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Abstract

In this work, we investigate the asymptotic stability of the zero solution for Caputo-Hadamard fractional
dynamic equations on a time scale. We will make use of the Krasnoselskii �xed point theorem in a weighted
Banach space to show new stability results.
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1. Introduction

Fractional dynamic equations without and with delay arise from a variety of applications including in
various �elds of science and engineering. In particular, problems concerning qualitative analysis of fractional
dynamic equations have received the attention of many authors, see [1]-[27], [29]-[31] and the references
therein.

Fractional dynamic equations involving Riemann-Liouville and Caputo∆-fractional derivatives have been
studied extensively by several researchers, see [2], [11], [30], [31]. However, the literature on Hadamard
dynamic equations is not yet as enriched. The ∆-fractional derivative due to Hadamard di�ers from the
aforementioned derivatives in the sense that the kernel of the integral in the de�nition of Hadamard ∆-
fractional derivative contains a logarithmic function of arbitrary exponent, see [21].

In [11], Belaid et al. investigated the following Caputo fractional dynamic equation{
C
TD

α
0+x (t) = f (t, x (t)) , t ∈ [0,∞)T ,

x (0) = x0, x
△ (0) = x1,
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where C
TD

α
0+ is the Caputo fractional derivative on T of order 1 < α < 2. By employing the Krasnoselskii

�xed point theorem, the asymptotic stability of the zero solution has been established.
In this paper, we extend the results in [11] by proving the stability and asymptotic stability of the zero

solution for the following Caputo-Hadamard fractional dynamic equation{
CH
T Dα

1+x (t) = f (t, x (t)) , t ∈ [1,∞)T ,
x (1) = x0, x

△ (1) = x1,
(1.1)

where T is an unbounded above time scale with 1 ∈ T, CH
T Dα

1+ is the Caputo-Hadamard ∆-fractional
derivative on T of order 1 < α < 2, x0, x1 ∈ R, f : [1,∞)T × R → R is a rd-continuous function with
f (t, 0) ≡ 0. To prove the stability and asymptotic stability of the trivial solution, we transform (1.1) into
an equivalent integral equation and then use the Krasnoselskii �xed point theorem. The obtained integral
equation is the sum of two mappings, one is a compact and the other is a contraction.

2. Preliminaries

In this section, We use Crd ([1,∞)T) for a space of rd-continuous functions where [1,∞)T is an interval.

De�nition 2.1 ([13]). A time scale T is an arbitrary nonempty closed subset of the real numbers.

De�nition 2.2 ([13]). For t ∈ T, the forward jump operator σ : T → T is de�ned by

σ (t) = inf {s ∈ T : s > t} .

De�nition 2.3 ([13]). A function f : T → R is rd-continuous provided that it is continuous at all right-dense

points of T and its left-sided limits exist at left-dense points of T. The set of all rd-continuous functions on

T is denoted by Crd(T).

De�nition 2.4 ([13]). Let t ∈ T and f : T → R be a function. Then ∆-derivative of f at the point t is
de�ned to be the number f∆ (t) with the property that for each ε > 0 there exists a neighborhood U of t in T
such that ∣∣f (σ (t))− f (s)− f∆ (t) [σ (t)− s]

∣∣ ≤ ε|σ (t)− s| for all s ∈ U.

De�nition 2.5 ([13]). A function F : [a, b]T → R is called a ∆-antiderivative of a function F : [a, b]T → R
provided that F is rd-continuous on [a, b]T and ∆-di�erentiable on [a, b)T and F∆(t) = f(t) for all t ∈ [a, b)T.
Then we de�ne the ∆-integral from a to b of f by∫ b

a
f (t)∆t = F (b)− F (a) .

Remark 2.6. All rd-continuous bounded functions on [a, b)T are delta integrable from a to b.

De�nition 2.7 ([2, 21]). Assume T is a time scale, [1, b]T ⊆ T and the function x is an integrable function

on [1, b]T, then Hadamard ∆-fractional integral of x is de�ned by

H
T Iα1+x (t) =

1

Γ (α)

∫ t

1

(
log

t

s

)α−1

x (s)
∆s

s
,

where Γ (α) is the Gamma function.

