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Abstract
The problem of testing equality of two normal mean vectors with incomplete data when
the covariance matrices are equal is considered. For data matrices with monotone missing
pattern, an exact test is proposed as an alternative one to the traditional likelihood ration
test. Numerical power comparisons show that the powers of the proposed test and the
likelihood ration test are comparable. However, the proposed test is an exact one. It is easy
to use and useful to identify the component that caused the rejection of null hypothesis.
It is illustrated using an example.

Mathematics Subject Classification (2020). 62H12, 62H15

Keywords. Monotone missing data, likelihood ration test, normal mean vector

1. Introduction
Missing data occurs very commonly in practical and has aroused an considerable amount

of interest among statisticians. A variety of statistical methods have been developed to
analyze data with missing values, see, e.g., [2, 9, 11,13–15].

The reasons for data missing could be various which are not of our concern. To ignore the
mechanics causing missing data, we assume that the data are missing at random (MAR).
Lu and Copas [10] pointed out that inference from the likelihood method ignoring the
missing data mechanism is valid if and only if the missing data mechanism is MAR. Refer
to [8, 9] for the meaning of MAR.

There are a few missing patterns considered in the literature, but the incomplete data
with monotone pattern (see Display (1.1)) not only occurs frequently in practice but also
it is convenient for making inference. Moreover, if multivariate normality is assumed, then
the monotone pattern allows the exact calculation of the maximum likelihood estimators
(MLEs), the likelihood ratio statistics and relevant distributions. While it is an difficult
job to achieve an exact test, many authors have considered the monotone missing pattern
under the normality assumption, and provided asymptotic as well as approximate test
procedures about the normal mean vector and covariance matrix. Anderson [1], one of the
earliest papers in this area, put forward a simple approach to derive the MLEs of the mean
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and the covariance matrix by solving the likelihood equations for monotone missing data.
Kanda and Fujikoshi [4] studied the distribution of the MLEs in the cases of 2-step, 3-step,
and general k-step monotone missing data. Krishnamoorthy and Pannala [5, 6] provided
an accurate and simple approach to construct the confidence region of the normal mean
vector. Hao and Krishnamoorthy [3] developed an inferential procedure on a normal
covariance matrix. For two populations, Yu et al. [17] considered the problem of testing
equality of two normal mean vectors with the assumption that the two covariance matrices
are equal, while Krishnamoorthy and Yu [7] considered the Behrens-Fisher Problem. Seko
et al. [12] investigated the problem of testing equality of two normal mean vectors with
2-step monotone missing data by an other approximate approach, and Yagi and Seo [16]
solved the same problem with 3-step monotone missing data. In this paper, we consider
the problem of testing equality of two normal mean vectors with monotone missing data.
Unlike the papers dealing with the same problem just mentioned, we present an exact test
which is easy to use and useful to identify the component that caused the rejection of null
hypothesis..

To formulate the problem, let x be a vector which follows a p-variate normal distribution
with mean vector µ and covariance matrix Σ, i.e., x ∼ Np(µ, Σ). Let y ∼ Np(β, Σ)
independently of x. Suppose that we have a random sample of size N1 on x, and a
random sample of size M1 on y. Assume that the samples have the following monotone
pattern:

x11, . . . , x1Nk
, . . . , x1N2 , . . . , x1N1 y11, . . . , y1Mk

, . . . , y1M2 , . . . , y1M1
x21, . . . , x2Nk

, . . . , x2N2 y21, . . . , y2Mk
, . . . , y2M2

. . . . . . . . . . . .
xk1, . . . , xkNk

yk1, . . . , ykMk

(1.1)

where xij is a pi × 1 vector, j = 1, . . . Ni, while yij is a qi × 1 vector, j = 1, . . . Mi,
i = 1, ..., k. In other words, in the x-sample, there are N1 observations available on the
first p1 components, N2 observations available on the first p1 + p2 components, and so on.
Notice that N1 ≥ N2 ≥ ... ≥ Nk, M1 ≥ M2 ≥ ... ≥ Mk, and p1 + ...+pk = q1 + ...+ qk = p.
We want to test

H0 : µ = β vs Ha : µ ̸= β. (1.2)
In the following section, first we present the likelihood ratio test, then propose an exact

test by combining two independent test using union-intersection principle. In Section 3,
power comparisons are carried out using simulation. The simulation results indicate that
the powers of the proposed test and the likelihood ration test are comparable. However,
the proposed test is an exact one. It is easy to use and useful to identify the component
that caused the rejection of null hypothesis. The method is illustrated using an example
in Section 4.

