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Abstract 

Time Series (TS) based prediction models generate prediction based data that is supposed to be similar to the 

future data at a certain level. In this study, we designed new modeling that increases the prediction 

performance of the TS algorithm. The main purpose of the new modeling is to integrate the Multivariate-

Adaptive-Regression-Splines (MARSplines) algorithm into the TS algorithm. Five-year Tokyo Stock 

Exchange data is analyzed as a case study to apply the relevant models. The results show that the new 

regression-based approach significantly improves the prediction performance of the time series algorithm. 

Keywords: Exponential correction, MARS, multivariate adaptive regression, stock price, time series analysis. 

 
Öz 

Zaman Serisi (ZS) tabanlı tahmin modelleri, belirli bir düzeyde geçmiş verilere benzer fonksiyonel dağılıma 

sahip, tahmine dayalı veriler üretir. Bu çalışmada, ZS algoritmasının tahmin performansını artıran yeni bir 

modelleme tasarlanmıştır. Yeni modellemenin temel amacı, Çok Değişkenli Uyarlamalı Regresyon 

Katmanları (MARSplines) algoritmasını ZS algoritmasına entegre etmektir. Beş yıllık Tokyo Menkul 

Kıymetler Borsası verileri, ilgili modelleri uygulamak için bir vaka çalışması olarak analiz edilmiştir. 

Sonuçlar, yeni regresyon temelli yaklaşımın ZS algoritmasının tahmin performansını önemli ölçüde 

geliştirdiğini göstermiştir. 

Anahtar Kelimeler: Üstel düzeltme, MARS, çok değişkenli uyarlamalı regresyon, hisse senedi fiyatı, zaman 

serisi analizi.  

 

1. Introduction 

Many countries have stock exchange markets (SEMs) to make investments and to observe sector-

based value movements. Mostly SEM is an open-source platform that shares information in 

synchronization with the whole world. The opening/closing hours of the SEM vary according to 

the local times. In SEM trading within specified local hours, up/down value movements are 

observed hundreds of times during the trading period. The value at which the stock exchange 

starts the day is called the "opening value", and the value it completes the day is called the "end 

of day value". By comparing the end-of-day values of consecutive days, the value movements of 

the stock exchange in daily, weekly, monthly, or yearly periods can be observed.  
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During the day, market values can change at any time depending on instant purchases/sales and 

political/social developments. For this reason, many irrational value movements directly related 

to social developments can be found in data sets taken from stock exchanges. Skills such as 

detecting the trends in the markets, making the right timing in investment preferences, predicting 

the market's reaction in advance are very critical for investors who want to evaluate their 

investments on this platform. It is very difficult to create a model that can make statistically 

accurate predictions on this platform, which produces non-parametric data that is open to 

irrational effects. For this reason, there is a need for more advanced algorithms that support 

standard approaches with new methods. 

The basic working principle of the TS prediction models is based on the assumption that existing 

trends or patterns in the historically older part of the data continue to exist in the current or future 

part of the data. In other words, existing data sets have information about future data at certain 

levels. The TS algorithms, which are widely applied in the field of data mining and have a very 

high level of prediction success, provide the ability to detect statistical connections present in 

historical data and to make predictions about future data using this information.  

This study proposes a prediction algorithm that expresses the distribution according to time 

functionally. The emphasis of the experimental study is on a continuous scale review of market-

generated data with a public license. The contributions to the literature and strengths of the study 

are as follows: (i) In recent years, there has been a huge increase in the number of analysis 

methods that are highly accurate but require a deeper understanding of machine learning methods 

and the external intervention of researchers. Therefore, the models based on those methods can 

only be created experimentally. The proposed approach gives accurate results at higher levels 

while reducing the external intervention of researchers and the amount of data required for 

training models. (ii) It makes it possible to easily analyze data sets from different fields with any 

size and number of variables, without the need for advanced knowledge of machine learning 

techniques by researchers. 

The ability to make successful predictions about future data is critical, especially in the field of 

finance. The TS and similar machine learning-based statistical tools can predict future data at 

certain levels. In this study, 5-years data obtained from the Tokyo SEM is examined and after 

experimental studies on the relevant data, a new algorithm is developed to improve the current 

prediction potential. 

MARSplines is a data mining technique that offers sufficient flexibility and precision for fast 

estimation of both continuous and binary categorical variables. Also, MARSplines models 

develop a functional relationship with regression data. The main advantage of the MARSplines 

model is that it causes fewer variables to interact with these models [9]. 

