Factors for Generalized Matrix Summability

Bağdagül Kartal **
${ }^{*}$ Department of Mathematics, Faculty of Science, Erciyes University, KAYSERI

(Alınış / Received: 02.02.2021, Kabul / Accepted: 14.11.2021, Online Yayınlanma / Published Online: 30.12.2021)

Keywords

Summability factors, Absolute matrix summability Infinite series, Hölder's inequality, Minkowski's inequality

Abstract

In [1], Sulaiman has proved a theorem dealing with $|A|_{k}$ summability of the series $\sum a_{n} \lambda_{n} X_{n}$. In the present paper, generalized absolute matrix summability has been studied. The known theorem on $|A|_{k}$ summability has been generalized to the $\varphi-|A ; \delta|_{k}$ summability method under some suitable conditions.

Genelleştirilmiş Matris Toplanabilme için Çarpanlar

Anahtar Kelimeler

Toplanabilme çarpanları, Mutlak matris toplanabilme, Sonsuz seriler,
Hölder eșitsizliği,
Minkowski eșitsizliği

Öz: Sulaiman [1], $\sum a_{n} \lambda_{n} X_{n}$ serisinin $|A|_{k}$ toplanabilmesi ile ilgili bir teorem ispatlamıştır. Bu makalede genelleştirilmiş mutlak matris toplanabilme çalışılmıștır. $|A|_{k}$ toplanabilme üzerine bilinen teorem uygun bazı şartlar altında $\varphi-|A ; \delta|_{k}$ toplanabilme metoduna genelleștirilmiştir.
*ìlgili Yazar, e-mail: bagdagulkartal@erciyes.edu.tr

1. Introduction

Let $\sum a_{n}$ be an infinite series with its partial sums $\left(s_{n}\right)$. Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of non-zero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-|A ; \delta|_{k}, \quad k \geq 1$ and $\delta \geq 0$, if

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty \quad \text { (see [2]) }
$$

If we take $\delta=0$ and $\varphi_{n}=n$, then $\varphi-|A ; \delta|_{k}$ summability reduces to $|A|_{k}$ summability [3].
Given any normal matrix $A=\left(a_{n v}\right)$, two lower semimatrices $\bar{A}=\left(\bar{a}_{n V}\right)$ and $\hat{A}=\left(\hat{a}_{n V}\right)$ are defined as follows:

$$
\begin{equation*}
\bar{a}_{n V}=\sum_{i=V}^{n} a_{n i}, n, V=0,1, \ldots \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \hat{a}_{n v}=\bar{a}_{n V}-\bar{a}_{n-1, v}, n=1,2, \ldots \tag{2}\\
A_{n}(s)=\sum_{V=0}^{n} a_{n v} s_{V}=\sum_{V=0}^{n} \bar{a}_{n v} a_{V} \text { and } \bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{V} . \tag{3}
\end{gather*}
$$

2. Material and Method

Absolute summability of an infinite series is an attractive topic in the field of summability. Many different studies on this topic have been done by researchers, see ([1, 4-29]). In 2013, Sulaiman [1] proved the following lemmas and theorem.

Lemma 1: If $\sum n^{-1} \lambda_{n}$ is convergent, then $\left(\lambda_{n}\right)$ is non-negative and decreasing, $\lambda_{n} \log _{n}=O(1)$, and $n \Delta \lambda_{n}=O\left(1 /(\log n)^{2}\right)$.
Lemma 2: If $\sum n^{-1} \lambda_{n} X_{n}$ is convergent, and the conditions

$$
n \Delta \lambda_{n}=O\left(\lambda_{n}\right) \text { as } n \rightarrow \infty
$$

(4)

$$
\sum_{V=1}^{n} \lambda_{v}=O\left(n \lambda_{n}\right) \text { as } n \rightarrow \infty
$$

