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Abstract

In this work, we investigate the asymptotic stability of the zero solution for Caputo-Hadamard fractional
dynamic equations on a time scale. We will make use of the Krasnoselskii fixed point theorem in a weighted
Banach space to show new stability results.
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1. Introduction

Fractional dynamic equations without and with delay arise from a variety of applications including in
various fields of science and engineering. In particular, problems concerning qualitative analysis of fractional
dynamic equations have received the attention of many authors, see [I]-[27], [29]-[31] and the references
therein.

Fractional dynamic equations involving Riemann-Liouville and Caputo A-fractional derivatives have been
studied extensively by several researchers, see [2], [11], [30], [31]. However, the literature on Hadamard
dynamic equations is not yet as enriched. The A-fractional derivative due to Hadamard differs from the
aforementioned derivatives in the sense that the kernel of the integral in the definition of Hadamard A-
fractional derivative contains a logarithmic function of arbitrary exponent, see [21].

In [T1], Belaid et al. investigated the following Caputo fractional dynamic equation

{ TCD8+x(t) :f(tax(t))7 te [O,OO)T,
2 (0) = zg, 2 (0) = z1,
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where %Dg‘+ is the Caputo fractional derivative on T of order 1 < a < 2. By employing the Krasnoselskii
fixed point theorem, the asymptotic stability of the zero solution has been established.

In this paper, we extend the results in [IT] by proving the stability and asymptotic stability of the zero
solution for the following Caputo-Hadamard fractional dynamic equation

FHDL 2 (t) = f (2 (1), t € [1,00)p,
{ Tw(l)lzxm 22 (1) = 21, B (1.1)

where T is an unbounded above time scale with 1 € T, TCH DT, is the Caputo-Hadamard A-fractional
derivative on T of order 1 < a < 2, zg,z1 € R, f : [1,00); Xx R = R is a rd-continuous function with
f(t,0) = 0. To prove the stability and asymptotic stability of the trivial solution, we transform into
an equivalent integral equation and then use the Krasnoselskii fixed point theorem. The obtained integral
equation is the sum of two mappings, one is a compact and the other is a contraction.

2. Preliminaries
In this section, We use C,q ([1,00)) for a space of rd-continuous functions where [1, 00) is an interval.
Definition 2.1 ([I3]). A time scale T is an arbitrary nonempty closed subset of the real numbers.
Definition 2.2 ([I3]). For t € T, the forward jump operator o : T — T is defined by
o(t)=inf{seT:s>t}.

Definition 2.3 ([13]). A function f : T — R is rd-continuous provided that it is continuous at all right-dense
points of T and its left-sided limits exist at left-dense points of T. The set of all rd-continuous functions on
T is denoted by Cyq(T).

Definition 2.4 ([13]). Let t € T and f : T — R be a function. Then A-derivative of f at the point t is
defined to be the number f (t) with the property that for each & > 0 there exists a neighborhood U of t in T
such that

[f (o () = f(s) = 2 ()0 (t) = s]| < elo(t) = s| for all s € U.

Definition 2.5 ([13]). A function F : [a,blr — R is called a A-antiderivative of a function F : [a,b]r — R
provided that F is rd-continuous on [a,b]y and A-differentiable on [a,b)t and F2(t) = f(t) for allt € [a,b).
Then we define the A-integral from a to b of f by

b
/ F() AL = F(b) - F(a).

Remark 2.6. All rd-continuous bounded functions on [a,b)r are delta integrable from a to b.

Definition 2.7 (|2, 21]). Assume T is a time scale, [1,b]r C T and the function x is an integrable function
on [1,b]r, then Hadamard A-fractional integral of x is defined by

1 t £\t As
H~a _ _ -
1w () = F(a)/1 (logs> = (®) 5

where I' (a) is the Gamma function.
Definition 2.8 (|2, 21]). Let z : T — R be a function. The Caputo-Hadamard A-fractional derivative of

1s defined by
1 ¢ AN As
CHmpya z A7
IO (t) = Tln = a) /1 <10g s> (s22)" (s) —,

S

where n = [a] + 1 and [a] denotes the integer of .
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Lemma 2.9 ([2, 21]). Let 0 < a < 1. Suppose x© € Cpq([1,00)7) and x> ezists almost every where on any
bounded interval of [1,00)r. Then,

gy SHDY a () =2 (t) — 2 (1),

Remark 2.10. From Definitions and Lemma[2.9, it is easy to see that
(1) Let 0 < o < 1. If x is rd-continuous on [1,00)y, then DY, FHIY x (t) = x(t) holds for all
€ [1,00)g.
(2) The Caputo-Hadamard A-fractional derivative of a constant is equal to zero.