In the field of economy, the most important factor affecting the decision of investors in 

investment preferences is the possibility of realization of future projections of experts and general 

expectations. For this reason, predicting future data with high accuracy will determine direct 

investment preferences. For this purpose, many statistical forecasting models are presented to 

guide investors in the economy and finance sector. One of the most important of these models is 

predictive modeling based on time series. Al-Idrisi is applying a special exponential smoothing 

TS prediction algorithm to predict the share prices of companies that are publicly bought in the 

Saudi SEM. In the study, the success of the applied model with the regression-integrated hybrid 

method is compared [5]. 
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In another study from the domain of economics and finance, Neto et. al offers a similar hybrid 

model that combines the TS and artificial neural network (ANN) algorithms to predict the stock 

prices of some companies in Brazil. The main idea of the algorithm is to integrate one of the TS 

models which has the highest correlation with the dependent (stock prices) variable into the ANN 

model to predict the dependent variable. In this study, several methods are compared in terms of 

their performances. It is observed that the best predictive performance is obtained from trained 

neural network models [6]. 

A new chart pattern recognition model that integrates MARSplines and RNN (recurrent neural 

network) methods (MARS-RNN) is introduced by Kao et. al. This model is an important tool in 

detecting existing patterns in the production process control charts and providing a valuable 

reference for developing new strategies with findings. The performance of the created model has 

been compared with the Random Forest (RF), ANN and MARSplies integrated models. It has 

been observed that the new model performs better than other models in both independent variable 

selection and prediction processes [11]. 

Another hybrid model that combines regression and time series algorithms is also presented by 

Guolo and Varin. In this study, many regression methods, including the MARSplines algorithm, 

were tested by integrating them into time series. The main motivation for the study is to observe 

the progress of epidemics and to predict future points. In this way, early preparation will be 

possible for possible future scenarios of outbreaks. In the study, the performances of the 

MARSplines based hybrid model and the Back Propagation Neural Network (BPNN) model were 

compared. Results show that the MARSplines hybrid model can make more accurate predictions 

than BPNN [1]. 

With the high performance of BPNN, it is a method that has the power to be sufficient in many 

studies alone. Therefore, the comparison of the hybrid model with BPNN was made for a purpose 

in this regard. In a similar study, Arasu compares the stock index prediction success of the BPNN 

and MARSplines methods. It has been concluded that when the MARSplines method is applied 

to time series, it has a higher accuracy success than BPNN [2]. 

Time series models are a highly successful method to predict the future behavior of events that 

occur in cyclic models of processes that repeat at periodic intervals. One of the most important 

advantages of the method is that the time series have ready models. However, the parabolic 

movements of nonlinear data and high-frequency events are ignored in this method [10]. 

One of the main reasons why the MARSplines algorithm is preferred is the high prediction 

success of its method in nonlinear models due to its adaptive and flexible model structure. 

Another reason for the preference is that it can be easily applied to large-sized data with 

numerous independent variables [3]. 

In another study conducted on non-linear data, the ratio of particulate matter (PM100) in the air 

throughout Ankara province in a period covering the years 1993-2017 is examined. Since it has a 

content that directly affects human respiratory quality and therefore human life, a very sensitive 

modeling process is needed, just like the studies in the field of medicine. The effects of 

seasonality and periodicity in the data are taken into consideration. For this reason, the designed 

model is based on the support of the linear TS integrated with harmonic regression models [15]. 



F. Koyuncu, A. Yücel / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2021, 1, 14-29 

 

 

 

 

17 

A similar weather study is conducted on snowfall modeling of a region in Iran. To model, the 

support vector machine (SVM) integrated with MARSplines, and the RF integrated with TS 

methods are used together. The results showed that the RF integrated with the TS model 

outperformed [9]. 

The MARSplines method consists of step-by-step, interconnected basic functions, and the 

number of basic functions and related parameters in each step (spline) is automatically 

determined by the data. In this method, the data are split into sections over and over for each step, 

and models based on continuous variables are created according to basic function derivatives 

within each section [3]. 

In the study of Lee et. al., by integrating support vector regression (SVR) and autoregressive 

moving average (ARMA) regression-based models, a hybrid model was created that can 

determine the change point for time series [13].  Especially in the medical field, when conducting 

an analysis based on TS, the detection of change points in the timeline is vital [12]. 

