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Abstract

In the paper, with the aid of the series expansions of the square or cubic of the arcsine function, the authors
establish several possibly new combinatorial identities containing the ratio of two central binomial coe�cients
which are related to the Catalan numbers in combinatorial number theory.
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1. Introduction

The sequence of central binomial coe�cients
(
2n
n

)
for n ≥ 0 is classical, simple, and elementary. This

sequence has attracted many mathematicians who have published a number of papers such as [3, 7, 10,
11, 17, 20, 27, 44, 46] and closely related references therein. It is worth to mentioning that, the integral
representation (

2n

n

)
=

1

π

∫ ∞

0

1

(1/4 + s2)n+1
d s
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was derived in [35, Section 4.2].
In this paper, with the help of the power series expansion

arcsinx =
∞∑
ℓ=0

1

22ℓ

(
2ℓ

ℓ

)
x2ℓ+1

2ℓ+ 1
, |x| < 1, (1.1)

see [1, 4.4.40] and [2, p. 121, 6.41.1], the series expansion

(arcsinx)2 =
1

2

∞∑
ℓ=1

(2x)2ℓ

ℓ2
(
2ℓ
ℓ

) , |x| < 1, (1.2)

which or its variants can be found in [2, p. 122, 6.42.1], [4, pp. 262�263, Proposition 15], [5, pp. 50�51 and
p. 287], [6, p. 384], [12, Lemma 2], [15, p. 308], [16, pp. 88�90], [18, p. 61, 1.645], [24, p. 453], [33, Section 6.3],
[48, p. 59, (2.56)], or [50, p. 676, (2.2)], and the power series expansion

(arcsinx)3 = 3!

∞∑
ℓ=0

[(2ℓ+ 1)!!]2

[
ℓ∑

k=0

1

(2k + 1)2

]
x2ℓ+3

(2ℓ+ 3)!
, |x| < 1, (1.3)

which or its variants can be found in [2, p. 122, 6.42.2], [4, pp. 262�263, Proposition 15], [9, p. 188, Example 1],
[15, p. 308], [16, pp. 88�90], or [18, p. 61, 1.645], we will establish several identities involving the product(
2k
k

)(2(n−k)
n−k

)
or the ratio

(2kk )
(2(n−k+1)

n−k+1 )
of two central binomial coe�cients

(
2k
k

)
and

(2(n−k)
n−k

)
for 0 ≤ k ≤ n.

2. Alternative proofs of a known combinatorial identity

In this section, by means of the series expansions (1.1) and (1.2), we give two alternative proofs of a
known combinatorial identity. This means that the method used in this paper is better.

Theorem 2.1 ([45, p. 77, (3.96)]). For n ≥ 0, we have

n∑
k=0

1

2k + 1

(
2k

k

)(
2(n− k)

n− k

)
=

24n

(2n+ 1)
(
2n
n

) . (2.1)

First proof. From (1.1), it follows that

1

2
arcsin(2x) =

∞∑
k=0

1

2k + 1

(
2k

k

)
x2k+1, |x| < 1

2

and, by di�erentiation,

1√
1− 4x2

=
∞∑
k=0

(
2k

k

)
x2k, |x| < 1

2
.

Therefore, we obtain

arcsin(2x)

2x
√
1− 4x2

=

[ ∞∑
k=0

1

2k + 1

(
2k

k

)
x2k

] ∞∑
k=0

(
2k

k

)
x2k =

∞∑
n=0

[
n∑

k=0

1

2k + 1

(
2k

k

)(
2(n− k)

n− k

)]
x2n. (2.2)

On the other hand, by virtue of the series expansion (1.2), we acquire

arcsin(2x)

2x
√
1− 4x2

=
1

8x

d

dx

(
[arcsin(2x)]2

)
=

1

8x

d

dx

∞∑
n=0

22n+1(n!)2

(2n+ 2)!
(2x)2n+2

=
1

8x

∞∑
n=0

22n+2(n!)2

(2n+ 1)!
(2x)2n+1 =

∞∑
n=0

24n(n!)2

(2n+ 1)!
x2n.

