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Abstract
The current algorithms use either the full form or the Schur decomposition of the matrix in the inverse
scaling and squaring method to compute the matrix logarithm. The inverse scaling and squaring method
consists of two main calculations: taking a square root and evaluating the Padé approximants. In this
work, we suggest using the structure preserving iteration as an alternative to Denman-Beavers iteration
for taking a square root. Numerical experiments show that while using the structure preserving square
root iteration in the inverse scaling and squaring method preserves the Hamiltonian structure of matrix
logarithm, Denman-Beavers iteration and Schur decomposition cause a structure loss.
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1. Introduction
The matrix logarithm is not only important for being the inverse function of the matrix exponential, it has also

many applications. It has been used by engineers in the continuization process. They compute the logarithm of
matrices in converting a discrete process into a continuous one [17, 18]. It has also applications to the stability
of differential equations [14, 16]. The growing interest in computing structured matrix functions stems from the
fact that predicting and preserving the structure of matrices can help us to explain the results physically and
geometrically. The logarithm of structured matrices has applications in the control mechanical systems [4, 15] and
in the optometry [6]. Structured matrix logarithm is also used for generalizing Bézier curves to non-Euclidean
spaces. Crouch’s algorithm, which generalizes De Casteljau algorithm to find polynomial splines on Riemannian
manifolds, requires the computation of matrix logarithm when this manifold is a Lie group of matrices [4]. The
theory of splines on Lie groups has applications in robotics path planning and air traffic control.

This paper focuses on computing the logarithm of a real symplectic matrix A with the spectrum ρ(A) such that
ρ(A) ∩ R− = ∅, for which W = logA is Hamiltonian. In the computation of matrix logarithm, we use the inverse
scaling and squaring method proposed by Kenney and Laub [12] and which is based on the relation

log(A) = 2k log(A1/2k).
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There are two important calculations in the inverse scaling and squaring method. The first one is taking a square
root of a symplectic matrix and the second is the Padé approximation [7]. Moreover, the inverse scaling and
squaring method can be applied to A directly or it can be used with the Schur decomposition of A. However, we
show that the latter case does not preserve the structure of the symplectic matrices. The aim of this paper is to
propose using the structure preserving iteration for the square root in the inverse scaling and squaring method.
We analyse this approach in terms of structure error, accuracy and computational cost. Numerical experiments
assess the advantage of this approach and suggest using the structure preserving iteration in the inverse scaling
and squaring method for the logarithm of symplectic matrices to preserve the Hamiltonian structure.

The paper is organized as follows. Section 2 begins with the definition of symplectic matrices and the matrix
logarithm. We also review the inverse scaling and squaring method in this section. In Section 3, we propose our
algorithm using the structure preserving square root iteration in the inverse scaling and squaring method. Section 4
presents the numerical findings and analyses our approach in terms of structure error, accuracy and cost. Finally,
Section 5 gives a brief summary and critique of the findings .

2. Logarithm of symplectic matrices

2.1 Symplectic matrices
Let K denote the field R or C. Consider a scalar product 〈·, ·〉M defined by any nonsingular matrix M , for

x, y ∈ Kn,

〈x, y〉M =

{
xTMy, for real or complex bilinear forms,
x∗My, for sesquilinear forms.

For any matrix A ∈ Kn×n, there exists a unique operator A? ∈ Kn×n, called the adjoint of A with respect to the
scalar product, such that

〈Ax, y〉M = 〈x,A?y〉M , ∀x, y ∈ Kn.

A? can be written explicitly

A? =

{
M−1ATM, for real or complex bilinear forms,
M−1A∗M, for sesquilinear forms.

Symplectic matrices belong to the automorphism group which is characterized by the adjoint matrix as

G = {A ∈ Kn×n : A? = A−1}.

So for M = J the matrix A ∈ K2n×2n is symplectic if ATJA = J . The permutation matrix J ∈ R2n×2n is given as

J =

[
0 In
−In 0

]
where In is the identity matrix of order n.

2.2 Inverse scaling and squaring method
For a given A ∈ Kn×n a logarithm of A is any matrix W such that eW = A. We assume that A has no eigenvalues

on R− so that the existence of a unique principal logarithm is assured as shown in the following theorem.