In the analysis models based on TS applied in the medical field, data content is directly related to 

human health and requires a very sensitive model formation process. Having a similar and 

repetitive pattern of vital processes positively affects the success of TS models. Traditional vital 

signs are controlled within predetermined value ranges. Warning alarm systems operate when the 

relevant values fall outside these ranges. Looking at the course of the process with TS, potential 

alarm situations in the future can be predicted. However, with physiological and medicated 

interventions in the process leading to the alarm state, the situation can be controlled before 

reaching the alarm level. We can express these stages as peak or turning notes. TS serves as an 

important tool for observing the effects of physiological and medicated interventions in the 

relevant process. In the study of Grillenzoni et. al., he introduced a new approach that integrates 

time series with adaptive regression methods, aiming to perceive the situations expressed as peak 

or turning point in advance. Thanks to this method, the change points of local trends in a series of 

graphs can be determined instantly [12]. 

Also, in the model produced by the MARSplines algorithm in the last step, the relationship 

pattern and level between the independent variables can be obtained. This situation highlights the 

MARSplines method among other methods as an easy method to understand and interpret, 

especially for multivariable complex models [2]. 

In other words, the MARSplines method is a method that provides tremendous convenience for 

nonlinear and complex large data sets, taken from many different fields from economics to 

biology. Leathwick, for example, studied a very complex dataset where fifteen different fish 

species examined their relationship to each other and the environment. It uses this method to 

generate a model that predicts the future behavior of the species [4]. 

Multivariate time series (MTS) integrated regression models are used in deep learning (DL) 

based data mining studies in many areas from finance to health. Mode et. al. applies DL and MTS 

integrated regression model to increase the prediction performance of TS models based on 

cybersecurity data [14]. 

Deep Neural Networks (DNNs) have increasingly widespread use in data mining with their high 

accuracy performance. In another study, a new approach is introduced that integrates the 

Generalized Linear Model (GLM), Seasonal Automatic Stress Integrated Moving Average model 
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(SARIMA), and Automatic Stress Integrated Moving Average (ARIMAX) methods with DNN 

using classical regression methods. The superior performance of this approach has been 

demonstrated when compared to existing hybrid models in the literature [16]. 

The TS prediction models aim to generate predictions about future data by analyzing the pattern 

created by past observations. This is important to support decision-making about future issues in 

many areas. In his study, Ilic, which is another hybrid approach based on time series and 

regression algorithms, developed a linear regression (EBLR) algorithm that explains the errors of 

the classical TS model through regression trees and provides accuracy-enhancing model learning 

in later steps. The model consists of two stages. In the first stage, estimates are made based on a 

basic time series model. In the second step, the errors of the current model are calculated with a 

regression tree [17]. 

Thanks to the methods and motivations provided by the studies mentioned in this section, a new 

hybrid approach has been developed in which MARSplines is integrated into the exponential 

smoothed TS algorithm. The methodology of the study and details of the applied methods are 

explained in Section-2. In Section-3, the application of the stated methods and methodology on 

data is given. In the last section, the main findings and results obtained from the research are 

expressed. 

2. Methodology 

In this study, time-series additive exponential smoothing estimation algorithm is integrated with 

the multivariate adaptive regression algorithm. Thus, with this hybrid regression model, we aim 

to increase the prediction ability of the classical time series algorithm. 

2.1. Additive Exponential Smoothing Time-Series Analysis 

A panel dataset usually has a recurring pattern over some time. The pattern that periodically 

repeats itself is called the seasonal effect of a time series model. Regardless of possible pattern 

repetitions, the specified time intervals are called specified periods depending on the date. The 

exponential smoothing algorithm gives lower weights to the specified periods when the length of 

the period increases [7]. The seasonal effect of a specified period assigned by the exponential 

smoothing model is calculated as follows. 

                                                                           (1) 

where  is the mean value of each period,  is the slope effect (trend) parameter, and  is the 

seasonal effect of the  seasons ( ) in a year, and  (  ) is the white 

noise error parameter. Expressed parameters are not fixed. Each parameter value may change 

over time.  

If a smoothing model has no trend, then   = 0 for all . Similarly, if a smoothing model has no 

seasonal effect, then  for all . So, the smoothing parameter given above are calculated 

with the following equations. 
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                                                (2) 

                                                                 (3) 

                                                                    (4) 

where  are seasonal effect, level, and trend weights of the smoothing, respectively. 

