
ISSN 2148-838Xhttps://doi.org/10.13069/jacodesmath.867532

J. Algebra Comb. Discrete Appl.
8(1) • 9–22

Received: 30 June 2020
Accepted: 9 September 2020

Journal of Algebra Combinatorics Discrete Structures and Applications

Hyper-Zagreb indices of graphs and its applications

Research Article

Girish V. Rajasekharaiah, Usha P. Murthy

Abstract: The first and second Hyper-Zagreb index of a connected graph G is defined by HM1(G) =∑
uv∈E(G)[d(u) + d(v)]2 and HM2(G) =

∑
uv∈E(G)[d(u).d(v)]

2. In this paper, the first and sec-
ond Hyper-Zagreb indices of certain graphs are computed. Also the bounds for the first and second
Hyper-Zagreb indices are determined. Further linear regression analysis of the degree based indices
with the boiling points of benzenoid hydrocarbons is carried out. The linear model, based on the
Hyper-Zagreb index, is better than the models corresponding to the other distance based indices.
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1. Introduction

In theoretical chemistry, a molecular graph represents the topology of a molecule, by considering how
the atoms are connected. This can be modeled by a graph taking vertices as atoms and edges as covalent
bonds. The properties of these graph-theoretic models can be used in the study of quantitative structure–
property relationship (QSPR) and quantitative structure–activity relationship (QSAR) of molecules by
obtaining numerical graph invariants. Many such graph invariant indices have been studied. The oldest
well known parameter is the Wiener index introduced by Harold Wiener in 1947, to study the chemical
properties of paraffins [32].

For a graph theoretic terminology, we refer the books [3, 16]. Let G be a connected graph of order
n and size m. Let V (G) be the vertex set and E(G) be the edge set of G. The edge joining the vertices
u and v is denoted by uv. The degree of a vertex u is the number of edges incident to it and is denoted
by d(u). As usual Pn,K1,n−1, Cn, Kn, and Wn denote path, star, cycle, complete graph and wheel graph
on n vertices and Fn be the friendship graph with n blocks, respectively.
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The Cartesian product G�H of two graphs G and H is the graph with vertex set V (G)×V (H) and
edge set contains the edge (u, v)(u

′
, v

′
) if and only if u = u

′
and v and v

′
are adjacent in H or v = v

′

and u and u
′
are adjacent in G.

The Wiener index W (G) of a connected graph G is defined as the sum of the distances between all
pairs of vertices of G [32]. That is, W =

∑
u,v∈V (G) d(u, v), d(u, v) is the shortest distance between u and

v. The Wiener index is also called as gross status [15] and total status[3]. For more about the Wiener
index one can refer [4, 7, 14, 24–26, 31].

The first and second Zagreb indices of a graph G are defined as [13],

M1(G) =
∑

uv∈E(G)[d(u) + d(v)] and M2(G) =
∑

uv∈E(G)[d(u).d(v)]

The Zagreb indices were used in the structure property model [12, 29]. Recent results on the Zagreb
indices can be found in [5, 10, 11, 19, 22, 33].
The eccentric connectivity indices of a connected graph G are defined as [1, 30]

ξ1(G) =
∑

uv∈E(G)[e(u) + e(v)] and ξ2(G) =
∑

uv∈E(G)[e(u).e(v)].

Details on mathematical properties and chemical applications of eccentric connectivity indices can be
found in [2, 6, 8, 9, 17, 18, 20, 21, 28, 34].

The first status connectivity index S1(G) and second status connectivity index S2(G) [27] of a
connected graph G is defined as:

S1(G) =
∑

uv∈E(G)[σ(u) + σ(v)] and S2(G) =
∑

uv∈E(G)[σ(u).σ(v)], where σ(u) =
∑

uv∈E(G) d(u, v).

Harishchandra S. Ramane and Ashwini S. Yalnaik [27] had applied linear regression analysis of the
distance based indices with the boiling points of benzenoid hydrocarbons and they have shown that it is
better than any other distance based indices. Motivated by this, we applied linear regression analysis of
the degree based indices with the boiling points of benzenoid hydrocarbons.

The first and second Hyper-Zagreb index of a connected graph G [19] is defined by

HM1(G) =
∑

uv∈E(G)[d(u) + d(v)]2 and HM2(G) =
∑

uv∈E(G)[d(u).d(v)]
2.

