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Abstract 
 
In the present study, the effect of the multi-walled carbon nanotubes (MWCNTs) fillers weight fraction 
on the mechanical, electrical, and thermal properties of the epoxy was calculated analytically. The results 
were then compared and it was found out that the MWCNTS has a significant effect on the electrical 
conductivity of the epoxy. The MWCNT modified epoxy composites were considered as the matrix 
material to design quasi-isotropic carbon fibre/epoxy composite. The change of the weight fraction of the 
MWCNTs on the mechanical, electrical, and thermal properties of the carbon fibre/epoxy laminates was 
also calculated. Finally, the hygrothermal load and the bending load response of the laminated composites 
were researched. MWCNTs fix the mismatch between the hygrothermal properties of the epoxy matrix 
and the carbon fiber. 
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Karbon Nanotüp ile Modifiye Edilmiş Fiber Takviyeli Laminelerin Isıl ve 
Elektriksel Özelliklerinin Teorik Analizi 

 
Öz 
 
Bu çalışmada, çoğul duvarlı karbon nanotüplerin (MWCNT) epoksinin mekanik, elektrik ve ısıl 
özellikleri üzerindeki etkisi analitik olarak hesaplanmıştır. MWCNT’nin epoksinin elektriksel iletkenliği 
üzerinde önemli bir etkiye sahip olduğu bulunmuştur. MWCNT modifiyeli epoksi malzeme ile karbon 
fiber/epoksi tabakalı kompozit malzemeler tasarlanmıştır. MWCNT’lerin ağırlıkça katkısının karbon 
fiber/epoksi kompozitlerin mekanik, elektriksel ve termal özellikleri üzerindeki etkisi de hesaplanmıştır. 
Son olarak, MWCNT takviyeli tabakalı kompozitlerin higrotermal yük ve eğilme yükü altındaki tepkileri 
araştırılmıştır. MWCNT’lerin, epoksi matris ve karbon fiberin ısı ve neme bağlı özellikleri arasındaki 
uyumsuzluğu azalttığı sonucuna varılmıştır. 
 
Anahtar Kelimeler: Nanopartikül, Modifiye epoksi, Kompozit lamine, Isı ve neme bağlı tepki 
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1. INTRODUCTION 
 
Carbon fibre reinforced composite laminates have 
increasing importance for engineering applications 
due to their excellent properties. Owing to high 
corrosion and chemical resistance makes 
carbon/epoxy laminates a good alternative for the 
durability needed applications such as bipolar 
plates (BPs) that are used in the fuel cells. On the 
contrary, the poor electrical conductivity of the 
carbon/polymer laminated composites restricts 
their use as BP in the fuel cells. To overcome this 
deficiency, it is a good solution to modify the 
insulating constituent of the carbon/polymer 
composites with nano-sized particles [1–8]. It is 
also well known that the functionalization and the 
surface modification of nanoparticles improve the 
dispersion of the particles in the resins by 
preventing agglomeration [9,10]. The fracture 
toughness, the mechanical and thermal properties 
of polymeric materials filled with functionalized 
particles are better than the neat polymers [9–13]. 
 
In the past two decades, especially carbon 
nanotubes have come to the fore as the filler 
materials for polymers. The carbon nanotubes 
(CNTs) which have excellent conductivity, high 
aspect ratio, and good bonding with the polymers, 
offer improved electrical, thermal and interfacial 
properties. The unmodified CNTs can enhance the 
electrical conductivity of the epoxy resin better 
than the surface modified CNTs [6]. In fact, the 
electrical conductivity of the CNT modified 
polymers is directly depending on the used 
functional groups, the functionalization method, 
and the parameters of the nanoparticles [14,15]. 
Type of the CNT is also another fact that the multi-
walled CNT (MWCNT) particles have a higher 
increasing effect on the electrical conductivity of 
the epoxy than that of the single-walled CNT 
(SWCNT) particles [16]. Chen et al. [3] reported 
that the addition of electrospun carbon nanofibres 
into the matrix of the carbon fibre/epoxy laminated 
composite can increase the in-plane and the out-of-
plane electrical conductivities of the laminate up to 
150% and 20% respectively according to the 
pristine laminate. Costa et al. [6] found out that 
both the glass fiber reinforced and the carbon fiber 
reinforced laminates with CNT modified matrix 