In our discussion, the following Banach space plays a fundamental role. Let h : [0,00) — [1
strictly increasing continuous function with h (0) = 1, h (logt) — oo as t — oo, h (log s) h (log £)
forall 1 <s<t<oo. Let

te[1,00)p

E = {x € Crq([1,00)p) 1 sup |z (t)|/h(logt) < oo} .

|z(8)]

h(log )" For more properties of this Banach

Then, E is a Banach space with the norm |[z| = sup,c(i ), 7
space, see [26]. Also, let

lell; = max{p(s)] : 1 < s <},
for any t € [1,00), ¢ € Crq ([1,00)) and for any € > 0let S(e) ={x € E: ||z| < e}

Lemma 2.11. Let r € Cyq([1,00)). Then x € Crq([1,00)y) is a solution of the following Cauchy type
problem

D% z(t)=r(t), te[l,00)p, 1 <a<2,
A (2.1)
z (1) =xzg, 22 (1) = a4,
if and only iof x is a solution of the following Cauchy type problem
A _H ~o—1
{ z (t) -_T ‘J1+ 7"( )+$17 (22)
z (1) = zp.

Proof. Clearly, if ¢ € Cpq ([1,00)1), then #37, ¢ (1) = 0 with 0 < y < 1.
1) Let z € Cyq ([1,00)7) be a solution of (2.1). For any t € [1, 00)y, Definition shows that

T4z () =f D' (1) =r (1),
By using Lemma we have
2 () = 2 (1) +F 357 (0) = 3771 () +

which means that z is a solution of (2.2)).
2) Let x be a solution of (2.2)). For any ¢ € [1,00)y, by Remark it is easy to show that

Hot,x (1) =H 0072 (1) = D97 H57 0 (1) + D37y = 1 (1),
In addition, note that r € Cyq ([1,00)7), we have

o (1) = 5 (1) + 2 = 2.
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Lemma 2.12. Let k € (0,00). Then x € Cpq([1,00)7) is a solution of if and only if

_ t
o(t) = moeak (t,1) + 169;(’5’1):;;1 e / eon (t, 8) 27 (5) As
1

4 F(ozl—l) /j /ut ek (t,8) <log 2)0[_2 Asf (u,x (u)) % (2.3)

Proof. Let x € Crq ([1,00)1) be a solution of (1.1). By Lemma [2.11] we get

{ e®(t) =F 3% (f (t,2(8)) + 21, t € [1,00)q,
z(1) = zg, t € [1,00)p.

Then

8

A(t) = ﬁ flt(bgé)ai2f(svw(8)>% + 11, (2.4)
z(1) = xg, t € [1,00)p. )

So, we can write (2.4)) as

8 (1) + ka (8) = ka? (1) + pragy Ji (log £)° 72 (s,2(5)) 8% + 1,
x(1) =g, t € [1,00).

We obtain (2.3 by using the variation of constants formula. The converse follows easily because each step
is reversible. This completes the proof. O

Definition 2.13. The zero solution x =0 of is said to be

() stable in Banach space E, if for every e > 0, there is a § = (¢) > 0 such that |xo| + |z1] < ¢ implies
that the solution x (t) = x (t,x0,21) exists for all t € [1,00) and satisfies ||z|| < e.

(ii) asymptotically stable, if it is stable in Banach space E and there is a number o > 0 such that
|zo| + |z1| < o implies limy_, || (£)|| = 0.

Lastly in this section, we state the Krasnoselskii fixed point theorem which enables us to prove the
stability and asymptotic stability of the trivial solution to (L.1)).

Theorem 2.14 (Krasnoselskii [28]). Let Q be a closed conver nonempty subset of a Banach space (S, ||.]]).
Assume that A and B map  into S such that

(i) Ax + By € Q for all x,y € Q,

(ii) A is continuous and ASQ) is contained in a compact set of S,

(791) B is a contraction with constant | < 1.
Then, there is a x € Q with Az + Bx = x.

The following modified compactness criterion is needed in order to show (7).

Theorem 2.15 ([26]). Let M be a subset of the Banach space E. Then, M is relatively compact in E if the
following conditions are satisfied

(2) {z (t) /h(logt) : & € M} is uniformly bounded,

(1) {x(t) /h (logt) : x € M} is equicontinuous on any compact interval of [1,00)y,

(7it) {x (t) /h(logt) : x € M} is equiconvergent at infinity i.e. for any given € > 0, there is a Ty > 1
such that for all x € M and t1,ty > Tp, if holds

Iz (t2) /h (log ts) — @ (t1) /h (log t1)] < e.
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3. Main results

We introduce the following hypotheses.
(h1) There is a constant 31 € (0,1) such that

eor (t,1) /h(logt) € BC([1,00)y) N La ([1,00)y),
k/l eok (t,1) /h(logu)Au < 51 < 1. (3.1)

(h2) There exist constants n > 0, B2 € (0,1 — 1) and a continuous function f : [1,00)p x (0,7] — R*

such that | f(t, vh(logt))|
, vh(log F
T hlost) < f(t[vl), 32

holds for all ¢t € [1,00)p, 0 < |v] <7 and

t K(log L) f(u,r) Au
sup /1 hogl) 7<52<1—51, (3.3)

u

te(l,00)p

holds for every 0 < r < 5, where f(t,) is nondecreasing in r for fixed t, f(t,r) € L' ([1,00)¢) in t for fixed
r, and

t 1 t sya—2 t >
K(log L) = { Ty fucon () (og )72, low 20, (3.4)
u s og u .

