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Abstract: For any integer k ≥ 3 , we define sunlet graph of order 2k, denoted by L2k, as the graph consisting
of a cycle of length k together with k pendant vertices, each adjacent to exactly one vertex of the
cycle. In this paper, we give necessary and sufficient conditions for the existence of L8-decomposition
of tensor product and wreath product of complete graphs.
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1. Introduction

All graphs considered here are finite, simple and undirected. For the standard graph-theoretic termi-
nology the readers are referred to [7]. A cycle of length k is called k-cycle and it is denoted by Ck. Let Km

denotes the complete graph on m vertices and Km,n denotes the complete bipartite graph with m and n
vertices in the parts. We denote the complete m-partite graph with n1, n2, . . . , nm vertices in the parts by
Kn1,n2,...,nm . For any integer λ > 0, λG denotes the graph consisting of λ edge-disjoint copies of G. The
complement of the graph G is denoted by G. The subgraph of G induced by S ⊆ V (G) is denoted as 〈S〉.
For any two graphs G and H of orders m and n, respectively, the corona product G�H is the graph ob-
tained by taking one copy ofG,m copies ofH and then joining the ith vertex ofG to every vertex in the ith
copy ofH. We define the sunlet graph L2k with V (L2k) = {x1, x2, . . . , xk, xk+1, xk+2, . . . , x2k} and E(L2k)
= {xixi+1, xixk+i | i = 1, 2, ..., k and subscripts of the first term is taken addition modulo k}. We de-

note it by L2k =

(
x1 x2 . . . xk
xk+1 xk+2 . . . x2k

)
. Clearly, Ck �K1

∼= L2k.

For two graphs G and H, their tensor product G×H and lexicographic or wreath product G⊗H have

∗ This work was supported by Department of Science and Technology, University Grant Commission, Government
of India.
Kaliappan Sowndhariya(Corresponding Author), Appu Muthusamy; Department of Mathematics, Periyar Uni-

versity, Salem, Tamil Nadu, India (email: sowndhariyak@gmail.com, ambdu@yahoo.com).

41

https://orcid.org/0000-0001-9014-6916 


K. Sowndhariya, A. Muthusamy / J. Algebra Comb. Discrete Appl. 8(1) (2021) 41–51

the same vertex set V (G)×V (H) = {(g, h) : g ∈ V (G) and h ∈ V (H)} and their edge sets are defined as
follows:
E(G×H) = {(g, h)(g′, h′) : gg′ ∈ E(G) and hh′ ∈ E(H)},
E(G ⊗ H) = {(g, h)(g′, h′) : gg′ ∈ E(G) or g = g′ and hh′ ∈ E(H)}. It is well known that the above
products are associative and distributive over edge-disjoint unions of graphs and the tensor product is
commutative. It is easy to observe that Km ⊗Kn

∼= Kn,n,...n(m times).
We shall use the following notation throughout the paper. Let G and H be simple graphs with

vertex sets V (G) = {x1, x2, . . . , xn} and V (H) = {y1, y2, . . . , ym}. Then for our convenience, we write
V (G) × V (H) =

⋃n
i=1 Xi, where Xi stands for xi × V (H). Further, in the sequel, we shall denote the

vertices of Xi as
{
xji |1 ≤ j ≤ m

}
, where xji stands for the vertex (xi, yj) ∈ V (G)× V (H).

A labeling of a graph G with n edges is an injection ρ from V (G), the vertex set of G, into a subset
S ⊆ Z2n+1, the additive group Z2n+1. The length of an edge e = xy with end vertices x and y is defined
as l(xy) = min {ρ(x)− ρ(y), ρ(y)− ρ(x)}. Note that the subtraction is performed in Z2n+1 and hence
1 ≤ l(e) ≤ n. If the length of the n edges are distinct and is equal to {1, 2, . . . , n}, then ρ is a rosy
labeling ; moreover, if S ⊆ {1, 2, . . . , n}, then ρ is a graceful labeling. A graceful labeling is said to be an
α-labeling if there exists a number α0 with the property that for every edge e = xy in G with α(x) < α(y)
it holds that α(x) ≤ α0 < α(y).

By a decomposition of a graph G, we mean a list of edge-disjoint subgraphs of G whose union is G.
For a graph G, if E(G) can be partitioned into E1, E2, ..., Ek such that the subgraph induced by Ei is Hi,
for all i, 1 ≤ i ≤ k, then we say that H1, H2, ...,Hk decompose G and we write G = H1 ⊕H2 ⊕ ...⊕Hk,
since H1, H2, ...,Hk are edge-disjoint subgraphs of G. For 1 ≤ i ≤ k, if Hi

∼= H, we say that G has a H-
decomposition.