In this paper, the first and second Hyper-Zagreb indices of certain graphs are computed. Also the
bounds for the first and second Hyper-Zagreb indices are determined. Further linear regression analysis
of the degree based indices with the boiling points of benzenoid hydrocarbons is carried out. The linear
model, based on the Hyper-Zagreb index, is better than the models corresponding to the other distance
based indices.

2. Computation of first and second Hyper-Zagreb indices of stan-
dard graphs

(i) For any path Pn with n vertices,

HM1(Pn) =

{
4 n = 2
16p+ 2 n = p+ 2, p ≥ 1

HM2(Pn) =

{
1 n = 2
16p− 8 n = p+ 2, p ≥ 1
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(ii) For any cycle Cn,
HM1(Cn) = 16n=HM2(Cn).

(iii) For any star graph K1,n−1,
HM1(K1,n−1) = n2(n− 1)

HM2(K1,n−1) = (n− 1)3.

(iv) For any complete graph Kn,
HM1(Kn) = 2n(n− 1)3

HM2(Kn) =
n(n−1)5

2 .

(v) For any wheel graph Wn,
HM1(Wn) = (n− 1)[(n+ 2)2 + 62]

HM2(Wn) = 9(n− 1)[(n− 1)2 + 32].

(vi) For any friendship graph Fn with n blocks,
HM1(Fn) = 8n3 + 16n2 + 24n.

HM2(Fn) = 32n3 + 16n.

3. Bounds for first and second Hyper-Zagreb indices

Theorem 3.1. Let G be the connected graph with n vertices and m edges, then

4m ≤ HM1(G) ≤ 4m(n− 1)2.

Equality holds for K2.

Proof. For the lower bound, since for the connected graph G, the degree of each vertex is greater than
or equal 1. Hence

HM1(G) ≥
∑

uv∈E(G)

[d(u) + d(v)]2

=
∑

uv∈E(G)

[1 + 1]2

=
∑

uv∈E(G)

4 = 4m.

For the upper bound, since for the connected graph G, the degree of each of vertex is less than or
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equal to n− 1. Hence

HM1(G) ≤
∑

uv∈E(G)

[d(u) + d(v)]2

=
∑

uv∈E(G)

[n− 1 + n− 1]2

=
∑

uv∈E(G)

4(n− 1)2

= 4m(n− 1)2.

Equality: For K2, m = 1, n = 2, the result follows from 2(i) and 2(iv).

Theorem 3.2. Let G be the connected graph with n vertices and m edges, then

m ≤ HM2(G) ≤ m(n− 1)4.

Equality holds for K2.

Proof. For the lower bound, since for the connected graph G, the degree of each vertex is greater than
or equal 1. Hence

HM1(G) ≥
∑

uv∈E(G)

[d(u).d(v)]2

=
∑

uv∈E(G)

[1.1]2

=
∑

uv∈E(G)

1

= m.

For the upper bound, since for the connected graph G, the degree of each of vertex is less than or equal
to n− 1. Hence

HM1(G) ≤
∑

uv∈E(G)

[d(u) + d(v)]2

=
∑

uv∈E(G)

[(n− 1)(n− 1)]2

=
∑

uv∈E(G)

(n− 1)4

= m(n− 1)4.

Equality: For K2, m = 1, n = 2, the result follows from 2(i) and 2(iv).

Corollary 3.3. Let G be a connected graph with n vertices, the

2n ≤ HM1(G) ≤ 2n(n− 1)3

n− 1 ≤ HM2(G) ≤
n(n− 1)5

2
.

Theorem 3.4. For the connected graph G = Pm�Pn,m, n ≥ 3,

HM1(G) = 128mn− 150(m+ n) + 144

HM2(G) = 512mn− 830(m+ n) + 1236.
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Proof. Let V (G) = {(ui, vj), j = 1, 2, 3, . . . , n}i=m
i=1 and E(G) = A ∪ B ∪ C ∪ D, where

A = {((ui, vj)(ur, vs))/(ui, vj), (ur, vs) ∈ V (G), d((ui, vj)) = 2, d((ur, vs)) = 3} with |A| = 8,
B = {((ui, vj)(ur, vs))/(ui, vj), (ur, vs) ∈ V (G), d((ui, vj)) = 3, d((ur, vs)) = 3} with |B| =
2[(m− 3)+ (n− 3)], C = {((ui, vj)(ur, vs))/(ui, vj), (ur, vs) ∈ V (G), d((ui, vj)) = 3, d((ur, vs)) = 4} with
|C| = 2[(m−2)+(n−2)], D = {((ui, vj)(ur, vs))/(ui, vj), (ur, vs) ∈ V (G), d((ui, vj)) = 4, d((ur, vs)) = 4}
with |D| = (m−3)(n−2)+(n−3)(m−2) such that |A|+ |B|+ |C|+ |D| = |E(G)| = n(m−1)+(n−1)m.