2. Inference on µ − β

Consider the data matrices in (1.1) with k = 2 and assume that pi = qi, i = 1, 2, and
partition the data matrix X as follows:

X1 = (x11, . . . , x1N2 , . . . , x1N1)p1×N1
,

X2 =
(

x11, . . . , x1N2
x21, . . . , x2N2

)
p×N2

.
(2.1)

Partition the matrix Y similarly. That is

Y1 = (y11, . . . , y1M2 , . . . , y1M1)p1×M1
,

Y2 =
(

y11, . . . , y1M2
y21, . . . , y2M2

)
p×M2

.
(2.2)
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Let x̄l and Sl denote respectively the sample mean vector and the sum of squares and
sum of products matrix based on Xl, l = 1, 2. We partition these means and matrices
accordingly as follows:

x̄1 = x̄
(1)
1 , x̄2 =

(
x̄

(1)
2

x̄
(2)
2

)
, S1 = S(1,1)

1 and S2 =
(

S(1,1)
2 S(1,2)

2
S(2,1)

2 S(2,2)
2

)
.

Notice that x̄
(i)
l is the mean of the i-th block of the data matrix Xl, i = 1, ..., l and

l = 1, 2. We also read S(i,j)
l as the (i, j)-th block of Sl based on the data matrix Xl,

l = 1, 2. Similarly, let ȳl and Vl denote respectively the sample mean vector and the sums
of squares and products matrix based on Yl, l = 1, 2 and they are also partitioned like
x̄l and Sl. That is, ȳ

(i)
l is the mean of the i-th block of data matrix Yl, i = 1, ..., l and

l = 1, 2, and V(i,j)
l is the (i, j)-th block of Vl, i, j = 1, ..., l and l = 1, 2. Finally, we

partition the parameters as follows:

µ =
(

µ1
µ2

)
, β =

(
β1
β2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

For likelihood ratio, it is simpler to use the following transformed parameters ∆:

∆ =
(

∆11 ∆12
∆21 ∆22

)
=
(

Σ11 Σ−1
11 Σ12

Σ21Σ−1
11 Σ22.1

)
where Σ22.1 = Σ22 − Σ21Σ−1

11 Σ12. Note that ∆ is in one-to-one correspondence with Σ.
We now give the MLEs of partitioned mean vectors and sub-matrices of ∆. Let

B21 =
(
S(2,1)

2 + V(2,1)
2

) (
S(1,1)

2 + V(1,1)
2

)−1
. (2.3)

The MLEs are given by

µ̂1 = x̄1, µ̂2 = x̄
(2)
2 − B21

(
x̄

(1)
2 − µ̂1

)
,

β̂1 = ȳ1, β̂2 = ȳ
(2)
2 − B21

(
ȳ

(1)
2 − β̂1

)
,

∆̂ =
(

∆̂11 ∆̂12
∆̂21 ∆̂22

)
=
(

(S(1,1)
1 + V(1,1)

1 )/(N1 + M1) B′
21

B21 Σ̂2.1

)
,

with
Σ̂2.1 = 1

N2 + M2

((
S(2,2)

2 + V(2,2)
2

)
− B21

(
S(1,2)

2 + V(1,2)
2

))
.

2.1. Likelihood ratio test
Under H0, the two samples are actually from the same population. Denote the pooled

samples by Z and denote the pooled mean vector and the sum of squares and sum of
products matrix as

z̄1 = 1
(N1 + M1)

(N1x̄1 + M1ȳ1), z̄2 =
(

z̄(1)
2

z̄(2)
2

)
= 1

(N2 + M2)
(N2x̄2 + M2ȳ2),

T1 = S1 + V1 + N1(x̄1 − z̄1)(x̄1 − z̄1)′ + M1(ȳ1 − z̄1)(ȳ1 − z̄1)′,

T2 =
(

T(1,1)
2 T(1,2)

2
T(2,1)

2 T(2,2)
2

)
= S2 + V2 + N2(x̄2 − z̄2)(x̄2 − z̄2)′ + M2(ȳ2 − z̄2)(ȳ2 − z̄2)′.

Moreover, let C21 = T(2,1)
2

(
T(1,1)

2

)−1
. The MLEs under H0 are given by

µ̃1 = β̃1 = z̄1, µ̃2 = β̃2 = z̄(2)
2 − C21

(
z̄(1)

2 − z̄1
)

,



1214 J. Yu, B. Wang, T. Zhang

∆̃ =
(

∆̃11 ∆̃12
∆̃21 ∆̃22

)
=
(

T1/(N1 + M1) C′
21

C21 T2.1

)
,

with T2.1 =
(

T(2,2)
2 − T(2,1)

2

(
T(1,1)

2

)−1
T(1,2)

2

)
/(N2 + M2). Define

W −1
1 = N−1

1 + M−1
1 , W −1

2 = N−1
2 + M−1

2 ,

µ̂2.1 = µ̂2 − B21µ̂1, β̂2.1 = β̂2 − B21β̂1.

The likelihood ratio for testing H0 : µ = β vs Ha : µ ̸= β (LRT for short) is given by

Λ =


∣∣∣∆̂11

∣∣∣∣∣∣∆̃11

∣∣∣


1
2 (N1+M1)

×


∣∣∣∆̂22

∣∣∣∣∣∣∆̃22

∣∣∣


1
2 (N2+M2)

=
(
1 + Q1

N1+M1

)− 1
2 (N1+M1)

×
(
1 + R

N2+M2

)− 1
2 (N2+M2)

:= Λ1 × Λ2.