De�nition 2.8 ([2, 21]). Let x : T → R be a function. The Caputo-Hadamard ∆-fractional derivative of x
is de�ned by

CH
T Dα

1+x (t) =
1

Γ (n− α)

∫ t

1

(
log

t

s

)n−α−1 (
sx∆

)n
(s)

∆s

s
,

where n = [α] + 1 and [α] denotes the integer of α.
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Lemma 2.9 ([2, 21]). Let 0 < α < 1. Suppose x ∈ Crd ([1,∞)T) and x
△ exists almost every where on any

bounded interval of [1,∞)T. Then,

CH
T Iα1+

CH
T Dα

1+x (t) = x (t)− x (1) .

Remark 2.10. From De�nitions 2.7, 2.8 and Lemma 2.9, it is easy to see that

(1) Let 0 < α < 1. If x is rd-continuous on [1,∞)T, then H
T Dα

1+
CH
T Iα1+x (t) = x (t) holds for all

t ∈ [1,∞)T.
(2) The Caputo-Hadamard ∆-fractional derivative of a constant is equal to zero.

In our discussion, the following Banach space plays a fundamental role. Let h : [0,∞) → [1,+∞) be a
strictly increasing continuous function with h (0) = 1, h (log t) → ∞ as t → ∞, h (log s)h

(
log t

s

)
≤ h (log t)

for all 1 ≤ s ≤ t <∞. Let

E =

{
x ∈ Crd ([1,∞)T) : sup

t∈[1,∞)T

|x (t)| /h (log t) <∞

}
.

Then, E is a Banach space with the norm ∥x∥ = supt∈[1,∞)T

|x(t)|
h(log t) . For more properties of this Banach

space, see [26]. Also, let
∥φ∥t = max {|φ (s)| : 1 ≤ s ≤ t} ,

for any t ∈ [1,∞)T, φ ∈ Crd ([1,∞)T) and for any ε > 0 let ℑ (ε) = {x ∈ E : ∥x∥ ≤ ε}.

Lemma 2.11. Let r ∈ Crd ([1,∞)T). Then x ∈ Crd ([1,∞)T) is a solution of the following Cauchy type

problem {
H
T Dα

1+x (t) = r (t) , t ∈ [1,∞)T , 1 < α < 2,
x (1) = x0, x

△ (1) = x1,
(2.1)

if and only if x is a solution of the following Cauchy type problem{
x△ (t) =H

T Iα−1
1+

r (t) + x1,
x (1) = x0.

(2.2)

Proof. Clearly, if ψ ∈ Crd ([1,∞)T), then
H
T Iγ

1+
ψ (1) = 0 with 0 < γ < 1.

1) Let x ∈ Crd ([1,∞)T) be a solution of (2.1). For any t ∈ [1,∞)T, De�nition 2.8 shows that

H
T Dα

1+x (t) =
H
T Dα−1

1+
x△ (t) = r (t) .

By using Lemma 2.9, we have

x△ (t) = x△ (1) +H
T Iα−1

1+
r (t) =H

T Iα−1
1+

r (t) + x1,

which means that x is a solution of (2.2).
2) Let x be a solution of (2.2). For any t ∈ [1,∞)T, by Remark 2.10, it is easy to show that

H
T Dα

1+x (t) =
H
T Dα−1

1+
x△ (t) =H

T Dα−1
1+

H
T Iα−1

1+
r (t) +H

T Dα−1
1+

x1 = r (t) .

In addition, note that r ∈ Crd ([1,∞)T), we have

x△ (1) =H
T Iα−1

1+
r (1) + x1 = x1.
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Lemma 2.12. Let k ∈ (0,∞). Then x ∈ Crd ([1,∞)T) is a solution of (1.1) if and only if

x(t) = x0e⊖k (t, 1) +
1− e⊖k (t, 1)

k
x1 + k

∫ t

1
e⊖k (t, s)x

σ (s)∆s

+
1

Γ(α− 1)

∫ t

1

∫ t

u
e⊖k (t, s)

(
log

s

u

)α−2
∆sf (u, x (u))

∆u

u
. (2.3)

Proof. Let x ∈ Crd ([1,∞)T) be a solution of (1.1). By Lemma 2.11, we get{
x△(t) =H

T Iα1+ (f (t, x(t))) + x1, t ∈ [1,∞)T ,
x(1) = x0, t ∈ [1,∞)T .

Then {
x△(t) = 1

Γ(α−1)

∫ t
1 (log

t
s)

α−2f(s, x(s))∆s
s + x1,

x(1) = x0, t ∈ [1,∞)T .
(2.4)

So, we can write (2.4) as{
x△(t) + kxσ (t) = kxσ (t) + 1

Γ(α−1)

∫ t
1 (log

t
s)

α−2f(s, x(s))∆s
s + x1,

x(1) = x0, t ∈ [1,∞)T .