(5)
are satisfied, then

$$
\begin{align*}
n \lambda_{n} \Delta X_{n} & =O(1) \tag{6}\\
\sum_{n=1}^{m} \lambda_{n} \Delta X_{n} & =O(1) \text { as } m \rightarrow \infty \tag{7}\\
\sum_{n=1}^{m} n \lambda_{n} \Delta^{2} X_{n} & =O(1) \text { as } m \rightarrow \infty \tag{8}
\end{align*}
$$

Theorem 1: Let $\left(\lambda_{n}\right),\left(X_{n}\right)$ be two sequences such that $\sum n^{-1} \lambda_{n} X_{n}$ is convergent, and the conditions (4) and (5) are satisfied. Let $A=\left(a_{n v}\right)$ be a normal matrix with non-negative entries satisfying

$$
\begin{gather*}
\bar{a}_{n 0}=1, \quad n=0,1, \ldots, \tag{9}\\
a_{n-1, V} \geq a_{n v} \text { for } n \geq v+1, \tag{10}\\
n a_{n n}=O(1), \quad 1=O\left(n a_{n n}\right), \tag{11}\\
\sum_{V=1}^{n-1} a_{V V} \hat{a}_{n V}=O\left(a_{n n}\right) . \tag{12}
\end{gather*}
$$

If $t_{v}^{k}=O(1)(C, 1)$, where $t_{v}=\frac{1}{V+1} \sum_{r=1}^{v} r a_{r}$, then the series $\sum a_{n} \lambda_{n} X_{n}$ is summable $|A|_{k}, k \geq 1$.

3. Results

The aim of this paper is to generalize Theorem 1 for $\varphi-|A ; \delta|_{k}$ summability method under some suitable conditions.
Theorem 2: Let $\left(\lambda_{n}\right),\left(X_{n}\right)$ be two sequences such that $\sum n^{-1} \lambda_{n} X_{n}$ is convergent, and the conditions (4), (5), (9)(12) are satisfied. Let $\left(\varphi_{n}\right)$ be any sequence such that

$$
\begin{gather*}
\varphi_{n} a_{n n}=O(1), \quad 1=O\left(\varphi_{n} a_{n n}\right), \tag{13}\\
\sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=O\left(\varphi_{v}^{\delta k-1}\right) \text { as } m \rightarrow \infty, \tag{14}
\end{gather*}
$$

$$
\begin{align*}
& \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k} \hat{a}_{n, V+1}=O\left(\varphi_{V}^{\delta k}\right) \text { as } m \rightarrow \infty \tag{15}\\
& \quad \sum_{V=1}^{n-1} a_{V V} \hat{a}_{n, V+1}=O\left(a_{n n}\right) \tag{16}
\end{align*}
$$

If $\varphi_{v}^{\delta k} t_{v}^{k}=O(1)(C, 1)$, i.e. $\sum_{v=1}^{n} \varphi_{v}^{\delta k} t_{v}^{k}=O(n)$, where $\left(t_{v}\right)$ as in Theorem 1, then the series $\sum a_{n} \lambda_{n} X_{n}$ is summable $\varphi-|A ; \delta|_{k}, \quad k \geq 1$ and $0 \leq \delta<1 / k$.

3.1. Proof of Theorem 2

Let $\theta_{n}=\lambda_{n} X_{n}$ and $\left(M_{n}\right)$ be the A-transform of the series $\sum a_{n} \theta_{n}$. By (3), we get $\bar{\Delta} M_{n}=\sum_{V=1}^{n} \frac{\hat{a}_{n v} \theta_{v}}{V} v a_{V}$.
Here, by Abel's transformation, we get