(2.3)
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Comparing (2.2) with (2.3) and equating coe�cients of x2n, we obtain

n∑
k=0

1

2k + 1

(
2k

k

)(
2(n− k)

n− k

)
=

24n(n!)2

(2n+ 1)!
=

24n

(2n+ 1)
(
2n
n

) .
The identity (2.1) is thus proved. The �rst proof of Theorem 2.1 is complete.

Second proof. Di�erentiating on both sides of (1.2) and rearranging give

2x arcsinx√
1− x2

=
∞∑
ℓ=1

(2x)2ℓ

ℓ
(
2ℓ
ℓ

) , |x| < 1, (2.4)

which or its variants can also be found in [2, p. 122, 6.42.5], [6, p. 384], [8, p. 161], [24, p. 452, Theorem],
and [33, Section 6.3, Theorem 21, Sections 8 and 9]. Replacing x by 2x in (2.4) and rearranging yield

arcsin(2x)

2x

1√
1− 4x2

=
1

8x2
4x arcsin(2x)√

1− 4x2
=

1

8x2

∞∑
ℓ=1

(4x)2ℓ

ℓ
(
2ℓ
ℓ

)
=

1

8x2

∞∑
n=0

(4x)2(n+1)

(n+ 1)
(
2(n+1)
n+1

) =

∞∑
n=0

24n+1

(n+ 1)
(
2(n+1)
n+1

)x2n (2.5)

for |x| < 1
2 . Comparing (2.2) with (2.5) and equating coe�cients of x2n, we obtain

n∑
k=0

1

2k + 1

(
2k

k

)(
2(n− k)

n− k

)
=

24n+1

(n+ 1)
(
2(n+1)
n+1

) =
24n

(2n+ 1)
(
2n
n

) .
The identity (2.1) is proved again. The second proof of Theorem 2.1 is complete.

3. Three possibly new combinatorial identities

In this section, by virtue of those three series expansions (1.1), (1.2), and (1.3), we establish three possibly

new combinatorial identities involving the ratio
(2kk )

(2(n−k+1)
n−k+1 )

in terms of the trigamma function ψ′(n+ 3
2

)
, where

ψ(x) is the digamma function de�ned by the logarithmic derivative ψ(x) = [ln Γ(x)]′ = Γ′(x)
Γ(x) of the classical

Euler gamma function

Γ(z) =

∫ ∞

0
tz−1e−t d t, ℜ(z) > 0.

This means that the method used in this paper is extensively applicable. For more information on the gamma
function Γ(x) and polygamma functions ψ(k)(x) for k ≥ 0, please refer to [1, pp. 255�293, Chapter 6] or the
papers [32, 36] and closely related references therein.

Theorem 3.1. For n ≥ 0, we have

n∑
k=0

1

24k(2k + 1)(n− k + 1)2

(
2k
k

)(2(n−k+1)
n−k+1

) =
3[(2n+ 1)!!]2

22n+3(2n+ 3)!

[
π2 − 2ψ′

(
n+

3

2

)]
, (3.1)

n∑
k=0

1

24k(n− k + 1)2

(
2k
k

)(2(n−k+1)
n−k+1

) =
[(2n+ 1)!!]2

22n+3(2n+ 2)!

[
π2 − 2ψ′

(
n+

3

2

)]
, (3.2)

and
n∑

k=0

1

24k(2k + 1)(n− k + 1)

(
2k
k

)(2(n−k+1)
n−k+1

) =
[(2n+ 1)!!]2

22n+3(2n+ 2)!

[
π2 − 2ψ′

(
n+

3

2

)]
. (3.3)
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Proof. Di�erentiating on both sides of (1.3) gives

(arcsinx)2√
1− x2

= 2!
∞∑
n=0

[(2n+ 1)!!]2

[
n∑

k=0

1

(2k + 1)2

]
x2n+2

(2n+ 2)!
, |x| < 1. (3.4)

On the other hand, we have

(arcsinx)3 = (arcsinx)(arcsinx)2

=

[ ∞∑
k=0

1

22k

(
2k

k

)
x2k+1

2k + 1

][
1

2

∞∑
m=1

(2x)2m

m2
(
2m
m

)]