Also let the smoothed level, smoothed slope (trend) and smoothed seasonal estimators be , 

and  such that  estimates ,  estimates , and   estimates  , at time . Let  be the 

number of estimated cases. Then the h-step-ahead esimation equation is 

  ,                                                           (5) 

where  is the estimated  cases of ,  is the estimated  additive slope, and  is the 

h estimated smoothed seasonal factor [8]. 

2.2.  Multivariate Adaptive Regression Splines (Marsplines) 

The MARSplines algorithm was produced by Friedman in 1991[3]. As computerized statistical 

data analysis tools have become widespread, MARSplines has become an increasingly popular 

method. The basic logic of the algorithm is to predict the values of a continuous dependent 

variable with the help of continuous or categorical independent variables. MARSplines algorithm 

does not produce a functional estimator based on the relationship between the dependent and 

independent variables as in classical regression models but instead offers a nonparametric 

regression model. The algorithm aims to describe the possibly existing relationship between 

variables by a method using basic functions in addition to the coefficients generated from 

classical regression data. The general procedure of the method consists of two steps; First, the 

data is split into two equally sized subsets. In the next step, a hybrid regression model is 

generated that includes the basic function for each subset. The MARSplines regression model is a 

combination of these hybrid models. Classical regression models generally offer more successful 

approaches for such datasets with a linear distribution. Thanks to this expressed feature of the 

MARSplines method, very successful models can be created even for datasets having non-linear 

distribution. It will be quite difficult to create similar models with parametric methods. The 

MARSplines algorithm uses double-sided functions similar to basic functions defined for linear 

or nonlinear distribution. The purpose of these functions is to create the alternative path from the 

dependent variable to the independent variables with the best possible approximation. Also, the 

functions generate estimations for the dependent variable. MARSplines model is given with Eq. 

(6) [3]: 

                                                                (6) 

where S is the number of splines in the model, y is prediction for the dependent variable, X is the 

index of the independent variables,  is estimated intercept parameter,  is the estimated 

parameters and the  is the basis function. 
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Depending on the number of seasons and periods, basis functions are interchanged through a 

MARSplines model several times for finding the best match to the least-squares goodness-of-fit 

criterion. At the end of this process, the model automatically decides on the importance of the 

independent variables and their mutual interactions. As with all the nonparametric models, the 

MARSplines model is adaptive and therefore causes an overfitting problem. For overcoming this 

problem, the model has a pruning method decreasing the number of basis functions for 

decreasing the complexity of the model. This pruning process makes MARSplines a very strong 

method for predictor selection [3]. 

The MARSplines algorithm’s predictor selection process is as follows: The first step of the 

process starts with a model having only the constant basis function. In the second step, the basis 

function definition space is scanned for the most successful variables and knots, and then the 

selected variables and knots are added into the model for minimizing the prediction error 

(goodness of fit measure). In the third step, the second step is repeated until obtaining the pre-

determined maximum measurement for the goodness of fit. After an exact number of iterations, 

in the final step, the pruning method is applied based on functions and so the functions 

contributing least to the goodness of fit (least squares) are removed from the model [3]. 

2.3.  Integration of Time-Series and MARSplines Algorithms 

Table 1. Mathematical process of the integrated hybrid algorithm 

 
The mathematical process of the integrated hybrid algorithm is given in Table 1. The hybrid 

algorithm consists of adding steps of predictors into the MARSplines model such that each 

predictor is recalculated based the exponential smoothing time-series model. For this purpose, 

level ( ), trend ( ) and seasonal effects ( ) of smoothing weight are determined. Then, according 

to these parameters, smoothed level ( ), smoothed slope ( ) (trend) and smoothed seasonal 

estimators ( ) are calculated in such a way that  estimates ,  estimates , and   

estimates  at time . As a result, the seasonal exponential smoothing model Eq. (1) is 

generated with these obtainded parameters. This process is repeated for each iteration. Then, 

since each  value will be obtained after the calculation based on the time-series algorithm, the 

equation Eq. (7) is obtained by replacing the X predictor parameter in the MARSplines model Eq. 

(6) [3]. 

                                                       (7) 

As a result, the mathematical expression of the hybrid algorithm Eq. (8) is obtained as follows 

[3]. 