Study of H-decomposition of graphs is not new. Many authors around the world are working in the
field of cycle decomposition [4, 8, 9, 21, 22], path decomposition [24, 25], star decompositon [19, 23, 26, 27]
and Hamilton cycle decomposition [2, 3, 15, 16] problems in graphs. Here we consider the sunlet decompo-
sition of product graphs. Anitha and Lekshmi [5, 6] proved that n-sun decomposition of complete graph,
complete bipartite graph and the Harary graphs. Liang and Guo [17, 18] gave the existence spectrum of
a k-sun system of order v as k = 2, 4, 5, 6, 8. Fu et. al. [12, 13] obtained that 3-sun decompositions of
Kp,p,r, Knand embed a cyclic steiner triple system of order n into a 3-sun system of order 2n − 1, for
n = 1(mod 6). Further they obtained k-sun system when k = 6, 10, 14, 2t, for t > 1. Fu et. al. [11]
obtained the existence of a 5-sun system of order v. Gionfriddo et.al. [14] obtained the spectrum for
uniformly resolvable decompositions of Kv into 1-factor and h-suns. Akwu and Ajayi [1] obtained the
necessary and sufficient conditions for the existence of decomposition of Kn ⊗Km and (Kn − I)⊗Km,
where I denote the 1-factor of a complete graph into sunlet graph of order twice the prime.

In this paper, we obtain the decomposition of some product graphs into sunlet graphs of order eight
which is the least even order not proved so far for product graphs, which motivate us to consider this prob-
lem. In Section 2, we obtain the necessary and sufficient conditions for the existence of L8-decomposition
of complete bipartite graphs with part size m and n. In Section 3, we obtain the necessary and sufficient
conditions for the existence of L8-decomposition of tensor product of complete graphs. In Section 4, we
obtain the necessary and sufficient conditions for the existence of L8-decomposition of complete multi-
partite graphs with uniform part size.

To prove our results, we state the following:

Theorem 1.1. [20] For all n ≥ 3, Cn �K1 is an α-labeling.

Theorem 1.2. [10] Let G be a graph with n edges. If G admits a rosy labeling, then it decomposes
K2n+1; if G admits an α-labeling, then it decomposes K2np+1 for every p > 0.

Theorem 1.3. [13] Let t ≥ 2 be an integer. An L2.2t-decomposition of Kn exists if and only if n ≡
0 (or) 1 (mod 2t+2).

Remark 1.4. If n ≡ 0 (mod 4), then K4,n can be decomposed as copies of K4,4 and L8- decomposition
of K4,4 is shown in below figure. Therefore L8-decomposition exists in K4,n for n is a multiple of 4.
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Figure 1. L8- decomposition of K4,4.

2. L8- decomposition of Km,n

Now we obtain the necessary and sufficient conditions for the existence of an L8-decomposition of
Km,n as follows. Let the vertices of Km,n be {x1, x2, ..., xm, y1, y2, ..., yn}.

Lemma 2.1. There exists an L8- decomposition of K8,6.

Proof. We exhibit the L8- decomposition of K8,6 as follows:(
x1 y1 x2 y2
y3 x5 y4 x6

)
,
(
x3 y3 x4 y4
y5 x2 y6 x1

)
,
(
x5 y5 x6 y6
y3 x1 y4 x2

)
,
(
x7 y5 x8 y6
y1 x2 y2 x1

)
,(

x7 y3 x8 y4
y2 x6 y1 x5

)
,
(
x3 y1 x4 y2
y6 x6 y5 x5

)
.

Lemma 2.2. There exists an L8- decomposition of K8,7.

Proof. We exhibit the L8- decomposition of K8,7 as follows:(
x1 y1 x2 y2
y5 x4 y7 x7

)
,
(
x3 y3 x4 y4
y2 x1 y5 x2

)
,
(
x5 y5 x6 y6
y4 x3 y7 x1

)
,
(
x7 y1 x8 y7
y3 x6 y6 x5

)
,(

x7 y4 x8 y5
y6 x1 y3 x2

)
,
(
x3 y6 x4 y7
y1 x2 y2 x1

)
,
(
x5 y2 x6 y3
y1 x8 y4 x2

)
.

Lemma 2.3. There exists an L8- decomposition of K8,9.

Proof. We exhibit the L8- decomposition of K8,9 as follows:(
x1 y1 x2 y2
y3 x6 y4 x7

)
,
(
x3 y3 x4 y4
y8 x5 y5 x6

)
,
(
x5 y5 x6 y6
y1 x3 y7 x4

)
,
(
x7 y7 x8 y8
y5 x4 y6 x5

)
,(

x3 y1 x4 y9
y6 x8 y2 x7

)
,
(
x5 y2 x6 y9
y7 x3 y8 x8

)
,
(
x7 y3 x8 y4
y1 x6 y2 x5

)
,
(
x1 y5 x2 y6
y4 x8 y9 x7

)
,(

x1 y7 x2 y8
y9 x3 y3 x4

)
.

Lemma 2.4. There exists an L8- decomposition of K12,6.

Proof. We exhibit the L8- decomposition of K12,6 as follows:(
x1 y1 x2 y2
y3 x12 y4 x11

)
,
(
x3 y3 x4 y4
y5 x2 y6 x1

)
,
(
x5 y5 x6 y6
y1 x1 y2 x2

)
,
(
x7 y1 x8 y2
y3 x9 y4 x10

)
,(

x9 y3 x10 y4
y6 x11 y5 x12

)
,
(
x11 y5 x12 y6
y1 x2 y2 x1

)
,
(
x3 y1 x4 y2
y6 x10 y5 x9

)
,
(
x5 y3 x6 y4
y2 x12 y1 x11

)
,(

x7 y5 x8 y6
y4 x9 y3 x10

)
.