=
x3

2

[ ∞∑
k=0

1

(2k + 1)22k

(
2k

k

)
x2k

][ ∞∑
k=0

22k

(k + 1)2
(2(k+1)

k+1

)x2k]

=
x3

2

∞∑
n=0

[
n∑

k=0

1

(2k + 1)22k

(
2k

k

)
22(n−k)

(n− k + 1)2
(2(n−k+1)

n−k+1

)]x2n
=

∞∑
n=0

[
n∑

k=0

22(n−2k)−1

(2k + 1)(n− k + 1)2

(
2k
k

)(2(n−k+1)
n−k+1

)]x2n+3,

(arcsinx)2√
1− x2

= (arcsinx)2
1√

1− x2

=

[
1

2

∞∑
m=1

(2x)2m

m2
(
2m
m

)][ ∞∑
n=0

1

22n

(
2n

n

)
x2n

]

= x2

[ ∞∑
k=0

22k+1

(k + 1)2
(2(k+1)

k+1

)x2k][ ∞∑
k=0

1

22k

(
2k

k

)
x2k

]

=
∞∑
n=0

[
n∑

k=0

1

22k

(
2k

k

)
22(n−k)+1

(n− k + 1)2
(2(n−k+1)

n−k+1

)]x2n+2

=

∞∑
n=0

[
n∑

k=0

22(n−2k)+1

(n− k + 1)2

(
2k
k

)(2(n−k+1)
n−k+1

)]x2n+2,

and

(arcsinx)2√
1− x2

= (arcsinx)
arcsinx√
1− x2

=

[ ∞∑
k=0

1

22k

(
2k

k

)
x2k+1

2k + 1

][
1

2x

∞∑
m=1

(2x)2m

m
(
2m
m

) ]

=

[ ∞∑
k=0

1

22k(2k + 1)

(
2k

k

)
x2k

][ ∞∑
k=0

22k+1

(k + 1)
(2(k+1)

k+1

)x2(k+1)

]

=
∞∑
n=0

[
n∑

k=0

1

22k(2k + 1)

(
2k

k

)
22(n−k)+1

(n− k + 1)
(2(n−k+1)

n−k+1

)]x2n+2

=

∞∑
n=0

[
n∑

k=0

22(n−2k)+1

(2k + 1)(n− k + 1)

(
2k
k

)(2(n−k+1)
n−k+1

)]x2n+2,

where we used the power series expansions (1.1), (1.2), and (2.4). Comparing the above three power series
expansions with series expansions (1.3) and (3.4) and equating coe�cients of x2n+2 respectively reveal

3![(2n+ 1)!!]2

(2n+ 3)!

[
n∑

k=0

1

(2k + 1)2

]
=

n∑
k=0

22(n−2k)−1

(2k + 1)(n− k + 1)2

(
2k
k

)(2(n−k+1)
n−k+1

) , (3.5)
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2![(2n+ 1)!!]2

(2n+ 2)!

[
n∑

k=0

1

(2k + 1)2

]
=

n∑
k=0

22(n−2k)+1

(n− k + 1)2

(
2k
k

)(2(n−k+1)
n−k+1

) , (3.6)

and
2![(2n+ 1)!!]2

(2n+ 2)!

[
n∑

k=0

1

(2k + 1)2

]
=

n∑
k=0

22(n−2k)+1

(2k + 1)(n− k + 1)

(
2k
k

)(2(n−k+1)
n−k+1

) . (3.7)

From the formula

ψ′
(
1

2
+ n

)
=
π2

2
− 4

n∑
k=1

1

(2k − 1)2
, n ∈ N

in [18, p. 914, 8.366], we derive that

n∑
k=0

1

(2k + 1)2
=

1

8

[
π2 − 2ψ′

(
n+

3

2

)]
. (3.8)

Substituting the formula (3.8) into (3.5), (3.6), and (3.7) and simplifying lead to three identities (3.1), (3.2),
and (3.3) respectively. The proof of Theorem 3.1 is thus complete.

4. Remarks

Finally, we list several remarks on our main results and related stu�s.