have doubled through-thickness electrical 
conductivity according to the neat laminates and 
the modified matrix does not affect the in-plane 
electrical conductivity of the laminates. Moisala et 
al. [16] presented that a very small amount of 
MWCNT or SWCNT can bring significant 
electrical conductivity to the epoxy resin and the 
thermal conductivity is negatively influenced by 
SWCNT particles while MWCNT particles 
increase the thermal conductivity. Jarali et al. [17] 
offered analytical equations to determine the 
hygro-thermal-electrical properties of the CNT-
modified polymer composites. On the other hand, 
the ambient temperature and the amount of the 
existing moisture also affect the electrical, thermal, 
and interfacial properties of the CNT modified 
composites [18]. 
 
MWCNT particles are preferred as a filler material 
for composite bipolar plates (BPs) owing to their 
superior electrical properties in the last decade. 
BPs are responsible for gas distribution to the flow 
channels and collecting the current that occurred in 
the cell. Therefore, BPs should have high electrical 
conductivity, and mechanical strength as well as 
corrosion resistance [19]. In this respect, the 
MWCNT effect was evaluated as BP application 
for PEM fuel cells in many studies [20-26]. Bairan 
et al. [20] constituted composite BP using 
polypropylene (20%), carbon black (25%), 
graphite (47-52%), and MWCNT (3-8%) 
materials. The electrical conductivity and flexural 
strength were increased by the addition of the 
MWCNTs up to a limit weight ratio of 6%. In the 
rates above this limit value, there was a decrease in 
the properties. According to another study of the 
researchers [23], 158.32 S/cm electrical 
conductivity and 30 MPa flexural strength were 
obtained by the addition of 6% MWCNT into the 
composite BP. Similar results were obtained by 
other researchers, too [21,22].  
 
Considering the aforesaid effects of the CNTs on 
mechanical, hygrothermal, and electrical properties 
of the polymeric materials, it is inevitable to see 
similar changes on the polymer matrix composites 
reinforced with continuous fibres. The stress state 
and the deformation of the CNT modified 



Fatih DARICIK, Alparslan TOPCU 

Ç.Ü. Müh. Mim. Fak. Dergisi, 35(4), Aralık 2020  927 

laminated composites under the thermal and the 
moisture loads will certainly differ according to 
the unmodified composites. However, it is well 
known that the effect of the mechanical properties 
of the continuous fibre and the matrix on the 
mechanical properties of the laminate can be 
calculated by analytical approaches. In this study, 
initially, the hygrothermal, electrical, and 
mechanical properties of the MWCNT modified 
epoxy was calculated. Then the properties of the 
layers with the carbon fibre and the modified 
epoxy layers were analytically determined 
according to the rule of the mixture and the effect 
of the MWCNTs was compared. Finally, MWCNT 
modified quasi-isotropic carbon fibre/epoxy 
laminates were designed to investigate the 
response of the material to the hygrothermal and 
the bending loads which are generally applied on 
BPs. 
 

2. METHOD 
 
For the calculations, the MWCNT/epoxy 
composite resin was considered by using the 
properties of the constituents (Table 1). The 
addition of the MWCNTs with a high weight ratio 
promotes the agglomeration of additives in epoxy 
resin [27]. Thus, the weight ratio of the MWCNTs 
in the epoxy resin was assumed as differed into a 
range of 0.1% to 2% by taking previous researches 
into account [4,28,29]. Modified resins were 
designated due to the weight ratio of MWCNTs 
they contain, such as M_05 contains 0.5% 
MWCNT in a weight ratio, etc. The agglomeration 
of the MWCNTs was ignored and the mixture of 
the MWCNTs and the epoxy resin was assumed as 
homogenous. Effects of the MWCNTs on the 
mechanical, electrical, and thermal properties on 
the epoxy resin were calculated by using a series 
of Equations 1-10 [17]. 