Case 1: The first Hyper-Zagreb index is

HM1(G) =
∑

(ui,vj)(ur,vs)∈E(G)[d((ui, vj)) + d((ur, vs))]
2 .

=
∑

(ui,vj)(ur,vs)∈A[d((ui, vj)) + d((ur, vs))]
2 +

∑
(ui,vj)(ur,vs)∈B [d((ui, vj)) + d((ur, vs))]

2+

∑
(ui,vj)(ur,vs)∈C [d((ui, vj)) + d((ur, vs))]

2 +
∑

(ui,vj)(ur,vs)∈D[d((ui, vj)) + d((ur, vs))]
2.

=
∑

(ui,vj)(ur,vs)∈A[2 + 3]2 +
∑

(ui,vj)(ur,vs)∈B [3 + 3]2 +
∑

(ui,vj)(ur,vs)∈C [3 + 4]2+

∑
(ui,vj)(ur,vs)∈D[4 + 4]2.

= 8.52 + 2[(m− 3) + (n− 3)].62 + 2[(m− 2) + (n− 2)].72

+[(m− 3)(n− 2) + (n− 3)(m− 2)].82.

= 128mn− 150(m+ n) + 144.

Case 2: The second Hyper-Zagreb index is

HM2(G) =
∑

(ui,vj)(ur,vs)∈E(G)[d((ui, vj)).d((ur, vs))]
2 .

=
∑

(ui,vj)(ur,vs)∈A[d((ui, vj)).d((ur, vs))]
2 +

∑
(ui,vj)(ur,vs)∈B [d((ui, vj)).d((ur, vs))]

2+

∑
(ui,vj)(ur,vs)∈C [d((ui, vj)).d((ur, vs))]

2 +
∑

(ui,vj)(ur,vs)∈D[d((ui, vj)).d((ur, vs))]
2.

=
∑

(ui,vj)(ur,vs)∈A[2.3]
2 +

∑
(ui,vj)(ur,vs)∈B [3.3]

2 +
∑

(ui,vj)(ur,vs)∈C [3.4]
2+

∑
(ui,vj)(ur,vs)∈D[4.4]2.

= 8.62 + 2[(m− 3) + (n− 3)].92 + 2[(m− 2) + (n− 2)].122

+[(m− 3)(n− 2) + (n− 3)(m− 2)].162.

= 512mn− 830(m+ n) + 1236.

Theorem 3.5. For the connected graph G = Cm�Pn,m, n ≥ 3,

HM1(G) = 128mn− 150m
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HM2(G) = 512mn− 830m.

Proof. Let V (G) = {(ui, vj), j = 1, 2, 3, . . . , n}i=m
i=1 and E(G) = A ∪B ∪ C, where

A = {((ui, vj)(ur, vs))/(ui, vj), (ur, vs) ∈ V (G), d((ui, vj)) = 3, d((ur, vs)) = 3} with |A| = 2(m− 1) + 2,
B = {((ui, vj)(ur, vs))/(ui, vj), (ur, vs) ∈ V (G), d((ui, vj)) = 3, d((ur, vs)) = 4} with |B| = 2m, C =
{((ui, vj)(ur, vs))/(ui, vj), (ur, vs) ∈ V (G), d((ui, vj)) = 4 with |C| = [(m−1)(n−2)+m(n−3)+(n−2)]
such that |A|+ |B|+ |C| = |E(G)| = n(m− 1) + (n− 1)m+ n.

Case 1: The first Hyper-Zagreb index is

HM1(G) =
∑

(ui,vj)(ur,vs)∈E(G)[d((ui, vj)) + d((ur, vs))]
2 .

=
∑

(ui,vj)(ur,vs)∈A[d((ui, vj)) + d((ur, vs))]
2 +

∑
(ui,vj)(ur,vs)∈B [d((ui, vj))+

d((ur, vs))]
2 +

∑
(ui,vj)(ur,vs)∈C [d((ui, vj)) + d((ur, vs))]

2.

=
∑

(ui,vj)(ur,vs)∈A[3 + 3]2 +
∑

(ui,vj)(ur,vs)∈B [3 + 4]2+

∑
(ui,vj)(ur,vs)∈C [4 + 4]2

= [2(m− 1) + 2].62 + 2m.72 + [(m− 1)(n− 2) +m(n− 3) + (n− 2)].82

= 128mn− 150m.