We obtain (2.3) by using the variation of constants formula. The converse follows easily because each step
is reversible. This completes the proof.

De�nition 2.13. The zero solution x = 0 of (1.1) is said to be

(i) stable in Banach space E, if for every ε > 0, there is a δ = δ (ε) > 0 such that |x0|+ |x1| ≤ δ implies

that the solution x (t) = x (t, x0, x1) exists for all t ∈ [1,∞)T and satis�es ∥x∥ ≤ ε.
(ii) asymptotically stable, if it is stable in Banach space E and there is a number σ > 0 such that

|x0|+ |x1| ≤ σ implies limt→∞ ∥x (t)∥ = 0.

Lastly in this section, we state the Krasnoselskii �xed point theorem which enables us to prove the
stability and asymptotic stability of the trivial solution to (1.1).

Theorem 2.14 (Krasnoselskii [28]). Let Ω be a closed convex nonempty subset of a Banach space (S, ∥.∥).
Assume that A and B map Ω into S such that

(i) Ax+By ∈ Ω for all x, y ∈ Ω,
(ii) A is continuous and AΩ is contained in a compact set of S,
(iii) B is a contraction with constant l < 1.

Then, there is a x ∈ Ω with Ax+Bx = x.

The following modi�ed compactness criterion is needed in order to show (ii).

Theorem 2.15 ([26]). Let M be a subset of the Banach space E. Then, M is relatively compact in E if the

following conditions are satis�ed

(i) {x (t) /h (log t) : x ∈ M} is uniformly bounded,

(ii) {x (t) /h (log t) : x ∈ M} is equicontinuous on any compact interval of [1,∞)T,
(iii) {x (t) /h (log t) : x ∈ M} is equiconvergent at in�nity i.e. for any given ε > 0, there is a T0 > 1

such that for all x ∈ M and t1, t2 > T0, if holds

|x (t2) /h (log t2)− x (t1) /h (log t1)| < ε.
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3. Main results

We introduce the following hypotheses.
(h1) There is a constant β1 ∈ (0, 1) such that

e⊖k (t, 1) /h(log t) ∈ BC ([1,∞)T) ∩ L
1
△ ([1,∞)T) ,

k

∫ t

1
e⊖k (t, 1) /h(log u)∆u ≤ β1 < 1. (3.1)

(h2) There exist constants η > 0, β2 ∈ (0, 1− β1) and a continuous function f̃ : [1,∞)T × (0, η] → R+

such that
|f(t, υh(log t))|

h(log t)
≤ f̃(t, |υ|), (3.2)

holds for all t ∈ [1,∞)T , 0 < |υ| ≤ η and

sup
t∈[1,∞)T

∫ t

1

K(log t
u)

h(log t
u)

f̃(u, r)

r

∆u

u
≤ β2 < 1− β1, (3.3)

holds for every 0 < r ≤ η, where f̃(t, r) is nondecreasing in r for �xed t, f̃(t, r) ∈ L1 ([1,∞)T) in t for �xed
r, and

K(log
t

u
) =

{
1

Γ(α−1)

∫ t
u e⊖k (t, s) (log

s
u)

α−2∆s, log t
u ≥ 0,

0, log t
u < 0.

(3.4)

Theorem 3.1. Assume that (h1) and (h2) hold. Then, the zero solution x = 0 of (1.1) is stable in Banach

space E.

Proof. First, for any given ε > 0, we show the existence of δ > 0 such that

|x0|+ |x1| < δ implies ∥x∥ ≤ ε.

By (3.1), there is a constant M1 > 0 such that

e⊖k (t, 1)

h(log t)
≤M1. (3.5)

Let 0 < δ ≤ (1−β1−β2)k
M1k+1+M1

ε. Consider the closed convex nonempty subset ℑ (ε) ⊆ E, for t ∈ [1,∞)T, we denote
two mapping A and B on ℑ (ε) as follows

(Ax) (t) =
1

Γ(α− 1)

∫ t

1

∫ t

u
e⊖k (t, s)

(
log

s

u

)α−2
∆sf(u, x(u))

∆u

u

=

∫ t

1
K

(
log

t

u

)
f(u, x(u))