Lemma 2.5. There is no L8- decomposition of K8,5.

43



K. Sowndhariya, A. Muthusamy / J. Algebra Comb. Discrete Appl. 8(1) (2021) 41–51

Proof. Let A and B be the partite set of K8,5 such that |A| = 8 and |B| = 5. In L8, four vertices are
of degree 3 and four vertices are of degree 1. Since K8,5 is a bipartite graph, then L8 has two vertices
of degree 3 and two vertices of degree 1 in one partite set A and similarly in B. Total number of edges
in K8,5 is 40, then we have 5L8 in K8,5. First we pull out 4L8 from K8,5(as shown in Fig.2). Since
each vertices in A has degree 5, the remaining degree of each vertices of K8,5\4L8in the set A is 1. Here
we can’t find a L8 in K8,5\4L8, since we need atleast two vertices of degree 3. Hence we conclude that
L8-decomposition does not exists in K8,5.

Figure 2. 4L8 in K8,5

Lemma 2.6. There is no L8- decomposition of K4,n for n ≡ 2 (mod 4).

Proof. Let n = 4s + 2 for some s > 0. Suppose that K4,n has an L8-decomposition, then it has
(2s + 1)L8. Let A = {x1, x2, x3, x4} and B = {y1, y2, ..., y4s+1, y4s+2} be the partite sets of K4,n.
Consider the (2s)L8 =

{
L1
8, L

2
8, ..., L

2s
8

}
which exists in K4,n−2. Now we have to find the last L8 i.e.,

L2s+1
8 .

Let (x1y4s+1x2y4s+2) be a cycle in K4,n. Then join y4s+1 to x3 and y4s+2 to x4. Now we have to
find pendant edges to the vertices x1 and x2. Suppose there are vertices ya and yb which are joined to
x1 and x2, resp, as the pendant edges in Lt1

8 for some t1 ∈ {1, 2, ..., 2s}. Then we can join these edges to
the vertices x1 and x2 in L2s+1

8 . Suppose ya = y4s+1 and yb = y4s+2 or viceversa, then we can join the
remaining edges x3y4s+2, x4y4s+1 inK4,n to ya and yb, resp. Therefore degLt1

8
(y4s+1) = deg

L
t1
8
(y4s+2) = 3

and degL2s+1
8

(y4s+1) = degL2s+1
8

(y4s+2) = 3. This implies deg(y4s+1) = deg(y4s+2) = 6,which is a
contradiction. Therefore ya 6= y4s+1 and yb 6= y4s+2 or viceversa.

Then we find the pendant edges to ya and yb. There exist vertices xi and xj , i, j ∈ {1, 2, 3, 4} which
are joined to ya and yb,resp, as the pendant edges in Lt2

8 for some t1 6= t2 ∈ {1, 2, ..., 2s}. Then we
can join these edges to the vertices ya and yb in Lt1

8 . Now xi 6= x3 and xj 6= x4 or viceversa, since
x3ya, x3yb, x4ya and x4yb are the edges of the cycle in Lt1

8 . Then xi, xj must be x1, x2. Again we have to
find the pendant edges to x1, x2. Repeat the above procedure cyclically we get to find the pendant edges
of x1, x2. Therefore we can’t find the pendant edges to x1, x2. Hence the proof.

Theorem 2.7. For any m,n ≥ 4, Km,n has an L8- decomposition if and only if mn ≡ 0 (mod 8) except
(m,n) = (4, 2 (mod 4)) & (8, 5).

Proof. Necessity. We first observe that Km,n has m+ n vertices and mn edges. Assume that Km,n