Remark 4.1. The identity (2.1) in Theorem 2.1 can be regarded as a couple of the identity

n∑
k=0

1

k + 1

(
2k

k

)(
2(n− k)

n− k

)
=

(
2n+ 1

n

)
, n ≥ 0, (4.1)

which is a special case of the identity [45, p. 77, (3.95)]. Moreover, the identity∑
k+ℓ=n,
k≥0,ℓ≥0

1

k + 1

(
2k

k

)(
2(ℓ+ 1)

ℓ+ 1

)
= 2

(
2n+ 2

n

)
, n ≥ 0, (4.2)

which has been proved in [13] by three alternative and di�erent methods, is an equivalence of the iden-
tity (4.1). This equivalence can be demonstrated as follows.

The identity (4.2) can be rearranged as

n∑
k=0

1

k + 1

(
2k

k

)(
2(n− k + 1)

n− k + 1

)
= 2

(
2n+ 2

n

)
which is equivalent to

n+1∑
k=0

1

k + 1

(
2k

k

)(
2(n− k + 1)

n− k + 1

)
= 2

(
2n+ 2

n

)
+

1

n+ 2

(
2(n+ 1)

n+ 1

)
=

(
2n+ 3

n+ 1

)
,

where we used
(
0
0

)
= 1. Replacing n+ 1 by n in the last identity leads to the identity (4.1).

Remark 4.2. Closely related to central binomial coe�cients
(
2n
n

)
, the Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
(4.3)
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in combinatorial number theory have attracted many mathematicians who have published several mono-
graphs [19, 23, 43, 47] and a number of papers such as [25, 26, 28, 29, 37, 38, 39, 40, 41, 42].

The second conclusion (b) in [3, Lemma 2] reads that

n∑
k=0

BkCn−k =
1

2
Bn+1, (4.4)

where Bn =
(
2n
n

)
. Rewriting the sum in (4.4) as

∑n
k=0Bn−kCk and substituting

(
2n−2k
n−k

)
and 1

k+1

(
2k
k

)
for

Bn−k and Ck result in

n∑
k=0

1

k + 1

(
2k

k

)(
2(n− k)

n− k

)
Ck =

1

2

(
2(n+ 1)

n+ 1

)
=

(
2n+ 1

n

)
which is the same as the identity (4.1).

By the way, the combinatorial proof of the identity (4.4) in [3, Lemma 2] is longer than the combinatorial
proof of the identity (4.2) in [13], while its equivalent identities (4.1) and (4.2) were proved analytically
in [13] and [45, p. 77, (3.95)].

Remark 4.3. By the formula (4.3), we can rewritten the identity (4.1) and those in Theorem 2.1 and Theo-
rem 3.1 as

n∑
k=0

(n− k + 1)CkCn−k =

(
2n+ 1

n

)
,

n∑
k=0

(k + 1)(n− k + 1)

2k + 1
CkCn−k =

24n

(2n+ 1)(n+ 1)Cn
,

n∑
k=0

n− k + 2

24k(k + 1)(2k + 1)(n− k + 1)2
Ck

Cn−k+1
=

3[(2n+ 1)!!]2

22n(2n+ 3)!

n∑
k=0

1

(2k + 1)2
,

n∑
k=0

n− k + 2

24k(k + 1)(n− k + 1)2
Ck

Cn−k+1
=

[(2n+ 1)!!]2

22n(2n+ 2)!

n∑
k=0

1

(2k + 1)2
,

and
n∑

k=0

n− k + 2

24k(k + 1)(2k + 1)(n− k + 1)

Ck

Cn−k+1
=

[(2n+ 1)!!]2

22n(2n+ 2)!

n∑
k=0

1

(2k + 1)2

respectively. For more information on series involving the Catalan numbers Cn, please refer to the paper [34]
and closely related references therein.

Remark 4.4. In [21] and its previous arXiv preprints, among other things, a nice series expansion and its
applications of the function

(
arcsin t

t

)m
, whose value at t = 0 is de�ned to be 1, were established and carried

out.

Remark 4.5. This paper is a revised version of the arXiv preprints [30, 31].
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