∆u

u
, (3.6)

and

(Bx) (t) = e⊖k (t, 1)x0 +
1− e⊖k (t, 1)

k
x1 + k

∫ t

1
e⊖k (t, s)x

σ(s)∆s. (3.7)

Obviously for x ∈ ℑ (ε), both Ax and Bx are rd-continuous functions on [1,∞)T. In addition, for x ∈ ℑ (ε),
by (3.1)-(3.3) for any t ∈ [1,∞)T, we get

|(Ax) (t)|
h (log t)

≤
∫ t

1

K(log t
u)

h(log t
u)

|f(u, x(u))|
h(log u)

∆u

u

≤
∫ t

1

K(log t
u)

h(log t
u)
f̃

(
u,

|x(u)|
h(log u)

)
∆u

u

≤ β2 ∥x∥ ≤ β2ε <∞, (3.8)
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and

|(Bx) (t)|
h (log t)

=

∣∣∣∣e⊖k (t, 1)

h (log t)
x0 +

1− e⊖k (t, 1)

kh (log t)
x1 + k

∫ t

1

e⊖k (t, s)

h (log t)
xσ(s)∆s

∣∣∣∣
≤M1 |x0|+

1 +M1

k
|x1|+ k

∫ ∞

1

e⊖k (u, 1)

h(log u)
∆u ∥x∥

≤M1 |x0|+
1 +M1

k
|x1|+ β1ε <∞. (3.9)

Then Aℑ (ε) ⊆ E and Bℑ (ε) ⊆ E. Next, we shall use Theorem 2.14 to show there is a �xed point of the
operator A+B in ℑ (ε). Here, we divide the proof into three steps.

Step1. We show that Ax+By ∈ ℑ (ε) for all x, y ∈ ℑ (ε).
For any x, y ∈ ℑ (ε), by (3.8) and (3.9), we get that

sup
t∈[1,∞)T

|(Ax) (t) + (By) (t)|
h(log t)

= sup
t∈[1,∞)T

{∣∣∣∣e⊖k (t, 1)

h(log t)
x0 +

1− e⊖k (t, 1)

kh(log t)
x1 + k

∫ t

1

e⊖k (t, s)

h(log t)
yσ(s)∆s

+

∫ t

1

K(log t
u)

h(log t)
f(u, x(u))

∆u

u

∣∣∣∣}
≤M1 |x0|+

1 +M1

k
|x1|+ k

∫ ∞

1

e⊖k (t, 1)

h(log u)
∆u ∥y∥+ β2 ∥x∥

≤ M1k + 1 +M1

k
δ + β1ε+ β2ε ≤ ε,

which means that Ax+By ∈ ℑ (ε) for all x, y ∈ ℑ (ε).
Step 2. It is easy to prove that A is continuous. Now, we only show that Aℑ (ε) is a relatively compact in

E. By (3.8), we obtain that {x(t)/h(log t) : x ∈ ℑ (ε)} is uniformly bounded in E. Also, a classical theorem
states the fact that the convolution of an L1

△-function with a function tending to zero, does also tend to

zero. Then we conclude that for
(
log t

u

)
≥ 0, we get

0 ≤ lim
t→∞

K(log t
u)

h(log t
u)

≤ lim
t→∞

1

Γ(α− 1)

∫ t

u

e⊖k (t, s)

h(log t
s)

(log s
u)

α−2

h(log s
u)

∆s

≤ lim
t→∞

1

Γ(α− 1)

∫ t

1

e⊖k (t, us)

h(log t
us)

(log s)α−2

h(log s)
u∆s = 0, (3.10)

because limt→∞
(log t)α−2

h(log t) = 0. Together with the continuity of K and h, we obtain that there is a constant
M2 > 0 such that ∣∣∣∣∣K

(
log t

u

)
h(log t

u)

∣∣∣∣∣ ≤M2, (3.11)

and for any T0 ∈ [1,∞)T, the function K(log t
u)h(log u)/h(log t) is uniformly continuous on {(t, u) : 1 ≤ u ≤
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t ≤ T0}. For any t1, t2 ∈ [1, T0] ∩ T, t1 < t2, we get∣∣∣∣(Ax) (t2)h(log t2)
− (Ax) (t1)

h(log t1)

∣∣∣∣
=

∣∣∣∣∣
∫ t2

1

K(log t2
u )

h(log t2)
f(u, x(u))

∆u

u
−
∫ t1

1

K(log t1
u )

h(log t1)
f(u, x(u))

