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1. Introduction

In this field, one of the first works which deal with the cotangent bundles of a manifold as a Riemannian manifold
is that of Patterson, E.M., Walker, A.G. [13], who constructed from an affine symmetric connection on a manifold a
Riemannian metric on the cotangent bundle, which they call the Riemann extension of the connection. A generalization
of this metric had been given by Sekizawa, M. [19] in his classification of natural transformations of affine connections
on manifolds to metrics on their cotangent bundles, obtaining the class of natural Riemann extensions which is a
2-parameter family of metrics, and which had been intensively studied by many authors. Inspired by the concept
of g-natural metrics on tangent bundles of Riemannian manifolds, Ağca, F. considered another class of metrics on
cotangent bundles of Riemannian manifolds, that he called g-natural metrics [1]. Also, there are similar studies done
by other authors, Salimov, A.A., Ağca, F. [2, 14], Yano, K., Ishihara, S. [22], Ocak, F., Kazimova, S. [12], Gezer,
A., Altunbas, M. [10]. On the other hand, in [24] Zayatuev, B.V. introduced a generalization of the Sasaki metric on
tangent bundle [18], this metric is called rescaled Sasaki metric by Wang, J. and Wang, Y. in [20], and in [7] Gezer, A.
called this metric the metric deformed Sasaki metric. In [8] ( resp. [9]) Gezer, A. and Altunbas, M. define the rescaled
Sasaki type metric on the cotangent bundle (resp. on tensor bundles of arbitrary type).

In a previous work [23] we proposed a new class of metrics on the cotangent bundle. In this paper, we construct
almost para-complex Norden structures on cotangent bundle equipped with this new class of metrics and also investi-
gate necessary and sufficient conditions for these structures to become para-Kähler-Norden, quasi-para-Kähler-Norden.
Finally we characterize some properties of almost para-complex Norden structures in context of almost product Rie-
mannian manifolds are presented.
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2. Preliminaries

Let (Mm, g) be an m-dimensional Riemannian manifold, T ∗M be its cotangent bundle and π : T ∗M → M the natural
projection. A local chart (U, xi)i=1,m on M induces a local chart (π−1(U), xi, xī = pi)i=1,m,ī=m+i on T ∗M, where pi is the
component of covector p in each cotangent space T ∗x M, x ∈ U with respect to the natural coframe dxi. Let C∞(M)
(resp. C∞(T ∗M)) be the ring of real-valued C∞ functions on M(resp. T ∗M) and =r

s(M) (resp. =r
s(T
∗M)) be the module

over C∞(M) (resp. C∞(T ∗M)) of C∞ tensor fields of type (r, s).
Denote by Γk

i j the Christoffel symbols of g and by ∇ the Levi-Civita connection of g.
We have two complementary distributions on T ∗M, the vertical distribution VT ∗M = Ker(dπ) and the horizontal

distribution HT ∗M that define a direct sum decomposition

TT ∗M = VT ∗M ⊕ HT ∗M.

Let X = Xi ∂
∂xi and ω = ωidxi be a local expressions in U ⊂ M of a vector and covector (1-form) field X ∈ =1

0(M)
and ω ∈ =0

1(M), respectively. Then the horizontal and the vertical lifts of X and ω are defined, respectively by

XH = Xi ∂

∂xi + phΓh
i jX

j ∂

∂pi
,

ωV = ωi
∂

∂pi
,

with respect to the natural frame { ∂
∂xi ,

∂
∂pi
}, where Γh

i j are components of the Levi-Civita connection ∇ on M. (see [22]
for more details).

Lemma 2.1. [22] Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita connection and R be the Riemannian
curvature tensor. Then the Lie bracket of the cotangent bundle T ∗M of M satisfies the following

(1) [ωV , θV ] = 0,
(2) [XH , θV ] = (∇Xθ)V ,
(3) [XH ,YH] = [X,Y]H + (pR(X,Y))V ,

for all vector fields X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M).

Let (M, g) be a Riemannian manifold, we define the map

=0
1(M) → =1

0(M)
ω 7→ ω̃

by for all X ∈ =1
0(M), g(ω̃, X) = ω(X).