$$
\begin{aligned}
\bar{\Delta} M_{n} & =\sum_{V=1}^{n-1} \Delta_{V}\left(\frac{\hat{a}_{n v} \theta_{v}}{V}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \theta_{n}}{n} \sum_{v=1}^{n} v a_{V} \\
& =\sum_{v=1}^{n-1}\left(\frac{\Delta_{v}\left(\hat{a}_{n v}\right) \theta_{V}}{v+1}+\frac{\hat{a}_{n, v+1} \Delta \theta_{v}}{v+1}+\frac{\hat{a}_{n v} \theta_{v}}{v(v+1)}\right)(v+1) t_{v}+\frac{n+1}{n} a_{n n} \theta_{n} t_{n} \\
& =\frac{n+1}{n} a_{n n} \theta_{n} t_{n}+\sum_{V=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \theta_{v} t_{V}+\sum_{V=1}^{n-1} \hat{a}_{n, v+1} \Delta \theta_{v} t_{V}+\sum_{V=1}^{n-1} \frac{\hat{a}_{n v} \theta_{V} t_{V}}{V}=M_{n, 1}+M_{n, 2}+M_{n, 3}+M_{n, 4} .
\end{aligned}
$$

First, by using the facts that $\varphi_{n} a_{n n}=O(1)$ and $n a_{n n}=O(1)$, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|M_{n, 1}\right|^{k} & =\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|\frac{n+1}{n} a_{n n} \theta_{n} t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1} a_{n n}^{k} \theta_{n}^{k} t_{n}^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k}\left(\varphi_{n} a_{n n}\right)^{k-1} a_{n n} \theta_{n}^{k} t_{n}^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k} a_{n n} \theta_{n}^{k} t_{n}^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{\delta k} \theta_{n} \theta_{n}^{k-1} t_{n}^{k}}{n}
\end{aligned}
$$

Here $\theta_{n}^{k-1}=O(1)$, then we get

$$
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|M_{n, 1}\right|^{k}=O(1) \sum_{n=1}^{m} \frac{\varphi_{n}^{\delta k} \theta_{n} t_{n}^{k}}{n}
$$

Applying Abel's transformation, we have

$$
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|M_{n, 1}\right|^{k}=O(1) \sum_{n=1}^{m-1}\left(\sum_{r=1}^{n} \varphi_{r}^{\delta k} t_{r}^{k}\right) \Delta\left(\frac{\theta_{n}}{n}\right)+O(1)\left(\sum_{n=1}^{m} \varphi_{n}^{\delta k} t_{n}^{k}\right) \frac{\theta_{m}}{m}
$$

Here

$$
\Delta\left(\frac{\theta_{n}}{n}\right)=\frac{\theta_{n}}{n}-\frac{\theta_{n+1}}{n+1}=\frac{n \Delta \theta_{n}+\theta_{n}}{n(n+1)}<\frac{\Delta \theta_{n}}{n+1}+\frac{\theta_{n}}{n^{2}} .
$$

Then, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|M_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m-1} n\left(\frac{\Delta \theta_{n}}{n+1}+\frac{\theta_{n}}{n^{2}}\right)+O(1) \theta_{m} \\
& =O(1) \sum_{n=1}^{m-1} \Delta \theta_{n}+O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n} X_{n}}{n}+O(1) \lambda_{m} X_{m}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by using the hypotheses of Theorem 2 and Lemma 2.
Now, using Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|M_{n, 2}\right|^{k} & =\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|\sum_{V=1}^{n-1} \Delta_{V}\left(\hat{a}_{n v}\right) \theta_{V} t_{V}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \sum_{V=1}^{n-1}\left|\Delta_{V}\left(\hat{a}_{n v}\right)\right| \theta_{V}^{k} t_{V}^{k}\left\{\sum_{V=1}^{n-1}\left|\Delta_{V}\left(\hat{a}_{n v}\right)\right|\right\}^{k-1} .
\end{aligned}
$$

By using (2), (1), (10) and (9), it follows that

$$
\sum_{V=1}^{n-1}\left|\Delta_{V}\left(\hat{a}_{n V}\right)\right|=\sum_{V=1}^{n-1}\left(a_{n-1, V}-a_{n V}\right)=\sum_{V=0}^{n-1} a_{n-1, V}-a_{n-1,0}-\sum_{V=0}^{n} a_{n V}+a_{n 0}+a_{n n}=\bar{a}_{n-1,0}-a_{n-1,0}-\bar{a}_{n 0}+a_{n 0}+a_{n n} \leq a_{n n} .
$$