Theorem 3.1. Assume that (hl) and (h2) hold. Then, the zero solution x =0 of is stable in Banach
space E.

Proof. First, for any given € > 0, we show the existence of § > 0 such that
|zo| + |71| < ¢ implies ||z|| < e.
By (3.1), there is a constant M; > 0 such that

[Ty (t, 1)
W < M. (3.5)

Let 0 <6 < %6. Consider the closed convex nonempty subset ¥ (e) C E, for t € [1,00), we denote
two mapping A and B on S (¢) as follows

4 0 = oo [ [ eertton) (e 2)" Assuau) S
Au
:/1 <log )f(u,a:(u)) > (3.6)
and .
(Bz) (t) = ecp (£, 1) 20 + 1—66;(15,1)%1 +k /1 eon (t, s) 2% (s)As. (3.7)

Obviously for z € I (¢), both Az and Bz are rd-continuous functions on [1,00);. In addition, for z € I (¢),

by (3.1)-(3.3)) for any ¢ € [1, 00)y, we get

(Az) (t)] K(log &) | f(u, x(u))| Au
hogt) = /1 h(log) h(ogu) u
(

< Sy (v )

< B2 |lzl| < Bag < oo, (3.8)
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and

(Bo) ()] [een (1) 1—eck (1) Ceonlts)
L

1+ M /Oo eck (u, 1)
< M- k —— T ‘A
< My |xo| + 2 |z1| + . h(ogu) ul|z|]

1—|—M1
k

Then AS (¢) € E and BS (¢) € E. Next, we shall use Theorem to show there is a fixed point of the
operator A+ B in S (¢). Here, we divide the proof into three steps.
Stepl. We show that Ax + By € S (¢) for all z,y € S (¢).

For any z,y € & (e), by (3.8) and (3.9)), we get that
|(Az) (t) + (By) (t)]

< M; “”L‘o| + ’561| + e < . (39)

sup
h(logt)
te[1,00)
ek (t, 1) 1—egk (t,1) /t eck (t,8) ,
= sup — g+ —————1 ——29%(s)As
te[1,00)y { h(logt) kh(logt) 1 h(logt)
tK(logl) Au

|

1+ M, * eok (t, 1)
< k — A
< My |zo| + k: 21| + /1 h(log 1) u |yl + Bo ||z

< Mlk‘—l-l—l—Ml
- k

| hiogt) Flu, 2 (u)—

6+ Bre+ Poe < g,

which means that Az + By € S (¢) for all z,y € S (e).

Step 2. Tt is easy to prove that A is continuous. Now, we only show that A (¢) is a relatively compact in
E. By (3.8), we obtain that {z(t)/h(logt) : z € S (¢)} is uniformly bounded in E. Also, a classical theorem
states the fact that the convolution of an L} -function with a function tending to zero, does also tend to

zero. Then we conclude that for (1og %) >0, we get

K(log L 1 ¢ log £)a—2
0 < Tim 08) Ogt“> < lim / L (t’ts)(og“)s
t—oo h(log L) ~ t=eo'(aw—1) J, h(logt) h(log?:)
. 1 "eck (t, us) (log s)*
<1 As = 1
e MNa-1) /1 h(log %) h(log s) ufs =0, (3.10)
because lim;_ oo (12%1?;;2 = 0. Together with the continuity of K and h, we obtain that there is a constant
M5 > 0 such that
K (log L
Klogs)| _ oy, (3.11)
h(log ﬂ)

and for any Tp € [1,00)y, the function K (log £)h(logu)/h(log t) is uniformly continuous on {(¢,u): 1 <u <
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t <Tp}. For any t1,t2 € [1,To] N'T, t1 < ta, we get
(Az) (t2)  (Az) (t1)
h(logtz) h(log t1)

= * K (log ) u, r(u &— " 7K(10g%) u, r(u &
_ /1 28 ) iy a(w) /1 Mlogr ) (2% ‘
S/l Hlogt) )

(10gt2) u
2 K(log2) - Au
—l—/tl h{log ! )f(u,a)T
</ K(log 2)h(logu) K (log)h(logu)
N