admits an L8- decomposition. Then the number of edges in the graph must be divisible by 8 i.e., 8|mn
and hence mn ≡ 0 (mod 8). Further, (m,n) 6= (4, 2 (mod 4)) & (8, 5) follows from Lemmas 2.6 and 2.5.
Sufficiency. We construct the required decomposition in two cases.
Case(1) m (or) n ≡ 0 (mod 8).
Suppose we take m ≡ 0 (mod 8). Further we divide the proof into four subcases.
Subcase(i) m ≡ 0 (mod 8)and n ≡ 0 (mod 4).
Let m = 8s and n = 4t for some s, t > 0. Then we can write Km,n = 2stK4,4. We know that K4,4 has
an L8-decomposition(see Fig.2).
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Subcase(ii) m ≡ 0 (mod 8)and n ≡ 1 (mod 4).
Let m = 8s and n = 4t + 1 for some s, t > 1, since for s = t = 1, Km,n has no L8- decomposition by
Lemma 2.5. Then we can write Km,n = 2s(t − 2)K4,4 ⊕ sK8,9. Then by Lemma 2.3, we get an L8-
decomposition of Km,n.
Subcase(iii) m ≡ 0 (mod 8)and n ≡ 2 (mod 4).
Let m = 8s and n = 4t+2 for some s, t > 0. Then we can write Km,n = 2s(t− 1)K4,4 ⊕ sK8,6. Then by
Lemma 2.1, we get an L8- decomposition of Km,n.
Subcase(iv) m ≡ 0 (mod 8)and n ≡ 3 (mod 4).
Let m = 8s and n = 4t+3 for some s, t > 0. Then we can write Km,n = 2s(t− 1)K4,4 ⊕ sK8,7. Then by
Lemma 2.2, we get an L8- decomposition of Km,n.
Case(2) m ≡ 0 (mod 4)and n ≡ 0 (mod 2).
Subcase(i) m ≡ 0 (mod 4)and n ≡ 0 (mod 4).
Let m = 4s and n = 4t for some s, t > 0. Then we can write Km,n = stK4,4. We know that K4,4 has an
L8-decomposition.
Subcase(ii) m ≡ 0 (mod 4)and n ≡ 2 (mod 4).
Let m = 4s and n = 4t + 2 for some s, t > 0. For s = 1, K4,n has no L8- decomposition by Lemma
2.6. Consider s ≥ 2. For even s, m must be the multiple of 8. Then by case(1), result is proved for
even s. It is sufficient to prove the case for odd s. Consider s is odd and s ≥ 3. Then we can write
Km,n = s(t− 1)K4,4 ⊕K4(s−3),6 ⊕K12,6. Since s is odd, s− 3 is even. Hence the results follows by the
above cases and by the Lemma 2.4.

3. L8- decomposition of Km ×Kn

In this section we investigate the existence of L8- decomposition of the tensor product of complete
graphs.

Lemma 3.1. For an even integer k > 2 and any graph G, there exists an L2k- decomposition of L2k×G.

Proof. Let L2k be
(
x1 x2 . . . xk
xk+1 xk+2 . . . x2k

)
and yj1yj2 be any edge in G, then the induced subgraph

〈L2k × {yj1yj2}〉 of L2k ×G gives two L2k’s as follows:(
xj11 xj22 xj13 . . . xj2k
xj2k+1 xj1k+2 xj2k+3 . . . xj12k

)
,
(
xj21 xj12 xj23 . . . xj1k
xj1k+1 xj2k+2 xj1k+3 . . . xj22k

)
. So, for each edge in G there are two L2k’s

in L2k ×G, and hence we have 2|E(G)| L2k’s in L2k ×G.

Lemma 3.2. There exists an L8- decomposition of K4 ×K4.

Proof. The L8- decomposition of K4 ×K4 is given below.(
xj11 xj22 xj13 xj24
xj23 xj14 xj21 xj12

)
for j1 < j2 ∈ {1, 2, 3, 4},

(
xj+2
1 xj2 xj+2

3 xj4
xj+1
4 xj+1

1 xj+1
2 xj+1

3

)
for j = 1, 2,

(
x41 x12 x43 x14
x32 x23 x34 x21

)
.

Lemma 3.3. There exists an L8- decomposition of K4 ×K5.

Proof. The L8- decomposition of K4 ×K5 is given as follows:(
xj11 xj22 xj13 xj24
xj23 xj14 xj21 xj12

)
for j1 < j2 ∈ {1, 2, 3, 4, 5} except (j1, j2) = (2, 4), (3, 4),(

x31 x42 x33 x44
x43 x51 x41 x53

)
,
(
x21 x42 x23 x44
x43 x53 x41 x51

)
,
(
x31 x12 x33 x14
x22 x21 x24 x23

)
,
(
x41 x12 x43 x14
x32 x23 x34 x21

)
,(

x41 x22 x43 x24
x34 x33 x32 x31

)
,
(
x51 x22 x53 x24
x12 x44 x14 x42

)
,
(
x51 x32 x53 x34
x14 x44 x12 x42

)
.

Lemma 3.4. There exists an L8- decomposition of K4 ×K4,5.
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Proof. We can write K4,5 = K4,4 ⊕K4,1. Now K4 ×K4,5 = (K4 ×K4,4)⊕ (K4 ×K4,1). By Theorem
2.7 and Lemma 3.1, it is sufficient to prove the existence of L8- decomposition of K4 × K4,1. The
L8-decomposition of K4 ×K4,1 shown in Fig.3 gives the required decomposition.

Figure 3. L8 decomposition of K4 ×K4,1.

Lemma 3.5. There exists an L8- decomposition of K8 ×K7.