∆u

u

∣∣∣∣∣
≤

∫ t1

1

∣∣∣∣∣K(log t2
u )

h(log t2)
−
K(log t1

u )

h(log t1)

∣∣∣∣∣ |f(u, x(u))| ∆uu
+

∫ t2

t1

K(log t2
u )

h(log t2
u )

f̃ (u, ε)
∆u

u

≤
∫ t1

1

∣∣∣∣∣K(log t2
u )h(log u)

h(log t2)
−
K(log t1

u )h(log u)

h(log t1)

∣∣∣∣∣ f̃ (u, ε) ∆uu
+M2

∫ t2

t1

f̃ (u, ε)
∆u

u
→ 0,

as t2 → t1, which implies that {x(t)/h(log t) : x ∈ ℑ (ε)} is equicontinuous on any compact interval of [1,∞)T.
By using Theorem 2.15, in order to prove that Aℑ (ε) is a relatively compact set of E, we only need to show
that {x(t)/h(log t) : x ∈ ℑ (ε)} is equiconvergent at in�nity. In fact, for any ε1 > 0, there is a L > 1 such
that

M2

∫ ∞

L
f̃ (u, ε)

∆u

u
≤ ε1

3
.

By (3.10), we obtain that

lim
t→∞

sup
u∈[1,L]T

K(log t
u)

h(log t
u)

≤ max

{
lim
t→∞

K
(
log t

L

)
h
(
log t

L

) , lim
t→∞

K(log t)

h(log t)

}
= 0.

So, there is T > L such that t1, t2 ≥ T , we get

sup
u∈[1,L]T

∣∣∣∣∣K(log t2
u )h(log u)

h(log t2)
−
K(log t1

u )h(log u)

h(log t1)

∣∣∣∣∣
≤ sup

u∈[1,L]T

∣∣∣∣∣K(log t2
u )

h(log t2
u )

∣∣∣∣∣+ sup
u∈[1,L]T

∣∣∣∣∣K(log t1
u )

h(log t1
u )

∣∣∣∣∣
≤ ε1

3

(∫ ∞

1
f̃ (u, ε)

∆u

u

)−1

.

Thus, for t1, t2 ≥ T , ∣∣∣∣(Ax) (t2)h(log t2)
− (Ax) (t1)

h(log t1)

∣∣∣∣
=

∣∣∣∣∣
∫ t2

1

K(log t2
u )

h(log t2)
f(u, x(u))

∆u

u
−
∫ t1

1

K(log t1
u )

h(log t1)
f(u, x(u))

∆u

u

∣∣∣∣∣
≤

∫ L

1

∣∣∣∣∣K(log t2
u )h(log u)

h(log t2)
−
K(log t1

u )h(log u)

h(log t1)

∣∣∣∣∣ f̃ (u, ε) ∆uu
+

∫ t2

L

K(log t2
u )

h(log t2
u )

f̃ (u, ε)
∆u

u
+

∫ t1

L

K(log t1
u )

h(log t1
u )

f̃ (u, ε)
∆u

u

≤ ε1
3

+ 2M2

∫ ∞

L
f̃ (u, ε)

∆u

u
≤ ε1.
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Hence, the required conclusion is true.
Step 3. We prove that B : ℑ (ε) → E is a contraction mapping.

For any x, y ∈ ℑ (ε), by (3.1), we get that

sup
t∈[1,∞)T

∣∣∣∣(Bx) (t)h(log t)
− (By) (t)

h(log t)

∣∣∣∣
= sup

t∈[1,∞)T

{∣∣∣∣∣k
∫ t
1 e⊖k (t, u)x

σ(u)∆u

h(log t)
−
k
∫ t
1 e⊖k (t, u) y

σ(u)∆u

h(log t)

∣∣∣∣∣
}

≤ sup
t∈[1,∞)T

k

∫ t

1

e⊖k (t, u)

h(log t
u)

|xσ(u)− yσ(u)|
h(log u)

∆u

≤ k

∫ t

1

e⊖k (t, u)

h(log t
u)

∆u ∥x− y∥

≤ β1 ∥x− y∥ .