Theorem 2.1. [7, Thm. 1.31] Let A ∈ Kn×n have no eigenvalues on R−. There is a unique logarithm W of A all of whose
eigenvalues lie in the strip {z : −π < Im(z) < π}. We refer to W as the principal logarithm of A and write W = logA. If A
is real, then its principal logarithm is real.

For M = J , a matrix W is called Hamiltonian if W? = −W , which implies WT = JWJ . The function logarithm
maps a symplectic matrix to a Hamiltonian matrix as proved in Theorem 2.2.

Theorem 2.2. [3, Thm. 2.1] If A ∈ Kn×n is a symplectic matrix and ρ(A) ∩ R− = ∅, then logA =W is Hamiltonian.

Proof. Since A is symplectic it satisfies
AT = −JA−1J = J−1A−1J.
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Then,
log(AT ) = J−1 logA−1J.

As stated in [7, Thm.1.13 and Thm.11.2 ], log(AT ) = (logA)T and logA−1 = − logA. Therefore,

(logA)T = −J−1 logAJ

= J logAJ.

Hence, it shows that logA is Hamiltonian.

In the computation of matrix logarithm we use the inverse scaling and squaring method. The basic idea of the
inverse scaling and squaring method is to take the repetitive square root of A so the result is close to the identity
matrix and then use the m-th order Padé approximant rm. We summarise the method in the following algorithm.
Algorithm 2.3. [12] Given A ∈ Kn×n with no eigenvalues on R− this algorithm employs the inverse scaling and
squaring method to compute W = logA.

1 Bring A close to an identity matrix by taking k repetitive square root of A
2 Decide the order of rm(A1/2k − I) by minimising the cost and maximising the accuracy
3 Approximate log(A1/2k) by using rm(A1/2k − I) ≈ log(A1/2k)

4 Rescale to obtain W ≈ 2krm(A1/2k − I)

The question we need to deal with is whether the square root function and the Padé approximation preserve the
structure or not. After taking the square root of any matrix in the automorphism group it stays in the automorphism
group, which is proved in the following theorem.

Theorem 2.4. [13] Let A be a matrix that has a principal square root A1/2. If A is symplectic, then A1/2 is symplectic.

Proof. If A is symplectic, then A? = A−1. We have the equality

(A?)1/2 = (A−1)1/2 ⇒ (A1/2)? = (A1/2)−1.

Theorem 2.5. [9, Thm. 6.2] Let G be any automorphism group and A ∈ G. If A has no eigenvalues on R−, then the iteration

Yk+1 =
1

2
(Yk + Y −?

k ) (2.1)

=
1

2
(Yk +M−1Y −T

k M)

with starting matrix Y1 = 1
2 (I +A), is well defined and Yk converges quadratically to A1/2.

Since a symplectic matrix belongs to an automorphism group G the advantage of using iteration (2.1) is that it
will preserve the symplectic structure and the result will lie in the group to approximately machine precision. With
this iteration, we preserve the symplectic structure and when we evaluate the Padé approximant, we obtain the
Hamiltonian structure which is proved in the following theorem.

Theorem 2.6. [5] Let rm(X) be the diagonal Padé approximants to log(I+X),m = 0, 1, . . . . LetW = logA andX = A−I
with ρ(X) < 1. If A is symplectic, then rm(A− I) is Hamiltonian.

Proof. We will use the homographic invariance [2, Thm. 1.5.2] under the argument transformations for this proof.
Since f(x) = log x does not have a power series we take f(x) = log(1 + x). By using the equality log(1 + x) =

− log

(
1 +

−x
x+ 1

)
and [2, Thm. 1.5.2] we get rm(x) = −rm(−x/(x+ 1)).

For the matrix case this formula yields rm(X) = −rm(−X(X + I)−1). If A is a symplectic matrix, then
A−1 = −JATJ . Thus, we can write

rm(A− I) = −rm(A−1 − I)
= −rm(−JATJ − I)
= −rm(−J(AT − I)J).

