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Abstract. One of the plant-specific transcription factor families that play an important role 
in responses to nitrogen deficiency is NODULE INCEPTION-like (NIN-like) proteins 
(NLPs). However, the properties and evolutionary relationships of NIN genes in P. vulgaris, 
which enable nodule formation naturally, have not been studied yet. 12 Pvul-NIN genes have 
been identified in this study and the approximate positions of these genes have been 
determined. At the same time, several biochemical and physicochemical properties of NIN-
like proteins have been elucidated in common bean. ORFs, which are the main coding regions 
of the Pvul-NIN genes, have been identified and were found to vary in length between 645-
2976 bp. NIN proteins in the genome of P. vulgaris are 214-991 amino acids long and have 
a molecular weight of between 10.15-90.82 kDa. Comparisons between both monocot and 
dicot, but also nodule binding and non-nodule binding species were considered when 
investigating the evolutionary relationships of NIN genes. 16 duplication events (14 
segmental and 2 tandem) have been shown to play a role in the expansion of the NIN gene 
family in P. vulgaris. In addition, comparative expression analysis of NIN genes was 
performed by processing publicly available RNAseq data and different levels of Pvul-NIN 
gene expression under both salt and drought stress were detected, suggesting the possible 
roles of Pvul-NIN genes for abiotic stress response. Expression levels of Pvul-NIN genes have 
also been investigated in different plant tissues and they have been shown to be intensely 
expressed in nodules and root tissues. This is the first study on the in-silico detection and 
characterization of Pvul-NIN genes to examine gene expression levels in common bean. The 
results could therefore provide the basis for future studies of functional characterization of 
Pvul-NIN genes. 
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1. Introduction 
 

The basic component of proteins, chlorophylls, nucleotides and hormones is nitrogen 
(N), which has a significant influence on plant growth and productivity [1-4]. The 
growing population around the world is the need for food requirements and large 
quantities of N fertilizer are therefore being added to the soil to increase crop yield 
[5, 6]. The synthetic fertilizers used raise costs and are consumed in compliance with 
soil conditions and the form of plant [6-8]. Different adverse effects may be caused 
by this circumstance, such as an increase in the amount of nitrate in the water, soil 
surface degradation, contamination of water with chemical fertilizers, an increase in 
the amount of phosphate in rivers and the accumulation of harmful substances in 
plants due to excessive chemical fertilization. At the same time, greenhouse gases 
(such as N2O) that contribute to climate change are produced by excess N input [9-
11].  
 
Therefore, it has become urgent that high crop yields should be matched with lower 
N fertilizer inputs and that the N efficiency of use (NUE) should be increased in 
order to preserve the soil, an indispensable habitat for all biological entities [10, 12-
14]. Nitrate is one of the most common inorganic N types in aerobic soils, but it is 
the most readily permeable form of N because of its chemical structure [15].  While 
transgenic approaches are considered to be the most promising way to meet the 
current demand for high NUE crops, a well understanding of all N uptake and 
assimilation processes are needed  [5]. Interaction of plants with microorganisms 
like rhizobia enhances the nutrient/fertilizer use efficiency. Newly shaped nitrogen 
fixing root nodules (NFN) use nitrogen from the atmosphere by symbiotic nitrogen 
fixation when legumes interact with rhizobia [16]. Symbiotic nitrogen fixation 
mechanisms which can directly fix nitrogen for crop improvement have been 
investigated thanks to the emerging mechanisms of genetic engineering [17]. 
 
Studies have shown that nitrate can act as a nutrient in plants as well as a signal 
molecule [18-20]. In line with the studies, components of the nitrate signaling 
pathway have been identified in recent years [19, 21]. RWP-RKs containing a 
preserved DNA binding pattern are a class of transcription factors (TFs) that control 
the efficiency of N uptake and N use by the detection of nitrate signals [22]. TFs are 
protein groups that play a role in the determination and functioning of genetic codes 
in DNA and in the regulation of gene expressions, and can also activate the 
transcription of the RNA polymerase gene and also affect the interruption of its 
transcription [23, 24]. This plant-specific TF family is divided into two classes:  
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nodule inception (NIN)-like proteins (NLPs) and RWP-RK-domain proteins (RKDs) 
[25]. When NLP and RKD were compared, it turned out that NLPs contain an 
additional domain known as PB1 (Phox and Bem 1) that allows interactions with 
additional proteins at their C-terminals [22]. When two studies on non-nodulating 
Arabidopsis thaliana are investigated, different effects of (NIN)-like proteins and 
RKDs on plants are detected; while RKDs are highly expressed in reproductive 
organs and play a regulatory role in female gametophyte development, (NIN)-like 
proteins play a central role in nitrate signaling by binding to nitrate-sensitive cis 
elements in target genes [26, 27].   
 