Table 1. Properties of MWCNT and epoxy resin 

Properties MWCNT 
Epoxy 
resin 

Fibre 

   Longitudinal Transverse 
Density (ρ), gr/cm3 2.10 1.18 1.84 
Elastic modulus (E), GPa 450 2.47 260 0.8 
Shear modulus (G), GPa 173.1 0.88 110 
Poisson’s ratio (ν) 0.3 0.3 0.2 
Coefficient of thermal expansion (α), C-1 4.00*10-6 4.50*10-5 -3.80*10-6 2.00*10-5 
Coefficient of moisture expansion (β),  0 0.06 0 
Thermal conductivity - 0.196 - - 
Electrical conductivity (κ), S/m 1.00*105 1.67x10-13 106  
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was compared. The ratio of the MWCNTs in the 
epoxy was evaluated in the range of 0.1% to 3% 
by weight considering the existing literature when 
preparing epoxy/MWCNT mixture. MWCNTs 
significantly decrease the hygrothermal expansion 
coefficients of the epoxy. By adding MWCNT in a 
weight ratio of %3, the thermal expansion 
coefficient and moisture expansion coefficient of 
the epoxy decreased by 29.69% and 181.37%, 
respectively. 
 
The MWCNT modified resin was approved as the 
matrix for carbon fiber reinforced composite 
lamina. The mechanical and the hygrothermal 
behavior of the quasi-isotropic laminates (with      
[-452/452/902/02]s oriented layers) were calculated 
and the stacking sequence of the plies was kept 
constant for each laminate. Ambient temperature 
and humidity values were assigned as 20 oC and 
0.95, respectively. Moreover, the bending 
characteristics of MWCNT modified composite 
laminates were performed which is one of the most 
important operating characteristics for bipolar 
plates used in fuel cells. The main conclusions 
from this investigation can be drawn as follows: 
 
• First of all, the electrical properties of the 

epoxy were improved with the MWCNT 
contribution. The electrical conductivity of the 
3% MWCNT including epoxy was determined 
as 47.39 S/m and the conductivity value was 
increased by 158.22% with introducing carbon 
fibres into it. These conductivity values satisfy 
the electrical conductivity of composite bipolar 
plate requirements of the Department of 
Energy (DOE) [19]. 

 
• The effect of the MWCNTs on the mechanical 

features of composite layers are limited due to 
the mechanical properties of the unidirectional 
fibre reinforced layer depend on the fibres. 
Even so, MWCNT is contributed to mechanical 
characteristics. 0.97% and 8.74% increase were 
calculated for the longitudinal and transverse 
elastic modulus, respectively with the 3% 
MWCNT additives.  

 
• The coefficients of longitudinal and transverse 

thermal expansions were changed in ratios of 

4.54% and -80.20%, respectively for the 3% 
MWCNT/epoxy-carbon fibre composite. On 
the other hand, the coefficients of longitudinal 
and transverse moisture expansions decreased 
in order of 45.80% and 71.98%. 

 
• It was understood that MWCNT has no 

important effect on the bending strength of 
composite laminates. Similar bending results 
were obtained for unmodified and MWCNT 
modified composites. 

 
Nomenclature 
 
f  volume fraction 
V  volume of constituents 
E  elastic modulus 
G  shear modulus 
ν  poisson’s ratio 
α  coefficient of thermal expansion 
β  coefficient of moisture expansion 
Κ  electrical conductivity 
 
The superscripts are as follows;  
e  epoxy polymer 
Ω  MWCNT 
m  MWCNT modified epoxy matrix 
f  carbon fibre 
c  carbon fibre/epoxy composite 
T  thermal 
M  moisture 
 
The subscripts are as follows;  
1  longitudinal direction of reinforcements 
2  transverse direction of reinforcements 
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