Thus,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|M_{n, 2}\right|^{k} & \leq \sum_{n=2}^{m+1} \varphi_{n}^{\delta k}\left(\varphi_{n} a_{n n}\right)^{k-1} \sum_{V=1}^{n-1}\left|\Delta_{V}\left(\hat{a}_{n v}\right)\right| \theta_{v}^{k} t_{V}^{k} \\
& =O(1) \sum_{V=1}^{m} \theta_{V}^{k} t_{V}^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{V=1}^{m} \varphi_{v}^{\delta k} a_{V V} \theta_{V}^{k} t_{V}^{k}=O(1) \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

as in $M_{n, 1}$.
Again using Hölder's inequality, and using the conditions (16), (13), (15) and (11), it follows that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|M_{n, 3}\right|^{k} & =\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|\sum_{V=1}^{n-1} \hat{a}_{n, V+1} \Delta \theta_{V} t_{V}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \sum_{V=1}^{n-1} \hat{a}_{n, V+1}\left(\Delta \theta_{V}\right)^{k} t_{V}^{k} a_{V V}^{1-k}\left\{\sum_{V=1}^{n-1} a_{V v} \hat{a}_{n, V+1}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k}\left(\varphi_{n} a_{n n}\right)^{k-1} \sum_{V=1}^{n-1} \hat{a}_{n, V+1}\left(\Delta \theta_{V}\right)^{k} t_{V}^{k} a_{V V}^{1-k} \\
& =O(1) \sum_{V=1}^{m}\left(\Delta \theta_{V}\right)^{k} t_{V}^{k} a_{V V}^{1-k} \sum_{n=V+1}^{m+1} \varphi_{n}^{\delta k} \hat{a}_{n, V+1} \\
& =O(1) \sum_{V=1}^{m} \varphi_{V}^{\delta k}\left(\Delta \theta_{V}\right)^{k} t_{V}^{k} V^{k-1} .
\end{aligned}
$$

Since $\left(v \Delta \theta_{v}\right)^{k-1}=O(1)$, we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|M_{n, 3}\right|^{k} & =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k}\left(\Delta \theta_{v}\right) t_{v}^{k} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} t_{v}^{k}\left(\Delta \lambda_{v} X_{v}+\lambda_{v+1} \Delta X_{v}\right) \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} t_{v}^{k} \Delta \lambda_{v} X_{v}+O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} t_{v}^{k} \lambda_{v+1} \Delta X_{v} .
\end{aligned}
$$

For the first part, using the condition (4), and using Abel's transformation, it follows that

$$
\sum_{V=1}^{m} \varphi_{v}^{\delta k} t_{V}^{k} \Delta \lambda_{v} X_{V}=O(1) \sum_{V=1}^{m-1}\left(\sum_{r=1}^{v} \varphi_{r}^{\delta k} t_{r}^{k}\right) \Delta\left(\frac{\lambda_{v} X_{V}}{V}\right)+O(1)\left(\sum_{v=1}^{m} \varphi_{V}^{\delta k} t_{V}^{k}\right) \frac{\lambda_{m} X_{m}}{m}
$$