                                      (8) 
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3. Experimental Work 

The dataset of the study has been taken from Kaggle.Com, an open-access database, and 

statistical consulting platform. The original name of the data is ’Uniqlo (Fast Retailing) Stock 

Price‘. The daily opening value (Open), closing value (Close), daily highest value (High), daily 

lowest value (Low), daily trading volume (Volume), daily stock trading total value (Stock 

Trading) of the Tokyo Stock Exchange. The Stock_Trading variable contains the daily total 

purchase / sale values of the shares of the company Uniqlo, which are traded on the stock 

exchange. In addition, Date variable is the only categorical variable. The first case of the data is 

received on January 4, 2012, and the last case is received on January 13, 2017. There are only 7-

days-data available from 2017.  There are a total of 1233 cases in the dataset. The first 1226 of 

the cases are used as a training set and the remaining 7 cases are reserved as a testing set. The 

data is licensed under ‘Public Domain Dedication’ (CC0 1.0 Universal (CC0 1.0)). 

 
Figure 1. Methodology 

To better observe the performance of the model, data that is open to irrational effects was 

preferred instead of data in which the values of consecutive days are linearly arithmetically 

similar to each other. For this purpose, stock market data was considered appropriate. The 

selection of the Tokyo stock exchange is random and does not have a specific purpose. 

In this study, a new algorithm is designed by integrating a time series based prediction algorithm 

with a multivariate adaptive regression model. To observe the performance of the obtained 

algorithm, a situation analysis was made on the dataset of the Tokyo stock market. The dependent 

variable of the time series prediction model built on the integrated algorithm is determined as 

Stock_Trading. Except for the date variable, all other variables are determined as independent 

variables (predictors). The predictive success of the algorithm is evaluated according to its 

prediction proximity rates to the original values of the predicted cases on the testing set. For this 

purpose, the mean absolute residuals between the predictive and original values of the dependent 
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variable are calculated. It can be concluded that the success of the model increases as the mean 

residuals approach zero. 

The first estimation model is called as the Additive Exponential Smoothing Time-Series Analysis 

algorithm. Stock_Trading is identified as lock variable. Also the specified parameters; the 

additive season number (t) is 12 (corresponding to 12 months), the level smoothing weight is 

, the seasonal smoothing weight is , and the trend smoothing weight is 

. 

The second prediction model is based on the new integrated algorithm. The modeling process is 

performed in three stages. In the first stage, the same independent variables (Open, Close, High, 

Low, and Volume) that are used in the Additive Exponential Smoothing Time-Series Analysis 

model, have been determined as Lock parameter one by one. In other words, the algorithm that is 

used to estimate the dependent variable in the first model is also applied to the independent 

variables in this step, so that the case values of the independent variables in the testing set are 

estimated. In the second stage, the MARSplines model is generated on the training set by using 

the predefined variables. The mathematical expression of the model is used as a reference 

function in calculating predictive values in the next stage. In the third stage, the predictive values 

obtained in the first stage are inserted in the function obtained in the second stage, and thus each 

case of the dependent variable is recalculated. Then, the absolute correlations between the 

predicted and original set are calculated. 

In the final step, two separate multivariate regression models are built with the original and 

predicted sets, as stated above, to evaluate the performance of the algorithms. 

3.1. Results 

An exponential smoothing time series prediction model having Stock_Trading as a dependent 

variable is constructed by using the control (training) set. The parameter values that are applied 

when creating the model are the same as the initial constants. In this way, all of the data in the 

testing set is recalculated according to this model. The values calculated based on the model are 

given in Table 3 ( ). The graph of the model is given in 

Fig. 2. 

Table 2. Time-Series prediction 

TEST OPEN HIGH LOW CLOSE VOLUME 

O
B

S
E

R
V

E
D

 

4,25E+4 4,33E+4 4,25E+4 4,33E+4 6,48E+5 

4,33E+4 4,33E+4 4,25E+4 4,26E+4 5,17E+5 

4,05E+4 4,10E+4 3,97E+4 3,97E+4 1,44E+6 

3,86E+4 3,89E+4 3,82E+4 3,87E+4 1,20E+6 

3,87E+4 3,89E+4 3,85E+4 3,86E+4 5,46E+5 

3,83E+4 3,85E+4 3,79E+4 3,80E+4 8,01E+5 

3,89E+4 3,94E+4 3,82E+4 3,84E+4 1,32E+6 

(T
IM

E
 S

E
R

IE
S

) 

P
R

E
D

IC
T

E
D

 4,31E+4 4,33E+4 4,25E+4 4,27E+4 5,07E+5 

4,29E+4 4,32E+4 4,25E+4 4,27E+4 5,47E+5 

4,29E+4 4,31E+4 4,26E+4 4,27E+4 4,58E+5 

4,28E+4 4,31E+4 4,24E+4 4,26E+4 4,31E+5 

4,26E+4 4,29E+4 4,22E+4 4,25E+4 4,87E+5 
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4,27E+4 4,31E+4 4,25E+4 4,27E+4 4,55E+5 