(NIN)-like proteins also play important roles in the cross-interaction of the nitrate 
signaling pathway and the symbiotic signaling pathway as well as in the nodulation 
process. The NIN gene, which is functionally required for the formation of nodules, 
was first identified in Lotus japonicus [28]. The main factor in the formation of 
nodules is infection by microorganisms which varies depending on the plant's 
perception of N levels [29, 30]. 
 
Cultivated beans (P. vulgaris L.) belonging to the legume family, which are the main 
source of vegetable protein in nutrition, are of great importance to the world. Bacteria 
of Rhizobium phaseoli, which have a symbiotic relationship with the P. vulgaris 
roots, bind nitrogen that is free in the air but can not be used by living organisms 
directly [31]. Nitrogen, which is taken from the atmosphere in the root of the bean 
plant, accumulates in the nodules formed by R. phaseoli, is broken down by 
microorganisms after the bean is harvested and becomes an element [32].  
 
Although the amount of nitrogen legumes bind to soil varies depending on the variety 
and environmental conditions, it is generally 5-19 kg/da per year. When the nitrogen 
that legumes bind to the soil is accepted as 10 kg/da per year, it corresponds to 50 kg 
of 20 per cent ammonium sulphate fertilizer. This means: nitrogen bonded to the soil 
by Rhizobium bacteria; lack of risk for washing, water pollution caused by excessive 
use of nitrogen fertilizers, low quality resulting from the use of artificial fertilizers 
and economic importance [33-37]. If, for the first time, a legume plant is to be 
planted in the soil in order to increase the chance of nodule formation in a young 
plant, the surface of the seed should be contaminated with a sufficient number of 
nodule bacteria unique to that plant before planting. This process is known as 
bacterial inoculation [38].  Inoculation of nitrogen-fixing bacteria, such as 
Rhizobium leguminosarum, Rhizobium phaseali and Rhizobium japonica, is a 
common cultural procedure [39, 40]. These bacteria enter the young roots only from  
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the tip of the root hairs of the legume plant in which they cohabit. When encountering 
a tetraploid cell in the edge tissue of the stem, these cells and the adjacent diploid  
 
cells are stimulated to divide. During this period, the grafting pipes branch out and 
distribute to the tetraploid cells. Root tissue stimulated by bacteria and growth 
hormones develops abnormally and forms nodules. Cytokinins, one of the growth 
hormones of plants, provide the formation of nodules by activating the nodule genes 
and promoting cell division [41-43]. By rotting their roots, legumes release nitrogen 
into the soil. Organic substances with a high nitrogen content in the soil are known 
to decompose in a shorter time. Although the degradation period of the legume roots 
with a C/N ratio of 13:1 is 1-2 weeks under suitable conditions; it has been observed 
that this period was 4-8 weeks in the cereal roots with a C/N ratio of 80:1. Because 
the roots of edible legumes are protein-rich, there is adequate nitrogen in the soil, so 
the activity of microorganisms in the soil is faster. With all these characteristics, the 
legumes prepare suitable soil conditions for the plant to be planted in the soil after it 
has been planted [44, 45].  
 
In this study, the functional roles and genome-wide analysis of NLPs in common 
bean were investigated using bioinformatics tools to deeply characterize NIN genes 
in a naturally nodulating plant. The function of Pvul-NIN genes was determined in 
the drought and salt response via RNAseq data. These results will provide insight 
into new studies on P. vulgaris or different plant species with NIN genes, improve 
current demand for NUE in crops, and guide the development of genetic engineering 
studies to provide a comprehensive understanding of all processes related to N 
uptake and assimilation and ensure that environmental damage caused by the use of 
chemical fertilizers is taken into account. 
 