Then, by using the hypotheses of Theorem 2 and Lemma 2, we obtain

$$
\begin{aligned}
\sum_{v=1}^{m} \varphi_{v}^{\delta k} t_{v}^{k} \Delta \lambda_{v} X_{V} & =O(1) \sum_{V=1}^{m-1} v\left(\frac{\lambda_{v} X_{V}}{v^{2}}+\frac{\Delta \lambda_{v} X_{v}}{V}+\frac{\lambda_{v+1} \Delta X_{v}}{V}\right)+O(1) \lambda_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \frac{\lambda_{v} X_{v}}{v}+O(1) \sum_{v=1}^{m-1} \Delta \lambda_{v} X_{v}+O(1) \sum_{v=1}^{m-1} \lambda_{v+1} \Delta X_{V}+O(1) \lambda_{m} X_{m} \\
= & O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Also, for the second part, again using Abel's transformation, and the conditions (4), (7), (8), (6), we get

$$
\begin{aligned}
\sum_{V=1}^{m} \varphi_{V}^{\delta k} t_{v}^{k} \lambda_{v} \Delta X_{V} & =\sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} \varphi_{r}^{\delta k} t_{r}^{k}\right) \Delta\left(\lambda_{v} \Delta X_{v}\right)+\left(\sum_{v=1}^{m} \varphi_{v}^{\delta k} t_{v}^{k}\right) \lambda_{m} \Delta X_{m} \\
& =O(1) \sum_{V=1}^{m-1} v\left(\Delta \lambda_{v} \Delta X_{v}+\lambda_{v+1} \Delta^{2} X_{V}\right)+O(1) m \lambda_{m} \Delta X_{m} \\
& =O(1) \sum_{v=1}^{m-1} \lambda_{v} \Delta X_{v}+\sum_{v=1}^{m-1} v \lambda_{v+1} \Delta^{2} X_{v}+O(1) m \lambda_{m} \Delta X_{m} \\
& =O(1) a S \quad m \rightarrow \infty
\end{aligned}
$$

Therefore, we get $\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|M_{n, 3}\right|^{k}=O(1)$ as $m \rightarrow \infty$.
Finally, using (12), (11), (13) and (15), we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|M_{n, 4}\right|^{k} & =\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|\sum_{V=1}^{n-1} \frac{\hat{a}_{n v} \theta_{V} t_{V}}{V}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \sum_{V=1}^{n-1}\left(\frac{1}{V}\right)^{k} \hat{a}_{n v} \theta_{V}^{k} t_{V}^{k} a_{V V}^{1-k}\left\{\sum_{V=1}^{n-1} a_{V V} \hat{a}_{n V}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k}\left(\varphi_{n} a_{n n}\right)^{k-1} \sum_{V=1}^{n-1} \hat{a}_{n v} \theta_{V}^{k} t_{V}^{k} a_{V V} \\
& =O(1) \sum_{V=1}^{m} \theta_{V}^{k} t_{V}^{k} a_{V V} \sum_{n=V+1}^{m+1} \varphi_{n}^{\delta k} \hat{a}_{n V} \\
& =O(1) \sum_{V=1}^{m} \varphi_{V}^{\delta k} a_{V V} \theta_{V}^{k} t_{V}^{k}
\end{aligned}
$$

Then, as in $M_{n, 1}$, we obtain

$$
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|M_{n, 4}\right|^{k}=O(1) \text { as } m \rightarrow \infty
$$

Thus, we obtain $\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|M_{n, r}\right|^{k}<\infty$ for $r=1,2,3$ and $r=4$, which complete the proof of Theorem 2.

4. Discussion and Conclusion

In this paper, a general theorem on $\varphi-|A ; \delta|_{k}$ summability factors of an infinite series has been obtained and it reduces to Theorem 1 in case of $\delta=0$ and $\varphi_{n}=n$. Therefore, the conditions (13)-(16) are automatically satisfied.

Acknowledgment

The author wish to thank Prof. Dr. Hikmet Özarslan for her valuable support, comments, suggestions and corrections.