Locally for all ω = ωidxi ∈ =0
1(M), we have ω̃ = gi jωi

∂
∂x j , where (gi j) is the inverse matrix of the matrix (gi j).

For each x ∈ M the scalar product g−1 = (gi j) is defined on the cotangent space T ∗x M by g−1(ω, θ) = g(ω̃, θ̃) = gi jωiθ j.
In this case we have ω̃ = g−1 ◦ ω.

3. New Class ofMetrics

Definition 3.1. [23] Let (M, g) be a Riemannian manifold and f : M →]0,+∞[ be a strictly positive smooth function
on M. On the cotangent bundle T ∗M, we define a new class of metrics noted g f by

g f (XH ,YH) = g(X,Y)V = g(X,Y) ◦ π,
g f (XH , θV ) = 0,
g f (ωV , θV ) = f g−1(ω, p)g−1(θ, p),

where X,Y ∈ =1
0(M), ω, θ ∈ =0

1(M).

Lemma 3.2. [23] Let (M, g) be a Riemannian manifold and (T ∗M, g f ) its cotangent bundle equipped with the new
class of metrics, for all X ∈ =1

0(M) and ω, θ, η ∈ =0
1(M), we have

(1) XHg f (θV , ηV ) =
1
f

X( f )g f (θV , ηV ) + g f ((∇Xθ)V , ηV ) + g f (θV , (∇Xη)V ),

(2) ωVg f (θV , ηV ) = f g−1(ω, θ)g−1(η, p) + f g−1(ω, η)g−1(θ, p).
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Theorem 3.3. [23] Let (M, g) be a Riemannian manifold and (T ∗M, g f ) its cotangent bundle equipped with the new
class of metrics. If ∇ (resp ∇ f ) denote the Levi-Civita connection of (M, g) (resp (T ∗M, g f ) ), we have:

(1) ∇ f
XH YH = (∇XY)H ,

(2) ∇ f
XHθ

V = (∇Xθ)V +
1

2 f
X( f )θV ,

(3) ∇ f
ωV YH =

1
2 f

Y( f )ωV ,

(4) ∇ f
ωV θ

V =
−1
2

g−1(ω, p)g−1(θ, p)(grad f )H +
1
r2 g−1(ω, θ)PV ,

for all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M), where PV the canonical vertical vector field on T ∗M and r2 = g−1(p, p).

4. Para-Kähler-Norden Structures

An almost product structure ϕ on a manifold M is a (1, 1) tensor field on M such that ϕ2 = idM , ϕ , ±idM (idM is
the identity tensor field of type (1, 1) on M). The pair (M, ϕ) is called an almost product manifold.

A linear connection ∇ on (M, ϕ) such that ∇ϕ = 0 is said to be an almost product connection. There exists an almost
product connection on every almost product manifold [5].

An almost para-complex manifold is an almost product manifold (M, ϕ), such that the two eigenbundles T M+ and
T M− associated to the two eigenvalues +1 and −1 of ϕ, respectively, have the same rank. Note that the dimension of
an almost paracomplex manifold is necessarily even [4].

An almost para-complex Norden manifold (M2m, ϕ, g) is a real 2m-dimensional differentiable manifold M2m with
an almost para-complex structure ϕ and a Riemannian metric g such that:

g(ϕX,Y) = g(X, ϕY),

for all X,Y ∈ =1
0(M), in this case g is called a pure metric with respect to ϕ or para-Norden metric (B-metric) [17].

A para-Kähler-Norden manifold is an almost para-complex Norden manifold (M2m, ϕ, g) such that ϕ is integrable
i.e. ∇ϕ = 0 (B-manifold), where ∇ is the Levi-Civita connection of g [15, 17].

A Tachibana operator φϕ applied to the pure metric g is given by

(φϕg)(X,Y,Z) = (ϕX)(g(Y,Z)) − X(g(ϕY,Z)) + g((LYϕ)X,Z) + g(Y, (LZϕ)X), (4.1)

for all X,Y,Z ∈ =1
0(M) [21].

In an almost para-complex Norden manifold, a para-Norden metric g is called para-holomorphic if

(φϕg)(X,Y,Z) = 0,

for all X,Y,Z ∈ =1
0(M) [17].