4,27E+4 4,30E+4 4,24E+4 4,25E+4 4,22E+5 

R
E

S
ID

U
A

L
S

 

-6,04E+2 1,53E+0 -4,77E+1 5,91E+2 1,41E+5 

3,22E+2 1,46E+2 1,12E+0 -1,40E+2 -3,07E+4 

-2,41E+3 -2,10E+3 -2,86E+3 -3,00E+3 9,78E+5 

-4,16E+3 -4,21E+3 -4,28E+3 -3,92E+3 7,66E+5 

-3,88E+3 -4,05E+3 -3,69E+3 -3,96E+3 5,89E+4 

-4,42E+3 -4,67E+3 -4,53E+3 -4,73E+3 3,46E+5 

-3,81E+3 -3,59E+3 -4,12E+3 -4,07E+3 9,00E+5 

 

A new time series model is composed for the recalculated parameters (Open, Closed, High, Low, 

and Volume), and predicting is performed for the dependent variable. Prediction values calculated 

based on the time series algorithm are given in Table 2. Also, the observed values existing in the 

testing set, the prediction values, and the differences (residuals) between these two values are 

given in Table 2. Additionally, the visuals of the values given in Table 2 are shared in detail in 

Figure 2. 

Variables with an equal range of values are given combined. The left y-axis reflects the range of 

the observed/predicted variable values, the right y-axis reflects the range of the residual values, 

and the x-axis reflects the order of days from 1 up to 1233. The blue lines in the graphs show the 

observed values, the red lines the prediction values, and the green lines the residual values. To 

evaluate the graphic, it is necessary to evaluate the individual and relative positions of the lines 

separately. It can be interpreted such that the blue and red lines get closer to each other, the 

model performs better. From this respect, the distribution of the green lines around the line x = 0 

shows that the model is quite successful. 

To check residual independence, a scatterplot is drawn according to a time variable (date). A 

nonrandom distribution shows that the independence condition fails. Accordingly, a scatter-plot 

was drawn for each variable and it was observed that the residual independence conditions are 

satisfied for all variables. 
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Figure 2. Time-Series prediction 
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In the next step, the variables generated by the time-series-smoothing model are deployed in the 

MARSplines model to estimate the dependent variable. This process is applied only to the 

training set. In this way, the prediction achievement of the model can be measured by comparison 

so that trials can be performed to develop a better model. However, when working on the testing 

set, the dependent variable is censored, and an estimation is made by applying the most 

successful model designed on the training set. In other words, there is no trial-development 

process on the testing set. Only the best available model can be used. Also, considering that the 

data set covers 5 years, it is highly probable that there may be seasonal effects. For this reason, 

the seasonal effect parameter is also included in the model. The number of seasons (periods) is 

determined as 12 correspondings to the 12 months in a year. However, the testing set consists of 

only 7 cases, and a regression model built on such a small set would not be able to train the 

model enough. For this reason, the mathematical infrastructure of the most successful 

MARSplines model created on the training set is applied to the testing set. Details of the model 

are presented in Table 4. Predictive Model Markup Language (PMML) of the model is given in 

Appendix. 

Table 3. Original and predicted stock trading prices 

T
E

S
T
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G
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T
 

Dependent Variable: Stock Trading Prices 

Observed_Stock Time_Series_Stock MARSplines_Stock 

2,79E+10 2,13E+10 2,33E+10 

2,21E+10 2,26E+10 2,44E+10 

5,77E+10 1,95E+10 2,12E+10 

4,61E+10 1,84E+10 2,07E+10 

2,11E+10 1,97E+10 2,31E+10 

3,05E+10 1,96E+10 2,16E+10 

5,12E+10 1,82E+10 2,04E+10 

 

Table 4. MARSplines model results (significant b* are highlighted in red) 

MARSplines Results Regression Statistics 

Dependent: Stock Trading_TS Mean (observed) 2,44E+10 

Indep.Var.: Open_TS, High_TS, Low_TS, Close_TS, Volume_TS Std. Dev. (observed) 1,52E+10 

Number of terms = 13 Mean (predicted) 2,44E+10 

Number of basis functions = 12 Std. Dev. (predicted) 1,48E+10 

Order of interactions = 1 Mean (residual) 4,93E-6 

Penalty = 2 Std. Dev. (residual) 3,35E+9 

Threshold = 0,0005 R-square 9,51E-1 

GCV error = 1,17E+19 R-square adjusted 9,51E-1 

 

In the testing set, 7 cases of the dependent variable are calculated using the function (Eq. 9) 

obtained from the MARSplines model. In other words, the model obtained from the training set is 

applied to the testing set. Stock_Trading values that are calculated according to the function are 

given in Table 3.  