2. Materials and Methods 
 
2.1. Identification of NIN-like proteins in Phaseolus vulgaris genome 

 
P. vulgaris NIN family sequences were obtained from Phytozome v12.1 (http:// 
www.phytozome.net) and Pfam databases [46]. Putative P. vulgaris NIN-like 
proteins were used for query in blastp (NCBI) for characterization of hypothetical 
proteins. The physicochemical properties of NIN proteins were calculated using 
ProtParam Tool (http:web.expasy.org/protparam) and HMMER ( 
http:www.ebi.ac.uk).  
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2.2. Structure and physical locations of Pvul-NIN genes and conserved motifs 
 
Exon – intron structure of Pvul-NIN genes was represented using ‘Gene Structure 
Display Server v2.0’ (GSDS, http:// gsds.cbi.pku.edu.cn/) [47]. The Pvul-NIN genes 
have been mapped with MapChart on P. vulgaris chromosomes [48] Multiple EM 
for Motif Elicition method was used (MEME 4.11.1; http:/meme-suite.org/) to 
classify additional conserved motifs for Pvul-NIN proteins [49].  
 
2.3. Phylogenetic analysis and sequence alignment 
 
The ClustalW has been used to perform the multiple sequence alignment of Pvul-
NIN proteins [50].  The Neighboring approach (NJ) was used for the construction of 
phylogenetic trees with a bootstrap value of 1000 replicates (MEGA7) and the tree 
was drawn using an Interactive Life Tree (iTOL; http://itol.embl.de/index.shtml) 
[51]. 
 
2.4. Promoter analysis of Pvul-NIN genes 
 
Applying Phytozome database v11, the 5′ upstream regions (2 kb of DNA sequence 
from each Pvul–NIN gene) were analyzed with the CARE database 
(http://bioinformatics.psb.ugent.be/webtools/plantcare/ html/) for a cis element scan.  
 
2.5. In silico prediction of miRNA targets in Pvul-NIN genes 
 
All known sequences of miRNA plants have been downloaded from miRBase v21.0. 
(http://www.mirbase.org). psRNA Target Server) was used accordingly with default 
miRNA prediction parameters (http://plantgrn.noble.org/psRNATarget) [52]. In-
silico predicted miRNA targets were searched by BLASTX with ≤1e-10 against 
typical bean Expressed Sequenced Tags (ESTs) in the NCBI database. 
 
2.6. Detection of gene duplication events and prediction of synonymous 
and non synonymous substitution rates 

 
Segmental duplicate gene pairs were analyzed on the Plant Genome Duplication 
Database server (http://chibba.agtec.uga.edu/duplication/index/locus) with a display 
range of 100 kb. CLUSTALW software was used to predict amino acid sequences  
 
of segmentally duplicated Pvul-NIN genes. The PAML (PAL2NAL) CODEML 
software (http://www.bork.embl.de/pal2nal) was used to estimate synonymous (Ks) 
and non-synonymous (Ka) substitution rates [53]. Duplication period (Million Years 
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ago, Mya) and divergence of each Pvul-NIN gene was calculated using the following 
formula: T = Ks/2λ (λ=6.56E-9) [54].  
 
2.7. In-silico mRNA levels of Pvul-NIN genes in different tissues 
 
Expression levels of Pvul-NIN genes in special tissue libraries of plants at different 
stages of development, including roots, nodules, young buds, stems, green mature 
buds, leaves, young triloliates, flower buds and flowers, were obtained from 
Phytozome Database v12.1. FPKM (expected number of fragments per kilobase of 
transcript sequence per million base pairs sequenced). FPKM values have been 
transformed log2 and a heatmap has been developed with the CIMMiner algorithm 
(http://discover.nci.nih.gov/cimminer). 
 
2.8. Identified expression level of Pvul-NIN genes through transcriptome data 

 
Illumina RNA-seq data was collected from the Sequence Read Archive (SRA) to 
measure the Pvul-NIN gene expression levels. For this reason, the accession numbers 
SRR957667 (control leaf), SRR958472 (salt-treated root), SRR958469 (control root) 
and SRR957668 (salt-treated leaf) were used as defined by Buyuk et al. (2016) [55]. 
The heat map of hierarchical clustering were eventually built using the 
PermutMatrix. 
 
2.9. Homology modeling of Pvul-NIN proteins 
 
All Pvul-NIN proteins were searched against Protein Data Bank (PDB) by BLASTP 
(with default parameters) to classify the best template(s) with identical sequence and 
three-dimensional structure [56]. Data were fed in Phyre2 (Protein 
Homology/AnalogY Recognition Engine; (http://www.sbg.bio.ic.ac.uk/phyre2) to 
predict protein structure by homology modeling in 'intensive' mode [57].  
 