Proof. We can write K8 = 3L8⊕C4 (see Fig.4). Now K8×K7 = 3 (L8 ×K7)⊕(C4 ×K7). To complete
the proof, by Lemma 3.1, it is sufficient to prove the existence of L8- decomposition of C4 ×K7, which
is given as follows:(
x11 x22 x13 x24
x74 x73 x72 x71

)
,
(
x21 x12 x23 x14
x74 x71 x72 x73

)
,
(
x21 x32 x23 x34
x54 x61 x52 x63

)
,
(
x31 x22 x33 x24
x62 x71 x64 x73

)
,(

x31 x42 x33 x44
x64 x71 x62 x73

)
,
(
x41 x32 x43 x34
x72 x63 x74 x61

)
,
(
x41 x52 x43 x54
x74 x73 x72 x71

)
,
(
x51 x42 x53 x44
x12 x73 x14 x71

)
,(

x51 x62 x53 x64
x14 x11 x12 x13

)
,
(
x61 x52 x63 x54
x12 x13 x14 x11

)
,
(
x61 x72 x63 x74
x14 x11 x12 x13

)
,
(
x71 x62 x73 x64
x52 x13 x54 x11

)
,(

x11 x32 x13 x34
x52 x71 x54 x73

)
,
(
x31 x12 x33 x14
x72 x73 x74 x71

)
,
(
x21 x42 x23 x44
x62 x11 x64 x13

)
,
(
x41 x22 x43 x24
x12 x61 x14 x63

)
,(

x31 x52 x33 x54
x74 x21 x72 x23

)
,
(
x51 x32 x53 x34
x24 x73 x22 x71

)
,
(
x41 x62 x43 x64
x14 x23 x12 x21

)
,
(
x61 x42 x63 x44
x24 x13 x22 x11

)
,(

x51 x72 x53 x74
x22 x21 x24 x23

)
.

Figure 4. K8 = 3L8 ⊕ C4.

Lemma 3.6. There exists an L8-decomposition of K8 ×K4,7.
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Proof. We can write K8 ×K4,7 = 2(K4 ×K4,4) ⊕ 2(K4 ×K4,3) ⊕ (K4,4 ×K4,4) ⊕ (K4,4 ×K4,3). By
Theorem 2.7 and Lemma 3.1, it is sufficient to prove the existence of L8- decomposition of K4 ×K4,3.
The L8- decomposition of K4 ×K4,3 is given below.(
xj11 xj22 x1

3 xj24
xj23 xj1+1

4 xj21 xj1+1
2

)
,
(
xj21 xj12 xj23 xj14
xj1+1
3 xj24 xj1+1

1 xj22

)
for j1 = 3, j2 ∈ {5, 6, 7}(

xj11 xj22 xj13 xj24
xj23 xj1+2

3 xj21 xj1+2
1

)
,
(
xj21 xj12 xj23 xj14
xj1+2
4 xj24 xj1+2

2 xj22

)
for j1 = 2, j2 ∈ {5, 6, 7}(

xj11 xj22 xj13 xj24
xj23 xj1+3

1 xj21 xj1+3
3

)
,
(
xj21 xj12 xj23 xj14
xj1+3
2 xj24 xj1+3

4 xj22

)
for j1 = 1, j2 ∈ {5, 6, 7}.

Lemma 3.7. There exists an L8-decomposition of K5 ×K5.

Proof. We exhibit the L8- decomposition of K5 ×K5 as follows:(
x11 x23 x14 x25
x52 x12 x21 x32

)
,
(
x21 x13 x24 x15
x12 x22 x42 x53

)
,
(
x21 x33 x24 x35
x32 x22 x52 x13

)
,
(
x31 x23 x34 x25
x12 x32 x52 x42

)
,(

x31 x43 x34 x45
x52 x32 x12 x53

)
,
(
x41 x33 x44 x35
x32 x42 x52 x53

)
,
(
x41 x53 x44 x55
x52 x42 x22 x12

)
,
(
x51 x43 x54 x45
x42 x52 x12 x32

)
,(

x11 x53 x14 x55
x32 x12 x51 x42

)
,
(
x51 x13 x54 x15
x12 x52 x41 x42

)
,
(
x11 x33 x14 x35
x44 x12 x52 x22

)
,
(
x31 x13 x34 x15
x14 x32 x21 x22

)
,(

x31 x53 x34 x55
x54 x32 x41 x23

)
,
(
x51 x33 x54 x35
x32 x55 x21 x52

)
,
(
x21 x43 x24 x45
x42 x22 x51 x52

)
,
(
x41 x23 x44 x25
x12 x42 x51 x52

)
,(

x11 x43 x14 x45
x54 x12 x41 x22

)
,
(
x41 x13 x44 x15
x22 x42 x21 x52

)
,
(
x21 x53 x24 x55
x52 x22 x41 x32

)
,
(
x51 x23 x54 x25
x22 x52 x32 x43

)
,(

x12 x24 x32 x44
x25 x11 x15 x31

)
,
(
x14 x22 x34 x42
x32 x55 x51 x54

)
,
(
x13 x25 x33 x45
x55 x53 x52 x12

)
,
(
x15 x23 x35 x43
x33 x45 x12 x55

)
,(

x11 x22 x31 x42
x34 x54 x24 x35

)
.

Theorem 3.8. Km ×Kn has an L8- decomposition if and only if mn(m− 1)(n− 1) ≡ 0 (mod 16).