We obtain rm(X) = −rm(−J(XT )J) = Jrm(XT )J = Jrm(X)TJ = −J−1rm(X)TJ which indicates that rm(X) is
Hamiltonian.
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We state in the next theorem that the error in matrix Padé approximation is less than the error in scalar Padé
approximation at the norm of the matrix, which is used in the inverse scaling and squaring method to decide the
order of Padé approximation.

Theorem 2.7. [11] For ‖A− I‖ < 1 and any subordinate matrix norm,

‖rm(A− I)− logA‖ ≤ |rm(−‖A− I‖)− log(1− ‖A− I‖)|. (2.2)

Table 1. Maximal values θm of ‖A− I‖ ensure that the bound ‖rm(A− I)− logA‖ does not exceed u = 2−53 [7,
Table 11.1].

m 1 2 3 4 5 6 7 8 9
θm 1.10e-5 1.82e-3 1.62e-2 5.39e-2 1.14e-1 1.87e-1 2.64e-1 3.40e-1 4.11e-1

m 10 11 12 13 14 15 16 32 64
θm 4.75e-1 5.31e-1 5.81e-1 6.24e-1 6.62e-1 6.95e-1 7.24e-1 9.17e-1 9.78e-1

The maximal values θm of ‖A− I‖ such that the error bound ‖rm(A− I)− logA‖ does not exceed u = 2−53 ≈
1.1× 10−16 are given in Table 1.

3. Using the structure preserving square root iteration

We adapt the algorithm [7, Alg. 11.10] by using the structure preserving iteration to take a square root. Iteration
(2.1) is used to compute the square root of symplectic matrix and it exploits the symplecticity in each iteration.
Let itj be the number of iterations required in each square root. If M was a full matrix, then the operation count
would include the inverse of M and the matrix multiplication. However, since M = J is a permutation of diag(±1)
multiplication by J−1 is trivial and the cost of each iteration is one matrix inversion per iteration which is 2n3 flops.
Evaluating the partial fraction form of the Padé approximation with the order m costs 8

3mn
3 flops. In iteration (2.1)

the number of iterations required to take a square root of A typically changes from 16 on the first iterations to 4 for
the last few iterations. So the cost of taking a square root of symplectic matrix A at the last few iterations is 8n3

flops. It is worth only taking one more square root if it reduces the order of Padé approximation by at least 3. That
decrease in the order of Padé approximation can only be obtained when ‖A1/2s − I‖ > θ16, where θ16 is the value
given in Table 1. Taking a square root of A approximately reduces the distance of A1/2k to the identity matrix by a
half. This is easy to see since

(I −A1/2k+1

)(I +A1/2k+1

) = I −A1/2k ,

and A1/2k → I as k →∞, it gives

‖I −A1/2k+1

‖ ≈ 1

2
‖I −A1/2k‖. (3.1)

When ‖A1/2s − I‖ ≤ θ16 is obtained, in order to compare the cost of the Padé approximation and the cost of the
square root iteration, we check the inequality

8

3
(m1 −m2)n

3 ≤ 2n3itj ⇒ 4

3
(m1 −m2) ≤ itj (3.2)

by assuming the same number of iterations is required. In equation (3.2) m1 and m2 are the order of Padé
approximants before and after the extra square root, respectively. Since the cost of taking 2 more extra square roots
exceeds the cost of evaluating the Padé approximant we limit it by taking p = 2. That is, only one extra square root
is taken if it is required. By using the cost checking (3.2), we present the modified algorithm of the inverse scaling
and squaring method using the structure preserving square root iteration (2.1).

Algorithm 3.1. Given a symplectic matrix A ∈ Kn×n with no eigenvalues on R− this algorithm computes W = logA
by the inverse scaling and squaring method. It uses the constants θm given in Table 1 for the Padé approximation
and iteration (2.1) to take a square root of A. This algorithm is intended for IEEE double precision arithmetic.
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1 k = 0, p = 0
2 while true
3 τ = ‖A− I‖1
4 if τ < θ16
5 p = p+ 1
6 m1 = min{i : τ ≤ θi, i = 3: 16}
7 m2 = min{i : τ/2 ≤ θi, i = 3: 16}
8 if 4(m1 −m2)/3 ≤ itj or p = 2, m = m1, go to line 13, end
9 end

10 A← A1/2 by using iteration (2.1)
11 k = k + 1
12 end
13 Evaluate Y = rm(A− I)
14 W = 2kY

Cost: Taking a square root costs (
∑k

j=1 itj)2n
3 flops where k is the number of square root and evaluating the partial

fraction form of the Padé approximation costs about 8
3mn

3 flops. It is (
∑k

j=1 itj)2n
3 + 8

3mn
3 flops in total.