Let 

 

such that the mathematical expression of the MARSplines regression model is 



F. Koyuncu, A. Yücel / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2021, 1, 14-29 

 

 

 

 

26 

   

 

 

 

 

 

(9) 

Table 3 shares the original (observed), time-series predicted, and stock_trading values calculated 

using the MARSplines function. In the next step, a time series model is created on the values 

calculated according to the function obtained from the MARSplines model. The performance of 

the integrated approach of MARSplines and time-series algorithms is measured by the similarity 

rate between the predicted and observed values. For this purpose, first of all, the absolute 

correlation between predicted and observed values is compared. In the next step, the predictive 

success rate of the model is calculated. 

Table 5. Absolute Correlation between the Stock Trading Prices (significant corr. is highlighted 

in red) 
 Observed 

Predicted 

(Time Series) 

Abs. Corr. = 0,678 

P-Value = 0,094 

Predicted 

(Integrated Model) 

Abs. Corr. = 0,852 

P-Value = 0,015 

 

The correlation rate between predicted and observed values can be used as a criterion for 

evaluating model performance [18]. The absolute correlation values between predicted and 

observed values are given in Table 5. Accordingly, the absolute correlation ratio between the 

predicted values based on the MARSPlines model and the observed values is 0.852. Also, the 

ratio of absolute correlation between predictive values based on time series and observed values 

is 0.678. In the table, the statistically significant correlation values are highlighted in red. 

According to the results, as MARSplines based correlation values are significant at α = 0.05 

significance level, time-series based correlation values are not statistically significant. 

Table 6. Multiple Regression Summary Statistics 
Summary Statistics 

Multiple R 0,908 F(2,4) 9,44 

Multiple R² 0,825 p-value 0,031 

Adjusted R² 0,737 Std.Err.(Estim.) 7,56E+9 

Table 7. Multiple Regression Parameter Estimations (significant b* are highlighted in red) 
Regression Summary (Dependent Variable: Original_Stock) 

N=7 b* Std.Err. (b*) b Std.Err.    

(b) 
t(4) P-Value 

Intercept    2,31E+11 4,56E+10 5,06 0,007 

TS_Stock 0,85 0,569 8,01 5,34 1,49 0,208 

MARS_Stock -1,64 0,569 -16,1 5,53 -2,89 0,044 

 

In the second evaluation step, a multiple regression model is designed. According to the 

performance of the predicted sets within the model, the levels of proximity to the original data are 
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observed. The dependent variable of the regression is ’Original_Stock and the independent 

variables are MARSplines_Stock and Time-Series_Stock. Summary statistics of the model are 

given in Table 6. Also, the parameter estimations are given in Table 7. According to the results, 

while the contribution of MARSplines_Stock as a predictor in the model is statistically 

significant, Time-Series_Stock's contribution is not significant. 

Based on both evaluation steps, the predicted sets based on the MARSplines method perform 

better and statistically significant. These results confirm that the supporting time-series with 

MARSplines increases the predictive performance of the time-series. 

4. Conclusion 

This study proposes a new integrated prediction algorithm that functionally expresses the 

distribution by time-variable. In recent years, there have been numerous increases in the number 

of user-generated reviews with external intervention, which are quite accurate but require a 

deeper understanding of machine learning methods. The main contribution of the proposed 

approach presented in this study is to give accurate results at big sized data while reducing the 

outside intervention of the researcher and the amount of data required for model training. 