By using Theorem 2.14, we know that there is a �xed point of the operator A+B in ℑ (ε). Finally, for any

ε2 > 0, if 0 < δ1 ≤ (1−β1−β2)k
kM1+1+M1

ε2, then |x0|+ |x1| ≤ δ1 means that

∥x∥ = sup
t∈[1,∞)T

{∣∣∣∣e⊖k (t, 1)

h(log t)
x0 +

1− e⊖k (t, 1)

kh(log t)
x1 + k

∫ t

1

e⊖k (t, s)

h(log t)
xσ(u)∆u

+

∫ t

1

K(log t
u)

h(log t)
f (u, x(u))

∆u

u

∣∣∣∣}
≤ sup

t∈[1,∞)T

{
e⊖k (t, 1)

h(log t)
|x0|+

|1− e⊖k (t, 1)|
kh(log t)

|x1|+ k

∫ t

1

e⊖k (t, u) |xσ(u)|
h(log t

u)h(log u)
∆u

+

∫ t

1

K(log t
u)

h(log t
u)

|f(u, x(u))|
h(log u)

∆u

u

}
≤M1δ1 +

1 +M1

k
δ1 + β1 ∥x∥+ β2 ∥x∥

≤ kM1 + 1 +M1

(1− β1 − β2) k
δ1 ≤ ε2.

Then, the zero solution of (1.1) is stable in Banach space E.

Theorem 3.2. Assume that all conditions of Theorem 3.1 hold,

lim
t→∞

e⊖k (t, 1) /h(log t) = 0, (3.12)

and for any r > 0, there is a function φr ∈ L1
△ ([1,∞)T), φr(t) > 0 such that |u| ≤ r means

|f(t, u)| /h(log t) ≤ φr(t), a.e. t ∈ [1,∞)T . (3.13)

Then, the zero solution of (1.1) is asymptotically stable.

Proof. It follows by Theorem 3.1 that the zero solution of (1.1) is stable in the Banach space E. Next, we
shall prove that the zero solution x = 0 of (1.1) is attractive. For any r > 0, we de�ne

ℑ∗ (r) =
{
x ∈ ℑ (r) , lim

t→∞
x(t)/h(log t) = 0

}
.

We only need to show that Ax+By ∈ ℑ∗ (r) for any x, y ∈ ℑ∗ (r), i.e.

(Ax) (t) + (By) (t)

h(log t)
→ 0 as t→ ∞,
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where

(Ax) (t) + (By) (t)

= e⊖k (t, 1)x0 +
1− e⊖k (t, 1)

k
x1 + k

∫ t

1
e⊖k (t, s) y

σ(u)∆u

+

∫ t

1
K

(
log

t

u

)
f(u, x(u))

∆u

u
.

For x, y ∈ ℑ∗ (r), based on the fact that used in the proof of Theorem 3.1 (Step2), it follows by using (3.1)
and (3.12) that ∫ t

1

e⊖k (t, u)

h(log t
u)

yσ(u)

h(log u)
∆u→ 0,

and

K(log t
u)

h(log t
u)

=

∫ t
u

e⊖k(t,u)

h(log t
u
)
(log s

u)
α−2∆s

Γ(α− 1)
→ 0,

as t→ ∞. Together with the hypothesis φr(t) ∈ L1
△ ([1,∞)T), we get that∫ t

1

K(log t
u)

h(log t
u)

|f(u, x(u))|
h(log u)

∆u

u
≤

∫ t

1

K(log t
u)

h(log t
u)
φr(u)

∆u

u
→ 0,

as t→ ∞. Thus, we obtain the conclusion.

Acknowledgment. The authors would like to thank the anonymous referee for his valuable comments.

References

[1] M. Adivar, Y.N. Ra�oul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal
of Qualitative Theory of Di�erential Equations 2009(1) (2009) 1-20.

[2] A. Ahmadkhanlu and M. Jahanshahi, On the existence and uniqueness of solution of initial value problem for fractional
order di�erential equations on time scales, Bull. Iranian Math. Soc. 38(1) (2012) 241-252.

[3] R.P. Agarwal, M. Bohner, A. Peterson and D. O'Regan, Advances in Dynamic Equations on Time Scales, Birkhaurser,
Boston, (2003).

[4] R.P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional di�erential equations, Computers and Mathematics with
Applications 59 (2010) 1095-1100.

[5] R. Almeida, D.F.M. Torres, Isoperimetric problems on time scales with nabla derivatives, Journal of Vibration and Control
15(6) (2009) 951-958.

[6] A. Ardjouni, I. Derrardjia, A. Djoudi, Stability in totally nonlinear neutral di�erential equations with variable delay, Acta
Math. Univ. Comenianae LXXXIII(1) (2014) 119-134.