3. Results and Discussion 
 

3.1. Identification of Pvul-NIN genes in the Phaseolus vulgaris genome 
 
The 12 NIN genes (Pvul-NIN) defined for the P. vulgaris plant were named from 
Pvul-NIN-1 to Pvul-NIN-12 according to their chromosome order. ORFs, which are 
the main coding regions of the Pvul-NIN genes, have been identified and were found 
to vary in length between 645-2976 bp. NIN proteins in the genome of P. vulgaris 
are 214-991 amino acids long and have a molecular weight of between 10.15-90.82 
kDa. It was determined that only two of the 12 Pvul-NIN proteins were basic and 
that the remaining 10 Pvul-NIN proteins were acidic. In addition, it was understood 
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by the determination of the instability indexes that they are all above 40 and therefore 
unstable. 
 
The aliphatic index is defined as the relative volume of the aliphatic side chains 
(alanine, valine, isoleucine and leucine) which are considered to be a positive factor 
in the thermostability of globular proteins [46]. The aliphatic index of Pvul-NIN 
proteins range from 63.36 to 84.83. With the GRAVY value determined, it was 
observed that all Pvul-NIN proteins had negative values (-0.334 to-0.921) and 
therefore, Pvul-NIN proteins were hydrophilic. 
 
At the same time, the predicted locations of the Pvul-NIN genes were examined and 
it was determined that all genes were located in the nucleus, albeit in different 
proportions. In addition to nucleus, it has been observed that Pvul-NIN genes may 
also be present in chloroplast, cytoplasm, extracellular matrix, vacuole and 
cytoplasmic skeleton at different rates. 
 
The chromosomal distribution of Pvul-NIN genes in the P. vulgaris plant was 
investigated and therefore, 12 Pvul-NIN genes were distributed one by one to 
chromosomes 2, 3, 4, 5, 7, 8 and 11, and the remaining 5 Pvul-NIN genes were found 
to be on chromosome 9. (Figure 1). In a study conducted on Brassica napus (Canola), 
Liu et al (2018) found that 31 NIN genes are distributed to 15 chromosomes at 
different rates and contain only one gene for each of their 6 chromosomes, similar to 
Pvul-NIN genes [58].   
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Table 1. Descriptive information of Pvul-NIN proteins   
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Table 1. Descriptive information of Pvul-NIN proteins (continued)  
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Figure 1. Distribution of Pvul-NIN genes on P. vulgaris chromosomes 

 
 
Gene duplication generates a number of gene copies that can lead to the evolution of 
gene families [59]. Duplications may also contribute to the creation of new species 
by transcribing short chromosomal segments in the genome [60]. An analysis of the 
separation and duplication events of Pvul-NIN genes was conducted in this study. 
The ratios of homologous (Ks) and non-homologous (Ka) genes (Ka/Ks) were 
calculated for Darwin's Positive Selection Relationships and evaluated for Pvul-NIN 
genes [61].  A total of 14 pairs of segmental and 2 pairs of tandem duplicated genes 
have been identified among the Pvul-NIN genes (Table 2). On average, the Ka/Ks 
ratios are 0.06 for segmentally duplicated genes and 0.07 for tandemly duplicated 
genes. The estimated time of separation of the duplicated segmental Pvul-NIN genes 
varies between 13.21 and 455.24 million years (MYA), with an average of 205 
MYA, while the average estimated time of separation of the tandemly duplicated 
Pvul-NIN genes is 247 MYA. 
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 Table 2. Tandem - segmental duplication and Ka / Ks values seen in Pvul-NIN genes 