Proof. Necessity. Assume that Km ×Kn admits an L8- decomposition. Then the number of edges
in the graph Km ×Kn is mn(m−1)(n−1)

2 which should be divisible by 8, the number of edges in L8 i.e.,
16|mn(m− 1)(n− 1) and hence mn(m− 1)(n− 1) ≡ 0 (mod 16).
Sufficiency. We construct the required decomposition in the following cases.
Case(1) m,n ≡ 0 (mod 4).
Let m = 4s and n = 4t for some s, t > 0. Then we can write Km × Kn = st (K4 ×K4) ⊕
2st(s − 1)(t − 1)K4,16 ⊕ 2st(s + t − 2)K4,12. By Lemma 3.2 and Theorem 2.7 the graph Km × Kn

has the desired decomposition.
Case(2) m ≡ 0 (mod 4), n ≡ 1 (mod 4).
Let m = 4s and n = 4t + 1 for some s, t > 0. Then we can write Km × Kn = (K4s × K4(t−1)) ⊕
s (K4 ×K5) ⊕

(
5s(s−1)

2

)
K4,16 ⊕ s(t − 1) (K4 ×K4,5) ⊕ 4s(s − 1)(t − 1)K4,20. By the Case (1) above,

Lemmas 3.3, 3.4 and Theorem 2.7 the graph Km ×Kn has the desired decomposition.
Case(3) m ≡ 0 (mod 8), n ≡ 3 (mod 4).
Subcase(i) m = 8 and n ≡ 3 (mod 4)
Let n = 4t + 3 for some t > 0. Then we can write K8 × Kn =

(
K8 ×K4(t−1)

)
⊕ (K8 ×K7) ⊕

(t− 1) (K8 ×K4,7). The L8- decomposition of all the three terms follows from Case (1) and the Lemmas
3.5, 3.6.
Subcase(ii) m ≡ 0 (mod 8), m > 8 and n ≡ 3 (mod 4)

Now, letm = 8s for some s > 1. Then we can writeKm×Kn = s (K8 ×Kn) ⊕
(

s(s−1)
2

)
(K8,8 ×Kn).

Km ×Kn has the desired decomposition, by the Theorem 2.7, Lemma 3.1 and Subcase 3(i) above.
Case(4) m ≡ 0 (mod 16).
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Let m = 16s, for some s > 0. We can write Km ×Kn = s (K16 ×Kn) ⊕
(

s(s−1)
2

)
(K16,16 ×Kn). The

L8- decomposition of the terms in RHS follows from Lemma 3.1 and Theorems 1.3, 2.7.
Case(5) m ≡ 1 (mod 16).
Let m = 16s + 1, for some s > 0. Then by Theorem 1.3, we have L8- decomposition of K16s+1, for any
s > 0. Then by Lemma 3.1, Km ×Kn has an L8- decomposition.
Case(6) m ≡ 1 (mod 4), n ≡ 1 (mod 4).
Let m = 4s + 1 and n = 4t + 1 for some s, t > 0. Then we can write Km ×Kn =

(
K4(s−1) ×K4(t−1)

)
⊕
(
K4(s−1) ×K5

)
⊕
(
K5 ×K4(t−1)

)
⊕ 2(s − 1)(t − 1) (K4 ×K4,5) ⊕ 4(s − 1)(t − 1)(s + t − 4)K4,20 ⊕

K5×K5 ⊕ 5 (s+ t− 2)K4,20 ⊕ 2(s− 1)(t− 1)K16,25. Then by the Cases (1), (2) above and by Lemmas
3.4, 3.7 and Theorem 2.7, the graph Km ×Kn has the desired decomposition.

4. L8- decomposition of Km ⊗Kn

In this section we investigate the existence of L8- decomposition of wreath product of complete
graphs.

Lemma 4.1. If the graph G has an L2k-decomposition, then G⊗Kn has an L2k-decomposition for any
n > 0 and even k > 2.

Proof. Let G has an L2k- decomposition. For each L2k,
(
x1 x2 . . . xk
xk+1 xk+2 . . . x2k

)
, in G, we exhibit

the L2k- decomposition of L2k ⊗ Kn as follows:
(
xj11 xj22 . . . xj2k
xj2k+1 xj1k+2 . . . xj12k

)
for j1 ≤ j2 ∈ {1, 2, ..., n},(

xj21 xj12 . . . xj1k
xj1k+1 xj2k+2 . . . xj22k

)
for j1 < j2 ∈ {1, 2, ..., n}.

Lemma 4.2. There exists an L8- decomposition of K4,5 ⊗K6.

Proof. The L8- decomposition of K4,5 ⊗K6 is given as follows:(
xj11 xj25 xj12 xj26
xj27 xj13 xj28 xj14