A para-holomorphic Norden manifold is an almost para-complex Norden manifold (M2m, ϕ, g) such that g is a
para-holomorphic i.e. φϕg = 0.

In [17], Salimov and his collaborators proved that for an almost B-manifold,

∇ϕ = 0⇔ φϕg = 0,

by virtue of this view, para-holomorphic Norden manifolds are similar to para-Kähler-Norden manifolds [15].
The purity conditions for a tensor field ω ∈ =q

0(M) with respect to the almost paracomplex structure ϕ given by

ω(ϕX1, X2, · · · , Xq) = ω(X1, ϕX2, · · · , Xq) = · · · = ω(X1, X2, · · · , ϕXq),

for all X1, X2, · · · , Xq ∈ =
1
0(M) [17].

It is well known that if (M2m, ϕ, g) is a para-Kähler-Norden manifold, the Riemannian curvature tensor is pure [17],
and for all Y,Z ∈ =1

0(M) {
R(ϕY,Z) = R(Y, ϕZ) = R(Y,Z)ϕ = ϕR(Y,Z),
R(ϕY, ϕZ) = R(Y,Z). (4.2)
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Let (M, g) be a Riemannian manifold. We consider an almost para-complex structure J on T ∗M defined by{
JXH = −XH ,
JωV = ωV (4.3)

for all X ∈ =1
0(M) and ω ∈ =0

1(M) [3].

Theorem 4.1. Let (M, g) be a Riemannian manifold, (T ∗M, g f ) be its cotangent bundle equipped with the new class of
metrics and the almost para-complex structure J defined by (4.3). The triple (T ∗M, J, g f ) is an almost para-complex
Norden manifold.

Proof. For all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M), from (4.3) we have

(1) g f (JXH ,YH) = g f (−XH ,YH) = g f (XH ,−YH) = g f (XH , JYH),
(2) g f (JXH , θV ) = g f (−XH , θV ) = 0 = g f (XH , θV ) = g f (XH , JθV ),
(3) g f (JωV ,YH) = g f (ωV ,YH) = 0 = g f (ωV ,−YH) = g f (ωV , JYH),
(4) g f (JωV , θV ) = g f (ωV , θV ) = g f (ωV , JθV ),

i.e., g f is pure with respect to J. Hence (T ∗M, J, g f ) is an almost para-complex Norden manifold. �

Proposition 4.2. Let (M, g) be a Riemannian manifold, (T ∗M, g f ) be its cotangent bundle equipped with the new class
of metrics and the almost para-complex structure J defined by (4.3), then we get

1. (φJg f )(XH ,YH ,ZH) = 0,
2. (φJg f )(ωV ,YH ,ZH) = 0,
3. (φJg f )(XH , θV ,ZH) = 2g f ((pR(X,Z))V , θV )

,
4. (φJg f )(XH ,YH , ηV ) = 2g f ((pR(X,Y))V , ηV )

,
5. (φJg f )(ωV , θV ,ZH) = 0,
6. (φJg f )(ωV ,YH , ηV ) = 0,

7. (φJg f )(XH , θV , ηV ) =
−2
f

X( f )g f (θV , ηV ),

8. (φJg f )(ωV , θV , ηV ) = 0,

for all X,Y,Z ∈ =1
0(M) and ω, θ, η ∈ =0

1(M), where R denote the curvature tensor of (M, g).

Proof. We calculate Tachibana operator φJ applied to the pure metric g f . This operator is characterized by (4.1), from
Lemma 3.2 we have

1. (φJg f )(XH ,YH ,ZH) = (JXH)g f (YH ,ZH) − XHg f (JYH ,ZH) + g f ((LYH J)XH ,ZH)
+ g f (YH , (LZH J)XH)

= −XHg f (YH ,ZH) + XHg f (YH ,ZH) + g f (LYH JXH − J(LYH XH),ZH)
+g f (YH , LZH JXH − J(LZH XH)

)
= −g f ([YH , XH],ZH)

− g f (J[YH , XH],ZH)
− g f (YH , [ZH , XH]

)
− g f (YH , J[ZH , XH]

)
= 0.

