the STFPID controller, the simulation results 

show that the STFPID controller has achieved 

more than 20% improvement over the classic PID 

controller. 
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