)
for j1 ≤ j2 ∈ {1, 2, 3, 4, 5, 6} except (j1, j2) = (4, 4), (2, 3),

(2, 4), (3, 4),(
xj21 xj15 xj22 xj16
xj17 xj23 xj18 xj24

)
for j1 < j2 ∈ {1, 2, 3, 4, 5, 6} except (j1, j2) = (3, 4),

(3, 5), (3, 6), (4, 5), (4, 6),(
xj13 xj27 xj14 xj28
xj26 xj12 xj25 xj11

)
for j1 ≤ j2 ∈ {1, 2, 3, 4, 5, 6} except (j1, j2) = (2, 4), (2, 5),(

xj23 xj17 xj24 xj18
xj16 xj22 xj15 xj21

)
for j1 < j2 ∈ {1, 2, 3, 4, 5, 6} except (j1, j2) = (3, 5), (4, 5),(

x2i1 x1i2 x4i1 x3i2
x5i2 x3i1 x4i2 x1i1

)
,
(
x1i1 x2i2 x3i1 x4i2
x5i2 x6i1 x3i2 x2i1

)
,
(
x4i1 x2i2 x5i1 x6i2
x5i2 x2i1 x3i2 x6i1

)
for i1 ∈ {1, 2} & i2 ∈ {9},(

x5i1 x1i2 x6i1 x5i2
x4i2 x1i1 x3i2 x3i1

)
for i1 ∈ {1, 2, 3, 4} & i2 ∈ {9},(

x41 x45 x42 x46
x47 x43 x48 x53

)
,
(
x21 x69 x22 x36
x37 x12 x38 x24

)
,
(
x21 x45 x22 x46
x47 x23 x48 x34

)
,
(
x31 x45 x32 x69
x47 x33 x48 x11

)
,(

x41 x35 x42 x36
x37 x21 x38 x44

)
,
(
x51 x35 x52 x36
x37 x22 x38 x54

)
,
(
x61 x35 x62 x36
x37 x54 x38 x64

)
,
(
x51 x45 x52 x46
x47 x53 x48 x31

)
,(

x61 x45 x62 x46
x47 x63 x48 x32

)
,
(
x23 x47 x24 x48
x35 x22 x45 x21

)
,
(
x23 x57 x24 x58
x56 x22 x46 x21

)
,
(
x53 x37 x54 x38
x36 x52 x46 x51

)
,
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(
x53 x47 x54 x48
x35 x52 x45 x51

)
,
(
x23 x19 x43 x39
x59 x33 x35 x13

)
,
(
x24 x19 x44 x39
x59 x34 x46 x14

)
,
(
x13 x29 x33 x49
x59 x63 x39 x61

)
,(

x14 x29 x34 x49
x59 x64 x39 x62

)
,
(
x43 x29 x53 x69
x59 x23 x39 x33

)
,
(
x44 x29 x54 x69
x59 x24 x39 x34

)
,
(
x23 x49 x63 x69
x46 x43 x35 x13

)
,(

x24 x49 x64 x69
x55 x44 x46 x14

)
.

Lemma 4.3. There exists an L8-decomposition of K4,5 ⊗K10.

Proof. We exhibit the L8- decomposition of K4,5 ⊗K10 as follows:(
x1i1 x1i2 x2i1 x2i2
x7i2 x5i1 x8i2 x6i1

)
,
(
x1i1 x3i2 x2i1 x4i2
x8i2 x6i1 x7i2 x5i1

)
, for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9},(

x3i1 x1i2 x4i1 x2i2
x9i2 x7i1 x10i2 x8i1

)
,
(
x1i1 x5i2 x2i1 x6i2
x9i2 x9i1 x10i2 x10i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9},(

x3i1 x5i2 x4i1 x6i2
x8i2 x8i1 x7i2 x7i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9},(

x9i1 x1i2 x10i1 x2i2
x3i2 x6i1 x4i2 x5i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9} except (i1, i2) = (1, 9)(

x3i1 x3i2 x4i1 x4i2
x7i2 x5i1 x8i2 x6i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9} except (i1, i2) = (3, 7), (4, 8)(

x5i1 x5i2 x6i1 x6i2
x9i2 x7i1 x10i2 x8i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9} except (i1, i2) = (3, 5), (4, 6)(

x7i1 x7i2 x8i1 x8i2
x2i2 x9i1 x1i2 x10i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9} except (i1, i2) = (3, 7), (4, 8)(

x9i1 x9i2 x10i1 x10i2
x6i2 x2i1 x5i2 x1i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9} except (i1, i2) = (1, 5), (1, 6)(

x5i1 x7i2 x6i1 x8i2
x10i2 x10i1 x9i2 x9i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9} except (i1, i2) = (3, 7), (4, 8)(