2. (φJg f )(ωV ,YH ,ZH) = (JωV )g f (YH ,ZH) − ωVg f (JYH ,ZH)
)

+ g f ((LYH J)ωV ,ZH)
+ g f (YH , (LZH J)ωV )

= +g f ([YH , ωV ],ZH)
− g f (J[YH , ωV ],ZH)

+ g f (YH , [ZH , ωV ]
)
− g f (YH , J[ZH , ωV ]

)
= 2g f ([YH , ωV ],ZH)

+ 2g f (YH , [ZH , ωV ]
)

= 2g f ((∇Yω)V ,ZH)
+ 2g f (YH , (∇Zω)V )

= 0.

3. (φJg f )(XH , θV ,ZH) = (JXH)g f (θV ,ZH) − XHg f (JθV ,ZH) + g f ((LθV J)XH ,ZH)
+ g f (θV , (LZH J)XH)

= −g f ([θV , XH],ZH)
− g f (J[θV , XH],ZH)

− g f (θV , [ZH , XH]
)
− g f (θV , J[ZH , XH]

)
= −2g f (θV , [ZH , XH]

)
= −2g f (θV , (pR(Z, X))V )
= 2g f ((pR(X,Z))V , θV )

.
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4. (φJg f )(XH ,YH , ηV ) = (JXH)g f (YH , ηV ) − XHg f (JYH , ηV ) + g f ((LYH J)XH , ηV )
+ g f (YH , (LηV J)XH)

= −g f ([YH , XH], ηV )
− g f (J[YH , XH], ηV )

− g f (YH , [ηV , XH]
)
− g f (YH , J[ηV , XH]

)
= −2g f ([YH , XH], ηV )
= 2g f ((pR(X,Y))V , ηV )

.

The other formulas are obtained by a similar calculation. �

Therefore, we have the following result.

Theorem 4.3. Let (M, g) be a Riemannian manifold, (T ∗M, g f ) be its cotangent bundle equipped with the new class
of metrics and the almost para-complex structure J defined by (4.3). The triple (T ∗M, J, g f ) is a para-Kähler-Norden
manifold if and only if M is flat and f is constant.

Proof. For all X,Y ,Z ∈ =1
0(T ∗M) such as X = XH , ωV , Y = YH , θV and Z = ZH , ηV ,

(φJg f ))(X,Y ,Z) = 0⇔


2g f ((pR(X,Z))V , θV )

= 0

2g f ((pR(X,Y))V , ηV )
= 0

−2
f

X( f )g f (θV , ηV ) = 0

⇔


pR(X,Z) = 0
pR(X,Y) = 0

X( f ) = 0
⇔ R = 0 and f = constant. �

Now we study a quasi-para-Kähler-Norden manifold. The basis class of non-integrable almost paracomplex man-
ifolds with para-Norden metric is the class of the quasi-para-Kähler manifolds. An almost para-complex Norden
manifold (M, ϕ, g) is a quasi-para-Kähler-Norden manifold, if

σ
X,Y,Z

g((∇Xϕ)Y,Z) = 0,

for all X,Y,Z ∈ =1
0(M), where σ is the cyclic sum by three arguments [6, 11]. It is well known that

σ
X,Y,Z

g((∇Xϕ)Y,Z) = 0⇔ σ
X,Y,Z

(φϕg)(X,Y,Z) = 0,

which was proven in [16].

Theorem 4.4. Let (M, g) be a Riemannian manifold, (T ∗M, g f ) be its cotangent bundle equipped with the new class
of metrics and the almost para-complex structure J defined by (4.3). The triple (T ∗M, J, g f ) is a quasi-para-Kähler-
Norden manifold if and only if f is constant.

Proof. For all X,Y ,Z ∈ =1
0(T ∗M),

σ
X,Y ,Z

(φJg f )(X,Y ,Z) = (φJg f )(X,Y ,Z) + (φJg f )(Y ,Z, X) + (φJg f )(Z, X,Y).