[7] A. Ardjouni, A Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional
di�erential equations, Results in Nonlinear Analysis 2(3) (2019) 136-142.

[8] A. Ardjouni, A Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on a
time scale, Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica 52(1) (2013) 5-19.

[9] A. Ardjouni, A Djoudi, Stability in neutral nonlinear dynamic equations on time scale with unbounded delay, Stud. Univ.
Babeç-Bolyai Math. 57(4) (2012) 481-496.

[10] A. Ardjouni, A Djoudi, Fixed points and stability in linear neutral di�erential equations with variable delays, Nonlinear
Analysis 74 (2011) 2062-2070.

[11] M. Belaid, A. Ardjouni, H. Boulares, A. Djoudi, Stability by Krasnoselskii's �xed point theorem for nonlinear fractional
dynamic equations on a time scale, Honam Mathematical J. 41(1) (2019) 51-65.

[12] M. Belaid, A. Ardjouni, A. Djoudi, Stability in totally nonlinear neutral dynamic equations on time scales, International
Journal of Analysis and Applications 11(2) (2016) 110-123.

[13] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston,
(2001).

[14] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, (2003).
[15] B. Bordj, A. Ardjouni, Periodic and asymptotically periodic solutions in nonlinear coupled Volterra integro-dynamic

systems with in nite delay on time scales, Advances in the Theory of Nonlinear Analysis and its Applications 5(2) (2021)
180-192.



A. Ardjouni, Results in Nonlinear Anal. 4 (2021), 77�86 86

[16] H. Boulares, A. Ardjouni, Y. Laskri, Positive solutions for nonlinear fractional di�erential equations, Positivity 21 (2017)
1201-1212.

[17] H. Boulares, A. Ardjouni, Y. Laskri, Stability in delay nonlinear fractional di�erential equations, Rend. Circ. Mat. Palermo
65 (2016) 243-253.

[18] I. Derrardjia, A. Ardjouni, A. Djoudi, Stability by Krasnoselskii's theorem in totally nonlinear neutral di�erential equations,
Opuscula Math. 33(2) (2013) 255-272.

[19] M. Haoues, A. Ardjouni, A. Djoudi, Existence and uniqueness of solutions for the nonlinear retarded and advanced implicit
Hadamard fractional di�erential equations with nonlocal conditions, Nonlinear studies 27(2) (2020) 433-445.

[20] M. Haoues, A. Ardjouni, A. Djoudi, Existence, uniqueness and monotonicity of positive solutions for hybrid fractional
integro-di�erential equations, Asia Mathematika 4(3) (2020) 1-13.

[21] Z.A. Khan, Hadamard-type fractional di�erential equations for the system of integral inequalities on time scales, Integral
Transforms and Special Functions 31(1) (2020) 1-12.

[22] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Di�erential Equations, Elsevier Science
B. V., Amsterdam, (2006).

[23] F. Ge, C. Kou, Stability analysis by Krasnoselskii's �xed point theorem for nonlinear fractional di�erential equations,
Applied Mathematics and Computation 257 (2015) 308-316.

[24] F. Ge, C. Kou, Asymptotic stability of solutions of nonlinear fractional di�erential equations of order 1 < α < 2, Journal
of Shanghai Normal University 44(3) (2015) 284-290.

[25] I. Koca, A method for solving di�erential equations of q-fractional order, Applied Mathematics and Computation 266
(2015) 1-5.

[26] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional di�erential equations on
the half-axis, Nonlinear Anal. 74 (2011) 5975-5986.

[27] G. Liu, J. Yan, Global asymptotic stability of nonlinear neutral di�erential equation, Commun Nonlinear Sci Numer
Simulat 19 (2014) 1035-1041.

[28] D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, no. 66, Cambridge University Press, London-New
York, (1974).

[29] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Communications in Nonlinear
Science and Numerical Simulation 60 (2018) 72-91.

[30] R.A. Yan, S.R. Sun, Z.L. Han, Existence of solutions of boundary value problems for Caputo fractional di�erential equations
on time scales, Bull. Iranian Math. Soc. 42(2) (2016) 247-262.

[31] X. Zhang, C. Zhu, Cauchy problem for a class of fractional di�erential equations on time scales, International Journal of
Computer Mathematics 91(3) (2014) 527-538.


	1 Introduction
	2 Preliminaries
	3 Main results