x7i1 x9i2 x8i1 x10i2
x3i2 x4i1 x4i2 x3i1

)
for i1 ∈ {1, 2, 3, 4}& i2 ∈ {5, 6, 7, 8, 9} except (i1, i2) = (1, 9), (3, 7),

(4, 8)(
x91 x19 x101 x29
x46 x61 x45 x51

)
,
(
x33 x37 x43 x47
x107 x81 x97 x71

)
,
(
x34 x38 x44 x48
x108 x81 x98 x71

)
,
(
x53 x55 x63 x65
x95 x101 x105 x91

)
,(

x54 x56 x64 x66
x96 x101 x106 x91

)
,
(
x73 x77 x83 x87
x27 x33 x17 x43

)
,
(
x74 x78 x84 x88
x28 x34 x18 x44

)
,
(
x91 x95 x101 x105
x47 x21 x37 x11

)
,(

x91 x96 x101 x106
x48 x21 x38 x11

)
,
(
x53 x77 x63 x87
x37 x103 x47 x93

)
,
(
x54 x78 x64 x88
x38 x104 x48 x94

)
,
(
x71 x99 x81 x109
x36 x41 x35 x31

)
,(

x73 x97 x83 x107
x37 x63 x47 x53

)
,
(
x74 x98 x84 x108
x38 x64 x48 x54

)
,
(
x83 x35 x103 x36
x39 x82 x87 x102

)
,
(
x73 x45 x93 x46
x49 x72 x77 x92

)
,(

x83 x37 x103 x38
x65 x82 x39 x102

)
,
(
x73 x47 x93 x48
x55 x72 x49 x92

)
,
(
x84 x35 x104 x36
x39 x102 x88 x82

)
,
(
x74 x45 x94 x46
x49 x92 x78 x72

)
,(

x84 x37 x104 x38
x66 x102 x39 x82

)
,
(
x74 x47 x94 x48
x56 x92 x49 x72

)
,
(
x81 x39 x101 x49
x35 x82 x36 x72

)
,
(
x71 x39 x91 x49
x45 x102 x46 x92

)
.

Theorem 4.4. Km ⊗Kn has an L8- decomposition if and only if mn2(m− 1) ≡ 0 (mod 16).

Proof. Necessity. Assume that Km ⊗Kn admits an L8- decomposition. Then the number of edges
in the graph Km ⊗ Kn is mn2(m−1)

2 which should be divisible by 8, the number of edges in L8 i.e.,
16|mn2(m− 1) and hence mn2(m− 1) ≡ 0 (mod 16).
Sufficiency. We construct the required decomposition in five cases.
Case(1) n ≡ 0 (mod 4).
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Let n = 4s, for some s > 0. Then we can write Km ⊗Kn =
(

m(m−1)
2

)
K4s,4s. Now, we get the desired

decomposition by Theorem 2.7.
Case(2) m ≡ 0 (mod 4), n ≡ 0 (mod 2).
Subcase(i) m ≡ 0 (mod 4), n ≡ 0 (mod 4). Proof follows from Case (1).
Subcase(ii) m ≡ 0 (mod 4), n ≡ 2 (mod 4).
Let m = 4s and n = 6, 10 for some s > 0. Now we can write Km⊗Kn = s(K4⊗Kn) ⊕ s(s−1)

2 (K4,4⊗Kn)

and the graphs K4 ⊗K6,K4 ⊗K10 can be viewed as 3K6,12, 3K10,20, respectively. Therefore we get the
desired decomposition, by Lemma 4.1 and the Theorem 2.7. Let m = 4s and n = 4t + 2 for some s >
0, t > 2. Now we can write Km⊗Kn =

(
K4s ⊗K4(t−1)

)
⊕
(

s(s−1)
2

) (
K4,4 ⊗K6

)
⊕ 4s(4s− 1)K4(t−1),6

⊕ 3sK6,12. We get the desired decomposition, by the Case (1), Lemma 4.1 and Theorem 2.7.
Case(3) m ≡ 1 (mod 4), n ≡ 0 (mod 2).
Subcase(i) m ≡ 1 (mod 4), n ≡ 0 (mod 4). Proof follows from Case (1).
Subcase(ii) m ≡ 1 (mod 4), n ≡ 2 (mod 4).
Let m = 4s+1 and n = 6, 10 for some s > 0. Now we can write Km⊗Kn = (K4(s−1)⊗Kn) ⊕ K5⊗Kn

⊕ (s − 1)(K4,5 ⊗Kn)and the graphs K5 ⊗K6,K5 ⊗K10 can be viewed as 5K6,12, 5K10,20, respectively.
Therefore we get the desired decomposition, by the Case(2), Lemmas 4.2, 4.3 and Theorem 2.7. Further,
let m = 4s + 1 and n = 4t + 2 for some s > 0, t > 2. Now we can write Km ⊗Kn = K4(s−1) ⊗K4t+2

⊕ K5 ⊗ K4(t−1) ⊕ (s− 1)
(
K4,5 ⊗K4(t−1)

)
⊕ (s− 1)

(
K4,5 ⊗K6

)
⊕ 20sK4(t−1),6 ⊕ 5K6,12. The L8-

decomposition of 1st term of the above sum follows from Case (2), 2nd and 3rd term follows from Case
(1) and the remaining terms of the above sum follows from the Lemma 4.2 and Theorem 2.7. Hence we
get the desired decomposition.
Case(4) m ≡ 0 (mod 16).
Let m = 16s, for some s > 0. We can write Km ⊗Kn = s

(
K16 ⊗Kn

)
⊕
(

s(s−1)
2

) (
K16,16 ⊗Kn

)
. The

desired decomposition follows from Lemmma 4.1 and Theorems 1.3, 2.7.
Case(5) m ≡ 1 (mod 16).
Desired decomposition follows from Theorem 1.3 and Lemma 4.1.

5. Conclusion

In this paper, we established necessary and sufficient conditions for the decomposition of ten-
sor/wreath product of graphs into sunlet graphs of order 8. Further, research on the existence of such
decomposition of product graphs into sunlet graphs of higher order r > 8 is under progress.
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