By virtue of Proposition 4.2, we have

σ
XH ,YH ,ZH

(φJg f )(XH ,YH ,ZH) = 0,

σ
ωV ,YH ,ZH

(φJg f )(ωV ,YH ,ZH) = 0,

σ
ωV ,θV ,ZH

(φJg f )(ωV , θV ,ZH) = −
2
f

Z( f )g f (ωV , θV ),

σ
ωV ,θV ,ηV

(φJg f )(ωV , θV , ηV ) = 0.

Then, to be (T ∗M, J, g f ) is a quasi-para-Kähler-Norden manifold it suffices that Z( f ) = 0, for any Z ∈ =1
0(M). i.e. f is

constant. �



A. Zagane, M. Zagane, Turk. J. Math. Comput. Sci., 13(2)(2021), 338–347 343

Now we study a generalization of the almost para-complex structure defined by (4.3).

Lemma 4.5. Let (M2m, ϕ) an almost para-complex manifold and define a tensor field Jϕ ∈ =1
1(T ∗M) by{

JϕXH = −(ϕX)H ,
JϕωV = ωV ,

(4.4)

for all X ∈ =1
0(M) and ω ∈ =0

1(M).
Then the couple (T ∗M, Jϕ) is an almost para-complex manifold .

Proof. By virtue of (4.4), we have
J2
ϕXH = Jϕ(JϕXH) = Jϕ(−(ϕX)H) = (ϕ(ϕX))H = (ϕ2X)H ,

J2
ϕω

V = Jϕ(JϕωV ) = JϕωV = ωV ,

for any X ∈ =1
0(M) and ω ∈ =0

1(M). Hence ϕ2 = idM then J2
ϕ = idT ∗M . �

Theorem 4.6. Let (M2m, ϕ, g) be an almost para-complex Norden manifold, (T ∗M, g f ) be its cotangent bundle equipped
with the new class of metrics and the almost para-complex structure Jϕ defined by (4.4). The triple (T ∗M, Jϕ, g f ) is an
almost para-complex Norden manifold.

Proof. For all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M), from (4.4) we have

(i) g f (JϕXH ,YH) = g f (−(ϕX)H ,YH) = −g(ϕX,Y) = −g(X, ϕY)

= g f (XH ,−(ϕY)H) = g f (XH , JϕYH),

(ii) g f (JϕXH , θV ) = g f (−(ϕX)H , θV ) = 0 = g f (XH , θV ) = g f (XH , JϕθV ),

(iii) g f (JϕωV , θV ) = g f (ωV , θV ) = g f (ωV , JϕθV ).

Since g is pure with respect to ϕ, then g f is pure with respect to Jϕ. �

Proposition 4.7. Let (M2m, ϕ, g) be an almost para-complex Norden manifold, (T ∗M, g f ) be its cotangent bundle
equipped with the new class of metrics and the almost para-complex structure Jϕ defined by (4.4), then we get

1. (φJϕg f )(XH ,YH ,ZH) = −(φϕg)(X,Y,Z),

2. (φJϕg f )(ωV ,YH ,ZH) = 0,

3. (φJϕg f )(XH , θV ,ZH) = g f ((pR(ϕX + X,Z))V , θV )
,

4. (φJϕg f )(XH ,YH , ηV ) = g f ((pR(ϕX + X,Y))V , ηV )
,

5. (φJϕg f )(ωV , θV ,ZH) = 0,

6. (φJϕg f )(ωV ,YH , ηV ) = 0,

7. (φJϕg f )(XH , θV , ηV ) =
−1
f

(ϕX + X)( f )g f (θV , ηV ),

8. (φJϕg f )(ωV , θV , ηV ) = 0,

for all X,Y,Z ∈ =1
0(M) and ω, θ, η ∈ =0

1(M), where R denote the curvature tensor of (M, g).

Proof. We calculate Tachibana operator φJϕ applied to the pure metric g f . With the same steps in the proof of Propo-
sition 4.2. �

We get the results.