  
Gene 1 Gene 2 Ks Ka Ka/Ks MYA Duplication 

Type 
Pvul-NIN-

2 
Pvul-NIN-

11 
1,7177 0,3185 0,1854 13,21 Segmental 

Pvul-NIN-
3 

Pvul-NIN-4 21,4659 0,7077 0,033 165,12 Segmental 

Pvul-NIN-
3 

Pvul-NIN-6 7,6682 0,658 0,0858 58,98 Segmental 

Pvul-NIN-
3 

Pvul-NIN-7 10,2981 0,6476 0,0629 79,21 Segmental 

Pvul-NIN-
3 

Pvul-NIN-
12 

59,1812 0,7168 0,0121 455,24 Segmental 

Pvul-NIN-
4 

Pvul-NIN-5 54,6548 0,6901 0,0126 420,42 Segmental 

Pvul-NIN-
4 

Pvul-NIN-7 54,1101 0,6898 0,0127 416,23 Segmental 

Pvul-NIN-
4 

Pvul-NIN-
10 

9,6954 0,7717 0,0796 74,58 Segmental 

Pvul-NIN-
5 

Pvul-NIN-6 11,9819 0,6563 0,0548 92,16 Segmental 

Pvul-NIN-
5 

Pvul-NIN-7 13,8683 0,6724 0,0485 106,67 Segmental 

Pvul-NIN-
5 

Pvul-NIN-
12 

44,8914 0,6852 0,0153 345,31 Segmental 

Pvul-NIN-
6 

Pvul-NIN-7 3,5771 0,5523 0,1544 27,51 Segmental 

Pvul-NIN-
7 

Pvul-NIN-
10 

4,4037 0,5484 0,1245 33,8 Tandem 

Pvul-NIN-
7 

Pvul-NIN-
11 

60,0494 1,1685 0,0195 461,91 Tandem 

Pvul-NIN-
7 

Pvul-NIN-
12 

54,6615 0,6938 0,0127 420,47 Segmental 

Pvul-NIN-
11 

Pvul-NIN-
12 

25,8255 0,9338 0,0362 198,65 Segmental 

 
 
3.2. Structure of Pvul-NIN Genes, Phylogenetic Tree Analysis, Determination 
of Preserved Motifs, Homology Modeling and Promoter Analysis 
 
At the same time, exon and intron structures of Pvul-NIN genes were determined 
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(Figure 2). The obtained exon-intron profiles contributed to the understanding of 
gene structure, and evaluation of motifs and phylogenetic relationships. 
Accordingly, the number of exons varies between 3 and 6, while the number of 
introns varies between 2 and 5. Similar to the Pvul-NIN genes, in a previous report 
by Cho (2017) on Zea mays, it was observed that the exon and intron structures of 9 
NIN genes were found in similar numbers to the ones in this study, the number of 
exons varied between 4 and 5, while the number of introns varied between 3 and 4 
[62].  
 

 
 

Figure 2. Exon intron structure of Pvul-NIN genes 
 
Phylogenetic analysis was performed to understand and compare the evolutionary 
relationship between Pvul-NIN and Arabidopsis (non-nodulating) and NIN genes 
belonging to G. max (Nodulator). The phylogenetic tree formed with 54 NIN protein 
sequences was divided into three main groups (Figure 3). Followingly, Group A and 
B have 5 and 8 members respectively, while the C group with 41 members is the 
most crowded group. A phylogenetic tree analysis with 292 members including P. 
vulgaris as exogenous species and many different species was conducted in a study 
by Wu et al. (2020) on the effects of RWP-RK genes in A. thaliana on nitrate 
response [63]. The phylogenetic tree from that study reveals significant similarities 
with the tree drawn in the current study. 
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�

Figure 3. Phylogenetic classification of NIN-like proteins found in Arabidopsis, G. max, 
and P. vulgaris. 
 
Short regions that are preserved in protein sequences and are closed to mutations are 
called as motifs [64]. The motif sequences of NIN-like proteins were found and the 
reliability of the phylogenetic analysis was checked and the profiles of the gene 
structure were examined (Figure 4). There is only one gene (Pvul-NIN-9) in the 
phylogenetic tree that belongs to P. vulgaris in group B. Only one preserved region 
of the Pvul-NIN-9 gene was detected when the motif compositions were examined. 
This makes the gene of Pvul-NIN-9 different from other genes. 
 
There is an initiation transcription site within the genes. With reference to the 
transcription initiation site, the DNA region towards the 5' end of the coding strand 
is known as upstream DNA. A gene promoter is normally found upstream of the  
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DNA. The DNA region from the +1 point to the 3' end of the coding strand is known 
as the downstream DNA [65]. The upstream and downstream structures of Pvul-
NIN-2 and Pvul-NIN-11 were not able to seen when the gene structure was examined. 
Another similarity in the same genes is that they have exactly the same motifs. 
 