Therefore, a new approach is presented to improve the prediction performance of the time series 

algorithm. It enables the use of data sets from different domains with any size and number of 

variables, without the need for advanced understanding in machine learning. For this purpose, a 

dataset that is difficult to predict, nonlinear and open to irrational impact was chosen to get the 

best test for the performance of the approach: Stock market data. The emphasis of the 

experimental study is based on the examination of the data produced by the market on a 

continuous scale with a public license. For this purpose, the five years of the Tokyo Stock 

Exchange was examined. After experimental studies on the relevant data, a new algorithm has 

been developed to improve the current prediction potential. An exponential smoothing time series 

algorithm was applied to the data and predictions were made for future data. Then, another 

estimation was made using the MARSplines model developed with predictors based on time 

series. The dataset generated based on predictions obtained by MARSplines had a higher absolute 

correlation with the original data. (0.852-0.678). Also, MARSplines predictions are statistically 

significant and outperform normal time-series predictions. 
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Appendix 

<?xml version="1.0" encoding="windows-1254" ?> 

<PMML version="2.0"> 

<Header copyright="STATISTICA Data Miner, Copyright (c) 2014, StatSoft, Inc, www.StatSoft.com"/> 

<MARSplinesModel> 

 modelName = "Multivariate Adaptive Regression Splines" 

 modelType = "MARSplines" 

 <ResponseList> 

 <Response name="Stock Trading_TS" noNominals="0"/> 

 </ResponseList> 

 <PredictorList> 

  <Predictor name="Open_TS" noNominals="0"/> 

  <Predictor name="High_TS" noNominals="0"/> 

  <Predictor name="Low_TS" noNominals="0"/> 

  <Predictor name="Close_TS" noNominals="0"/> 

  <Predictor name="Volume_TS" noNominals="0"/> 

</PredictorList> 

<Terms> 

<TermSpecs  term="1" predictor="5" knot="2,07890000000000e+006" type="-1"/> 

<TermSpecs  term="2" predictor="2" knot="4,49200000000000e+004" type="1"/> 
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<TermSpecs  term="3" predictor="2" knot="4,49200000000000e+004" type="-1"/> 

<TermSpecs  term="4" predictor="3" knot="4,30000000000000e+004" type="1"/> 

<TermSpecs  term="5" predictor="5" knot="1,62610000000000e+006" type="1"/> 

<TermSpecs  term="6" predictor="1" knot="2,68000000000000e+004" type="1"/> 

<TermSpecs  term="7" predictor="1" knot="2,68000000000000e+004" type="-1"/> 

<TermSpecs  term="8" predictor="3" knot="4,51250000000000e+004" type="1"/> 

<TermSpecs  term="9" predictor="1" knot="4,72800000000000e+004" type="1"/> 

<TermSpecs  term="10" predictor="3" knot="4,06100000000000e+004" type="1"/> 

<TermSpecs  term="11" predictor="2" knot="3,76800000000000e+004" type="1"/> 

<TermSpecs  term="12" predictor="3" knot="5,47600000000000e+004" type="1"/> 

</Terms> 

<ParameterList> 

<Coefficients response="1" intercept="9,57354991253548e+010" coeff1="-3,16012041310131e+004" 

coeff2="4,02943152348027e+006" coeff3="-1,90567698334054e+006" coeff4="2,14802239018978e+006" 

coeff5="1,37012891096041e+004" coeff6="-1,18261460614068e+006" coeff7="1,33241133917770e+006" 

coeff8="-4,48816386471684e+006" coeff9="2,25246971605447e+006" coeff10="-2,95446036624414e+006" 

coeff11="9,03774315795363e+005" coeff12="-7,53618316284358e+005"/> 

</ParameterList> 

<?The following model should be used directly, with categorical variables being coded 0, 1.?> 

<Stock Trading_TS = 9,57354991253548e+010 - 3,16012041310131e+004*max(0; 2,07890000000000e+006-

Volume_TS) + 4,02943152348027e+006*max(0; High_TS-4,49200000000000e+004) - 

1,90567698334054e+006*max(0; 4,49200000000000e+004-High_TS) + 2,14802239018978e+006*max(0; 

Low_TS-4,30000000000000e+004) + 1,37012891096041e+004*max(0; Volume_TS-1,62610000000000e+006) - 

1,18261460614068e+006*max(0; Open_TS-2,68000000000000e+004) + 1,33241133917770e+006*max(0; 

2,68000000000000e+004-Open_TS) - 4,48816386471684e+006*max(0; Low_TS-4,51250000000000e+004) + 

2,25246971605447e+006*max(0; Open_TS-4,72800000000000e+004) - 2,95446036624414e+006*max(0; 

Low_TS-4,06100000000000e+004) + 9,03774315795363e+005*max(0; High_TS-3,76800000000000e+004) - 

7,53618316284358e+005*max(0; Low_TS-5,47600000000000e+004)> 

</MARSplinesModel> 

</PMML> 

 