Theorem 4.8. Let (M2m, ϕ, g) be an almost para-complex Norden manifold, (T ∗M, g f ) be its cotangent bundle equipped
with the new class of metrics and the almost para-complex structure Jϕ defined by (4.4). The triple (T ∗M, Jϕ, g f ) is a
para-Kähler-Norden manifold if and only if M is flat para-Kähler-Norden manifold and f is constant.
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Proof. For all X,Y ,Z ∈ =1
0(T ∗M) such as X = XH , ωV , Y = YH , θV and Z = ZH , ηV

(φJϕg f ))(X,Y ,Z) = 0 ⇔


(φϕg)(X,Y,Z) = 0
g f ((pR(ϕX + X,Z))V , θV )

= 0
g f ((pR(ϕX + X,Y))V , ηV )

= 0
−1
f

(ϕXX)( f )g f (θV , ηV ) = 0

⇔


(φϕg)(X,Y,Z) = 0
pR(ϕX + X,Z) = 0
pR(ϕX + X,Y) = 0
(ϕX + X)( f ) = 0.

Since ϕ , ±idM then

(φJϕg f ))(X,Y ,Z) = 0⇔


φϕg = 0

R = 0
f = constant.

�

Theorem 4.9. Let (M2m, ϕ, g) be a para-Kähler-Norden manifold, (T ∗M, g f ) be its cotangent bundle equipped with
the new class of metrics and the almost para-complex structure Jϕ defined by (4.4). The triple (T ∗M, Jϕ, g f ) is a
quasi-para-Kähler-Norden manifold if and only if f is constant.

Proof. For all X,Y ,Z ∈ =1
0(T ∗M),

σ
X,Y ,Z

(φJϕg f )(X,Y ,Z) = (φJϕg f )(X,Y ,Z) + (φJϕg f )(Y ,Z, X) + (φJϕg f )(Z, X,Y).

By virtue of Proposition 4.7 and using (4.2) we have

σ
XH ,YH ,ZH

(φJϕg f )(XH ,YH ,ZH) = −(φϕg)(X,Y,Z) − (φϕg)(Y,Z, X) − (φϕg)(Z, X,Y)

= 0,
σ

ωV ,YH ,ZH
(φJϕg f )(ωV ,YH ,ZH) = g f ((pR(ϕY + Y,Z))V , ωV )

+ g f ((pR(ϕZ + Z,Y))V , ωV )
= g f ((pR(ϕY,Z) − pR(Y, ϕZ))V , ωV )
= 0,

σ
ωV ,θV ,ZH

(φJϕg f )(ωV , θV ,ZH) = −
1
f

(ϕZ + Z)( f )g f (ωV , θV ),

σ
ωV ,θV ,ηV

(φJϕg f )(ωV , θV , ηV ) = 0

then, to be (T ∗M, Jϕ, g f ) is a quasi-para-Kähler-Norden manifold it suffices that (ϕZ + Z)( f ) = 0, for any Z ∈ =1
0(M).

i.e. f is constant. �

Now consider the almost product structure Jϕ defined by (4.4), we define a tensor field S of type (1, 2) and linear
connection ∇̂ on T ∗M by,

S (X,Y) =
1
2
[
(∇ f

JϕY
Jϕ)X + Jϕ

(
(∇ f

Y
Jϕ)X

)
− Jϕ

(
(∇ f

X
Jϕ)Y

)]
, (4.5)

∇̂XY = ∇
f
X

Y − S (X,Y), (4.6)

for all X,Y ∈ =1
0(T ∗M), where ∇ f is the Levi-Civita connection of (T ∗M, g f ) given by Theorem 3.3. ∇̂ is an almost

product connection on T ∗M (see [5, p.151] for more details).

Lemma 4.10. Let (M2m, ϕ, g) be a para-Kähler-Norden manifold, T ∗M be its cotangent bundle equipped with the new
class of metrics g f and the almost product structure Jϕ defined by (4.4). Then tensor field S is as follows

(1) S (XH ,YH) = 0,
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(2) S (XH , θV ) = −
1

2 f
(ϕX + X)( f )θV ,

(3) S (ωV ,YH) =
1

4 f
(ϕY + Y)( f )ωV ,

(4) S (ωV , θV ) = −
1
4

g−1(ω, p)g−1(θ, p)(ϕ grad f + grad f )H ,

for all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M),

Proof. (1) Using (4.4) and (4.5), we have

S (XH ,YH) =
1
2
[
(∇ f

JϕYH Jϕ)XH + Jϕ
(
(∇ f

YH Jϕ)XH)
− Jϕ

(
(∇ f

XH Jϕ)YH)]
=

1
2
[
∇

f
(ϕY)H (ϕX)H + Jϕ(∇ f

(ϕY)H XH) − Jϕ
(
∇

f
YH (ϕX)H)