References

[1] Sulaiman, W. T. 2013. Some new factor theorem for absolute summability. Demonstratio Math., 46 (1), 149156.
[2] Özarslan, H. S. 2018. A new study on generalised absolute matrix summability methods. Maejo Int. J. Sci. Technol., 12 (3), 199-205
[3] Tanović-Miller, N. 1979. On strong summability. Glasnik Mat. Ser. III, 14 (34), 87-97.
[4] Bor, H. 1993. On absolute summability factors. Proc. Amer. Math. Soc., 118 (1), 71-75.
[5] Bor, H. 1996. On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors. Kuwait J. Sci. Eng., 23 (1), 1-5.
[6] Mazhar, S. M. 1997. A note on absolute summability factors. Bull. Inst. Math. Acad. Sinica, 25 (3), 233-242.
[7] Mazhar, S. M. 1999. Absolute summability factors of infinite series. Kyungpook Math. J., 39 (1), 67-73.
[8] Bor, H. 2000. An application of almost increasing and δ-quasi-monotone sequences. JIPAM. J. Inequal. Pure Appl. Math., 1 (2) Article 18, 6pp.
[9] Bor, H. 2001. On absolute Riesz summability factors. Adv. Stud. Contemp. Math. (Pusan), 3 (2), 23-29.
[10] Bor, H. 2007. A note on absolute Riesz summability factors. Math. Inequal. Appl., 10 (3), 619-625.
[11] Özarslan, H. S., Öğdük, H. N. 2007. On absolute matrix summability methods. Math. Commun., 12 (2), 213220.
[12] Özarslan, H. S. 2010. A note on $\left|A, p_{n}\right|_{k}$ summability factors. Antarct. J. Math., 7, 23-30.
[13] Özarslan, H. S. 2013. A new application of almost increasing sequences. Miskolc Math. Notes, 14 (1), 201208.
[14] Özarslan, H. S., Keten, A. 2013. On a new application of almost increasing sequence. J. Inequal. Appl., 13, 1-7.
[15] Özarslan, H. S., Yavuz, E. 2013. A new note on absolute matrix summability. J. Inequal. Appl., 474, 1-7.
[16] Özarslan, H. S. 2014. A note on generalized absolute Riesz summability. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 60 (1), 51-56.
[17] Özarslan, H. S., Yavuz, E. 2014. New theorems for absolute matrix summability factors. Gen. Math. Notes, 23(2), 63-70.
[18] Özarslan, H. S. 2015. A new application of absolute matrix summability. C. R. Acad. Bulgare Sci., 68 (8), 967972.
[19] Özarslan, H. S., Şakar, M. Ö. 2015. A new application of absolute matrix summability. Math. Sci. Appl. ENotes, 3 (1), 36-43.
[20] Özarslan, H. S. 2016. On generalized absolute matrix summability methods. Int. J. Anal. Appl., 12 (1) , 66-70.
[21] Kartal, B. 2017. On generalized absolute Riesz summability method. Commun. Math. Appl., 8 (3), 359-364.
[22] Özarslan, H. S., Karakaş, A. 2017. A new result on the almost increasing sequences. J. Comp. Anal. Appl., 22 (6), 989-998.
[23] Özarslan, H. S., Kartal, B. 2017. A generalization of a theorem of Bor. J. Inequal. Appl., 179, 1-8.
[24] Karakaș, A. 2018. On absolute matrix summability factors of infinite series. J. Class. Anal., 13 (2), 133-139.
[25] Karakaş, A. 2018. N note on absolute summability method involving almost increasing and δ-quasimonotone sequences. Int. J. Math. Comput. Sci., 13 (1), 73-81.
[26] Kartal, B. 2019. New results for almost increasing sequences. Ann. Univ. Paedagog. Crac. Stud. Math., 18, 8591.
[27] Özarslan, H. S. 2019. A new factor theorem for absolute matrix summability. Quaest. Math., 42 (6), 803-809.
[28] Özarslan, H. S. 2019. An application of absolute matrix summability using almost increasing and δ-quasimonotone sequences. Kyungpook Math. J., 59 (2), 233-240.
[29] Özarslan, H. S., Kartal, B. 2020. Absolute matrix summability via almost increasing sequence. Quaest. Math., 43 (10), 1477-1485.