A
+ M f(ua5)7u—>07

(log 2) K(log%) Au

£, aw))] =

h(logtz) h(logt1)
t1

as tg — t1, which implies that {z(¢)/h(logt) : x € J (¢)} is equicontinuous on any compact interval of [1, 00).
By using Theorem [2.15] in order to prove that A () is a relatively compact set of E, we only need to show
that {z(t)/h(logt) : x € S (e)} is equiconvergent at infinity. In fact, for any e; > 0, there is a L > 1 such

that A
Mg/ fua—u<—

By (3.10)), we obtain that

K(log L K (log £ K(l
lim sup (Oggt)<max{hm (OgL) i (og?) =0.

t=00 ye1, L], h(log ﬂ) o t—oo h (log%) ’t;rgo h(logt)

So, there is T' > L such that t1,to > T, we get

K(log 2)h(logu)  K(log 2)h(log u)

sup -

well, L]y h(logt2) h(logt1)
K(log 2) K (log &)

= uefL,Ll, | h(log 2) [1 L), | h(log &)

<G ([Tre0tt)

‘ (Az) (ta) _ (Az) (t1)
h(logtz)  h(logti)

Thus, for tl,tQ > T,

| [ K(log ) Au (" K(log %) Au
/1 hllogty) | (W)= /1 hllog ) | W)=
LK (log 2)h(logu)  K(log“)h(logu)| - Au
S/l h(logts) B h(logt1) Jlue) =~ u
" Ko, Au [t Kllogh), A
+/L hllog 2) 7 %) +/L Mg ) 19

R A
<o [ Fwe St <an
3 L u
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Hence, the required conclusion is true.
Step 3. We prove that B : S (e) — F is a contraction mapping.

For any z,y € & (¢), by (3.1), we get that
(Bx) (t)  (By) (1) ‘

2P h(logt)  h(logt)

te(l,00)p
k:flt ok (tu) 2% (W)Au  k [} eap (t,u) y? (u)Au
= sup -
te[1,00) h(logt) h(logt)
t t g __ 20
< ap k[ 0= )
te[l,co)p J1 h(log ;) h(log u)
t
<k [l oy
1 h(log )
< Billz —yll-
By using Theorem [2.14] we know that there is a fixed point of the operator A+ B in ¥ (). Finally, for any
£0>0,if0< 61 < %52, then |zg| + |z1| < d; means that

ek (t,1) 1—eck(t,1) /t eck (L, )
SO\ T 0 A
nlogd) T TEhtogt) TR | Thiogn & WA

|

eck (t,1) 1 — ey (t,1)] eor (t,u) |27 (u)]
= 8 {h(logt) ol + o |$1+k/1 h(log £)h(log u)

" E(log ) | f(u, x(u))| Au
+/1 h(log %)  h(logu) u}
1+ M

k
k?M1+1+M1

S - - = -
(1—=051—B2)k
Then, the zero solution of (1.1)) is stable in Banach space E. O

}

Au

el = sup {

te[LOO)T

" K(log 1) Au
+/1 Wf (u, z(u))

u

te[l,00)p

< Mid + 01+ Bu [l + Bz [l |

(51 < 9.

Theorem 3.2. Assume that all conditions of Theorem [3.1] hold,
tlgglo eck (t,1) /h(logt) =0, (3.12)
and for any r > 0, there is a function o, € L} ([1,00)1), ¢r(t) > 0 such that |u| < r means
|f(t,u)] /h(logt) < @p(t), a.e. t €[1,00)r. (3.13)
Then, the zero solution of 1s asymptotically stable.

Proof. 1t follows by Theorem that the zero solution of (|1.1)) is stable in the Banach space E. Next, we
shall prove that the zero solution & = 0 of ([1.1)) is attractive. For any r > 0, we define

3, (r) = {a: €S (r), lim a(t)/h(logt) = o} .

We only need to show that Ax + By € S (r) for any =,y € S, (1), i.e.

(Az) (t) + (By) ()
h(logt)

— 0 as t — o0,
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where

For
and

and

as t

ast

(Az) () + (By) (1)

_ t
= Cok (tv 1) Zo + :leeklm-fl + k/l €ok (t, S) ya(u)Au
t A
+ [ (10w ) sastun S,

x,y € S« (1), based on the fact that used in the proof of Theorem m (Step2), it follows by using (3.1))
B that
ean (t,u) Y7 (u)
/ 2 Au — 0,
1

h(log %) h(logu)

te t,u S\a—
Klogt) Juifigt(o8 i)™ *As
h(log L) (o —1) 7

— o0o. Together with the hypothesis ¢, () € L% ([1,00)), we get that

/t K(log 1) | (u,x(w)| Au _ / K(logy) . Au
1 1

r T Oa
h(logt) h(logu) wu h(log%)w () w

— 00. Thus, we obtain the conclusion. O
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