 
 

Figure 4. Motif contents of Pvul-NIN proteins 
 
Homology modeling of NIN-like proteins of P. vulgaris was also performed with 
this study. Homology modeling is the process of analyzing the three-dimensional 
(3D) shape of a protein over one or more protein structures that have been 
structurally analyzed [66]. Models created by this method are related to the similarity 
of the sequences to each other [67]. 3D structure of Pvul-NIN-1, -2, -3, -4, -5, -6, -
7, -8, -9, -10, -11, -12 proteins were extracted by homology modeling accordingly 
(Figure 5). The secondary protein structures express the local conformation of 
certain parts of the polypeptide. Stable and commonly found ones are α-helix and β- 
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conformations [68]. In Pvul-NIN proteins, α-helix forms a general structure. Alpha 
helix and β-layers may coexist as in Pvul-NIN-3,-4,-5,-6,-7,-8,-10,-12 proteins. This 
situation occurs with some important folding rules for the definition of simple motifs. 
The embedment of hydrophobic amino acid R groups to exclude water requires a 
secondary structure with at least two layers; the inner R groups form the Beta-alpha-
beta ring (β- α- β Loop) and alpha-alpha (α- α corner) corner. These two structures 
are also observed in Pvul-NIN proteins. 
 

 
Figure 5. Predicted 3D structures of Pvul-NIN proteins 

 
P. vulgaris NIN genes are primarily duplicated by segmental duplication rather than 
tandem duplication. It has been observed that there is a common duplication 
mechanism, although the duplication rate of the Pvul-NIN genes is lower than that 
of Arabidopsis and G. max. In order to examine orthological relationships in more 
detail, all RWP-RK genes have been examined, a synteny analysis including not only 
NIN genes but also RKD genes has been performed. Some orthological and 
chromosomal reconstructions have been observed compared to other species (Figure 
6). 
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Figure 6. Orthologous relationship between P. vulgaris-A. thaliana and P. vulgaris-G. 

max 
 

Cis-regulatory elements, vital components of genetic regulatory networks, are non-
coding regions of DNA that regulate the transcription of neighboring genes [69]. In 
this study, in-silico promoter analysis was conducted to better understand the 
regulatory mechanisms of the Pvul-NIN genes. Identified cis-acting elements were 
grouped into 8 groups, including development, environmental stress, hormone, light, 
promoter, site binding, biotic stress and others (Supplementary Table 1). 
 
CAAT-box and TATA-box, which are the main promoter elements, have been 
defined in all Pvul-NIN genes, as expected. Certain metabolites play an important 
role in the regulation of enzymes involved in nitrogen assimilation. In a previous 
report by Schiavon et al. (2008) on the use of inorganic N fertilizers in agriculture 
on Zea mays, the expression of enzymes involved in the tricarboxylic acid cycle 
(TCA) and nitrogen metabolism was investigated, and it was revealed that both were 
definitely related to plant productivity. In addition, as a result of their study, it has 
been shown that transcript accumulation is mainly root-induced. The presence of the 
TCA-element in the hormone category in all Pvul-NIN genes is remarkable given the 
nodule binding closely related to plant growth hormones [70].  
 
Ethylene-Response Element (ERE), which is linked to the AGCCGCC core 
sequence (also known as the GCC box) to provide resistance to biotic and abiotic 
stress, is found in approximately 66% of Pvul-NIN genes [71]. In a study conducted 
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on MYB and MYC, which are present in approximately 83% of the Pvul-NIN genes, 
it has been shown that both cis-regulators on Arabidopsis have effects on drought  
 
stress and act as transcriptional activators in ABA-inducible expression in the genes 
studied [72]. At the same time, the fact that Unnamed 4, the functions of which are 
not yet known, are included in all Pvul-NIN genes has revealed that it is a cis-
regulatory that needs to be worked on. 
 