Case 2: The second Hyper-Zagreb index is

HM2(G) =
∑

(ui,vj)(ur,vs)∈E(G)[d((ui, vj)).d((ur, vs))]
2 .

=
∑

(ui,vj)(ur,vs)∈A[d((ui, vj)).d((ur, vs))]
2 +

∑
(ui,vj)(ur,vs)∈B [d((ui, vj)).d((ur, vs))]

2+

∑
(ui,vj)(ur,vs)∈C [d((ui, vj)).d((ur, vs))]

2.

=
∑

(ui,vj)(ur,vs)∈A[3.3]
2 +

∑
(ui,vj)(ur,vs)∈B [3.4]

2 +
∑

(ui,vj)(ur,vs)∈C [4.4]
2+

= [2(m− 1) + 2].92 + 2m.122 + [(m− 1)(n− 2) +m(n− 3) + (n− 2)].162

= 512mn− 830m.

Theorem 3.6. For the connected graph G = Cm�Cn,

HM1(G) = 192mn− 64(m+ n)

HM2(G) = 768mn− 256(m+ n).

Proof. Let V (G) = {(ui, vj), j = 1, 2, 3, . . . , n}i=m
i=1 . For the graph G = Cm�Cn, the degree of each

vertex is 4.

14
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Case 1: The first Hyper-Zagreb index is

HM1(G) =
∑

(ui,vj)(ur,vs)∈E(G)[d((ui, vj)) + d((ur, vs))]
2

=
∑

(ui,vj)(ur,vs)∈E(G)[4 + 4]2

= [(m− 1)n+m(n− 1) +mn]82 = 192mn− 64(m+ n).

Case 2: The second Hyper-Zagreb index is

HM2(G) =
∑

(ui,vj)(ur,vs)∈E(G)[d((ui, vj)) + d((ur, vs))]
2

=
∑

(ui,vj)(ur,vs)∈E(G)[4 + 4]2

= [(m− 1)n+m(n− 1) +mn]162 = 768mn− 256(m+ n).

4. Regression model for boiling point

Here we investigate the correlation between the boiling point (BP) of benzenoid hydrocarbons and
the distance based indices of the corresponding molecular graphs. Experimental values of boiling points
of benzenoid hydrocarbons represented in Fig.1 are taken from [23]. The scatter plot between BP and
indices HM1(G), HM2(G), S1, S2, ξ1, ξ2 and W are shown in Figs. 2, 3, 4, 5, 6, 7 and 8.

Figure 1. Molecular graphs of benzenoid hydrocarbons under consideration
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Figure 2. Scatter plot between the boiling point (BP) and the first Hyper-Zagreb index (HM1)

Figure 3. Scatter plot between the boiling point (BP) and the second Hyper-Zagreb index (HM2)
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Figure 4. Scatter plot between the boiling point (BP) and the first status connectivity index
(S1)

Figure 5. Scatter plot between the boiling point (BP) and the second status connectivity index
(S2)
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Figure 6. Scatter plot between the boiling point (BP) and the first eccentricity index (S2)

Figure 7. Scatter plot between the boiling point (BP) and the second eccentricity index (S2)
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Figure 8. Scatter plot between the boiling point (BP) and index (W )

The linear regression models for the boiling point (BP) using the data of Table 1 are obtained using
the least square fitting procedure as implemented in NCSS Statistics programme.

In Table 2, the model (1), shows that the correlation of the experimental boiling point of benzenoid
hydrocarbons with first hyper zagreb index is better (R = 0.974) than the correlation with other distance
based indices considered in this paper. The linear model (2) is also good (R = 0.945) compared to the
models (4), (5), (6) and (7).

5. Conclusion

For the degree based topological indices namely first and second Hyper-Zagreb index of graphs, we
computed these indices for some specific graphs. Also the bounds for these indices are reported. Further
a regression analysis of the boiling points of benzenoid hydrocarbons with the degree based indices have
been carried out and compared the linear models. The linear model obtained, based on the status index,
is better than the corresponding model based on the other distance indices. Among the distance based
topological indices considered in this paper, the first Hyper-Zagreb index has good correlation with the
boiling point of benzenoid hydrocarbons.
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Table 1. The values of experimental boiling points, degree and distance based indices of 21
benzenoid hydrocarbons

Table 2. Correlation coefficient and standard error of the estimation
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