4. Numerical experiments

4.1 Error measure
The appropriate relative measure of departure from Hamiltonian structure can be computed by [1]

errH(W ) =
‖W? +W‖2
‖W‖2

. (4.1)

The relative error for the computed logarithm Ŵ is given by

relerr(Ŵ ) =
‖Ŵ −W‖2
‖W‖2

, (4.2)

where W = logA is the "exact" logarithm. In the numerical tests, W is computed at 100 digit precision and
we measure the departure from the Hamiltonian structure and the relative error by equations (4.1) and (4.2),
respectively.

4.2 Numerical tests
In the numerical experiments, we test using the structure preserving square root iteration (2.1) in the inverse

scaling and squaring method in terms of structure loss, accuracy and computational cost. The experiments are
carried out in MATLAB R2020b with u = 1.1× 10−16. We form the full form of symplectic test matrices A ∈ R10×10

by using the function rand_rsymp from Jagger’s MATLAB Toolbox [10].
Let Ŵ represent the computed logarithm and W = logA represent the "exact" logarithm obtained by using

MATLAB’s Symbolic Math Toolbox, where A is diagonalized in 100 digit precision as A = V DV −1 and computed
by logA = V logDV −1.

In the experiments, the relative error of the logarithm of the symplectic matrices relerr(Ŵ ), the structure error
errH(W ) for the Hamiltonian structure and the computational cost are presented. All the results are plotted with
the condition number of the symplectic matrices computed by κ2(A) = ‖A‖2‖A−1‖2. The legend labels in figures
are described as follows:

1. full_preserve: Ŵ is computed by Algorithm 3.1 using the full form of A with the structure preserving
square root iteration (2.1).

2. full_DB: Ŵ is computed using the full form of A with the scaled product Denman-Beavers iteration [7, Alg.
11.10].

3. Schur: Ŵ is computed using the Schur decomposition of A [7, Alg. 11.9] with a square root algorithm [7,
Alg. 6.3].
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Figure 1 provides the comparison of the structure error. We can see that while using the scaled product
Denman-Beavers iteration with the full form of the matrix and Schur decomposition cause a structure loss for the
ill-conditioned matrices, using Algorithm 3.1 preserves the Hamiltonian structure. We compare the accuracy of the
approaches in Figure 2. As shown, while for the well-conditioned matrices, i.e., κ2(A) ≈ 1 the methods give the
good estimate to the "exact" logarithm, we obtain less accurate results for the badly conditioned matrices. Since we
obtain almost the same accuracy from three different approaches, we cannot say one is superior to other in terms of
accuracy. Figure 3 reveals that using the iterative methods to compute the square root is computationally expensive.
However, reducing the matrix to an upper triangular matrix with the Schur decomposition and using a square root
algorithm [7, Alg. 6.3] is relatively cheaper than other approaches.
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Figure 1. Comparison of the structure error for full_preserve, full_DB and Schur.
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Figure 2. Comparison of the relative error for full_preserve, full_DB and Schur.
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Figure 3. Comparison of the computational cost of full_preserve, full_DB and Schur.

5. Conclusion
We proposed using the structure preserving square root iteration in the inverse scaling and squaring method to

compute the logarithm of symplectic matrices and we compared it with the algorithms using either the full form of
the matrix with the scaled product Denman-Beavers iteration or the Schur decomposition in terms of the structure
loss, the accuracy and the computational cost. The findings show that the best structure is obtained by using the
structure preserving square root iteration (2.1) instead of using scaled product Denman-Beavers iteration or the
Schur decomposition. While there is not much big difference in their accuracy, however, using the iteration (2.1)
with the full form of the symplectic matrices is computationally expensive.
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