3.3. Detection of miRNAs Targeting Pvul-NIN Genes 
 
miRNAs complement the coding sequences (CDS) or non-translational regions 
(UTR) of the target mRNAs for post-transcriptional editing [73]. A total of 64 Pvul-
NIN associated miRNAs were identified in this study as a result of miRNA analysis 
(Supplementary Table 2). Approximately 12% of the miRNA targeting the Pvul-NIN 
genes is miR172 which is known to be expressed during nodule formation in 
legumes, especially in root infestations of bacteria. In a previous study by Holt et al. 
(2015) on Lotus japonicus, it has been shown that miR172 plays an important role 
in the early stages of legume infection with rhizobial bacteria. MiR172 is strongly 
regulated at the early stages of symbiosis and expression precedes the progression of 
the infection. The study also showed that miR172 regulates the NIN genes in Lotus 
japonicus [74]. Approximately 20% of the miRNA targeting the Pvul-NIN genes is 
miR167. It is known that miR167 plays a central role in the maternal control of seed 
development. A study conducted on miR167, which is also closely related to auxin 
hormones, has shown that it is a dominant regulator in the reproduction of A. thaliana 
[75]. miR396 was also found to target Pvul-NIN genes and studies have shown that 
it is effective in the formation of adaptive responses such as growth of plants, 
hormonal signaling and leaf development under abiotic stress [76, 77]. miR902 has 
been shown to play a role in the regulation of plant endurance characteristics under 
drought stress [78]. miR185 changes the levels of expression in eukaryotic 
organisms under oxidative stress [79]. The gene most targeted by miRNAs with a 
rate of 22% is Pvul-NIN-5 and it is followed by Pvul-NIN-4 gene with 17%. 
 
3.4. Tissue-specific mRNA levels of Pvul-NIN genes 
 
Heat map revealed that Pvul-NIN genes give high levels of expression in different 
tissues such as flower buds, flowers, leaves, stem 10, young pods, stem 19, young 
trifoliates, root 10, root 19, green mature pods and nodules (Figure 7). Expression 
levels of all Pvul-NIN genes, but especially Pvul-NIN-3,-4,-5,-6,-7,-10 and -12 
genes, have also been found to be high in nodules and root tissues. 
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Figure 7. Heat map image for tissue specific mRNA levels of Pvul-NIN genes 

 
3.5. Responses of Pvul-NIN Genes to Salt Stress and Drought Stress Through 
RNAseq Analysis 
 
 
The RNAseq data generated by Hiz et al. (2014) and taken from GenBank (Hiz, 
Canher et al.) were analyzed to investigate the expression profiles of Pvul-NIN genes 
against abiotic stress such as drought and salt (Figure 8). As a result of these 
analyzes, changes in the expression of leaf tissue under salt and drought stress were 
identified. Expression levels of Pvul-NIN-3,-4,-5 and -7 genes were high in all 
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conditions but at varying degrees, and expression levels of Pvul-NIN-8,-9 and Pvul-
NIN-11 decreased at different rates under drought stress. An increase in the  
 
expression level of the Pvul-NIN-12 gene under salt and drought stress was observed, 
while the expression levels in the Pvul-NIN-6 and-10 genes were decreased under 
both stresses. The changes in expression of some Pvul-NIN genes in response to salt 
and drought stresses may explain their involvement in stress signaling mechanisms 
in common bean and these findings should be verified with additional gene 
expression analyses in the future. 
 

 
 
Figure 8. Heatmap of Pvul-NIN genes differentially expressed under normal, salt and 

drought stress conditions derived from RNAseq analysis 
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4. Conclusion 

 
In addition to the negative effects of global warming, which is threatening the world 
as a whole, agricultural products are being damaged by biotic stress and abiotic stress 
factors such as drought and salinity, where agricultural areas are most damaged 
today, lowering quality and productivity, leading to product losses in advanced 
stages. In addition to all of these, excessive and incorrect fertilizer applications 
negatively affect the environment and cause permanent damage to soil and water. 
For these reasons, ensuring food and environmental safety, improving the use of N 
use efficiency (NUE) requires plants to increase resistance to stress factors through 
molecular studies. Legumes have NIN genes with functional responsibility for 
symbiotic nitrogen fixation. In this context, our study includes a genome-wide 
analysis of 12 NIN-like P. vulgaris proteins, which naturally allow the formation of 
nodules. The identified 12 Pvul-NIN genes are listed from the 2nd chromosome to 
the 11th chromosome. In order to understand the biological functions of the NIN 
genes in the P. vulgaris genome, a number of bioinformatics tools and databases 
have been used for various analyzes. Identifying NIN-like proteins (NLPs) for the 
first time in P. vulgaris and examining their reactions to various abiotic stress 
conditions, an analysis of miRNAs targeting hormones and Pvul-NIN genes that play 
an active role in the formation of nodules will shed light on a number of molecular 
studies to be conducted on fertilizer signaling pathways. 
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