− ∇
f
YH XH + Jϕ

(
∇

f
XH (ϕY)H)

+ ∇
f
XH YH]

=
1
2
[
(∇ϕYϕX)H − ϕ(∇ϕY X)H + ϕ(∇YϕX)H − (∇Y X)H − ϕ(∇XϕY)H + (∇XY)H]

.

Then, we have

S (XH ,YH) = 0.

(2) By a similar calculation to (1), we have

S (XH , θV ) =
1
2
[
(∇ f

JϕθV Jϕ)XH + Jϕ
(
(∇ f

θV Jϕ)XH)
− Jϕ

(
(∇ f

XH Jϕ)θV )]
=

1
2
[
− ∇

f
θV (ϕX)H − Jϕ(∇ f

θV XH) − Jϕ
(
∇

f
θV (ϕX)H)

− ∇
f
θV XH − Jϕ

(
∇

f
XHθ

V )
+ ∇

f
XHθ

V ]
=

1
2
[
−

1
2 f

(ϕX)( f )θV −
1

2 f
X( f )θV −

1
2 f

(ϕX)( f )θV −
1

2 f
X( f )θV − (∇Xθ)V −

1
2 f

X( f )θV

+(∇Xθ)V +
1

2 f
X( f )θV ]

=
1
2
[
−

1
f

(ϕX)( f )θV −
1
f

X( f )θV ]
= −

1
2 f

(ϕX + X)( f )θV .

The other formulas are obtained by a similar calculation. �

Theorem 4.11. Let (M2m, ϕ, g) be a para-Kähler-Norden manifold, T ∗M be its cotangent bundle equipped with the
new class of metrics g f and the almost product structure Jϕ defined by (4.4). Then the almost product connection ∇̂
defined by (4.6) is as follows

(1) ∇̂XH YH = (∇XY)H ,

(2) ∇̂XHθV = (∇Xθ)V +
1

2 f
(ϕX + 2X)( f )θV ,

(3) ∇̂ωV YH = −
1

4 f
(ϕY − Y)( f )ωV ,

(4) ∇̂ωV θV =
1
4

g−1(ω, p)g−1(θ, p)(ϕ grad f − grad f )H +
1
r2 g−1(ω, θ)PV ,

for all X,Y ∈ =1
0(M) and ω, θ ∈ =0

1(M).

Proof. The proof of Theorem 4.11 follows directly from Theorem 3.3, Lemma 4.10 and formula (4.6). �

Lemma 4.12. Let (M2m, ϕ, g) be a para-Kähler-Norden manifold, T ∗M be its cotangent bundle equipped with the new
class of metrics g f and the almost product structure Jϕ defined by (4.4) and T̂ denote the torsion tensor of ∇̂, then we
have

1) T̂ (XH ,YH) = 0,



A Study of Para-Kähler-Norden Structures on Cotangent Bundle with The New Class of Metrics 346

2) T̂ (XH , θV ) =
3

4 f
(ϕX + X)( f )θV ,

3) T̂ (ωV ,YH) = −
3

4 f
(ϕY + Y)( f )ωV ,

4) T̂ (ωV , θV ) = 0,
for all X,Y ∈ =1

0(M) and ω, θ ∈ =0
1(M).

Proof. The proof of Lemma 4.12 follows directly from Lemma 4.10 and formula

T̂ (X,Y) = ∇̂XY − ∇̂Y X − [X,Y]

= S (Y , X) − S (X,Y),

for all X,Y ∈ =1
0(T ∗M). �

From Lemma 4.12 we obtain:

Theorem 4.13. Let (M2m, ϕ, g) be a para-Kähler-Norden manifold, T ∗M be its cotangent bundle equipped with the
new class of metrics g f and ∇̂ the almost product connection defined by (4.6), then ∇̂ is symmetric if and only if f is
constant.
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