Here

Q1 = W1
(
µ̂1 − β̂1 − (µ1 − β1)

)′ [
Σ̂11

]−1 (
µ̂1 − β̂1 − (µ1 − β1)

)
,

R = Q2
1 + Q2d

,

with

Q2 = W2
(
µ̂2.1 − β̂2.1 − (µ2 − β2 − B21(µ1 − β1))

)′ [
Σ̂2.1

]−1

×
(
µ̂2.1 − β̂2.1 − (µ2 − β2 − B21(µ1 − β1))

)
,

µ̂2.1 = µ̂2 − B21µ̂1, β̂2.1 = β̂2 − B21β̂1,

Q2d = W2
(
x̄

(1)
2 − ȳ

(1)
2 − (µ1 − β1)

)′ [
S

(1,1)
2 + V

(1,1)
2

]−1

×
(
x̄

(1)
2 − ȳ

(1)
2 − (µ1 − β1)

)
.

The LRT statistics, −2 log(Λ), is asymptotically distributed as χ2 with p degrees of
freedom. Thus, for a given level of significance level α and an observed value Λ0 of Λ, the
LRT rejects H0 : µ = β when

P (−2 log(Λ) > −2 log(Λ)) = P
(
χ2(p) > −2 log(Λ)

)
< α.

Note that the LRT for
H01 : µ1 = β1 vs Ha1 : µ1 ̸= β1

rejects H01 if Λ1 is too small, and the LRT for

H02 : µ2 = β2, µ1 = β1 vs Ha2 : µ2 ̸= β2, µ1 = β1

rejects H02 for small values of Λ2. Recall that

Q1 ∼ p1(N1 + M1)
N1 + M1 − p1 − 1

Fp1,N1+M1−p1−1

independently of

R ∼ p2(N2 + M2)
N2 + M2 − p − 1

Fp2,N2+M2−p−1.

The testing problem in (1.2) can be decomposed into two independent testing problems
and they can be combined using union-intersection principle to get a single exact test.
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2.2. Union-intersection test
The test based on union-intersection principle rejects H0 : µ = β for large values of

max{Q1, R}. Instead of max{Q1, R}, we use M0 := max{Q∗
1, R∗}, where

Q∗
1 = N1 + M1 − 2

N1 + M1
Q1, R∗ = N2 + M2 − p1 − 2

N2 + M2
R.

That is, Σ̂2.1 in R and Σ̂11 in Q1 are replaced by unbiased estimators of Σ2.1 and Σ11
respectively. This type of modification was suggested by [2]. Although the modification
does not change the tests, it is found that the test based on max{Q∗

1, R∗} is better than
the one based on max{Q1, R}. For a given level of significance level α and an observed
value M0, the union-intersection test (UIT for short) rejects H0 if

P (max{Q∗
1, R∗} > M0) < α

or equivalently

P

(
Fp1,N1+M1−p1−1 ≤ M0(N1 + M1 − p1 − 1)

p1(N1 + M1 − 2)

)
×P

(
Fp2,N2+M2−p−1 ≤ M0(N2 + M2 − p − 1)

p2(N2 + M2 − p1 − 2)

)
> 1 − α.

3. Power comparison
Since it is difficult to derive power functions of the LRT and the proposed test in Sections

2.1 and 2.2, we estimate the powers of two tests using simulations (1000000 runs). It is
obvious that two tests are lower triangular invariant, hence we take Σ to be an identity
matrix. The powers are estimated for different values of

δ1 = (µ1 − β1)′Σ−1
11 (µ1 − β1),

δ2 = (µ2.1 − β2.1)′Σ−1
2.1(µ2.1 − β2.1),

δ3 = (µ3.21 − β3.21)′Σ−1
3.21(µ3.21 − β3.21),

δ4 = (µ4.321 − β4.321)′Σ−1
4.321(µ4.321 − β4.321),

and presented in Tables 1-4 for monotone pattern.
We see from the tables that in most of cases, the powers of the LRT are higher than the

powers of UIT. For p = 2, the differences between powers are small, and meanwhile the
differences between sizes are also small. For higher dimension like p = 8, the differences
between powers become bigger. For example, the biggest difference is 0.49 − 0.28 =
0.21, However, the differences between sizes also become larger with the biggest value
0.16 − 0.05 = 0.09. We also observe that when the true difference of the mean become
larger, or the sample sizes becomes larger, the powers of the two tests become closer and
closer. In addition, the percentage of missing data seems not very related to this kind
change of differences between powers of two tests.

Hence, none of LRT and UIT is expected to dominate the other since they are different
funtions of the same set of pivots obtained from likelihood ratio test statistics. However,
if the true difference of the two mean vectors or the sample sizes are big enough, UIT is
preferable since it is almost as powerful as LRT and controls the size concisely.
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Table 1. Simulated powers of the LRT and UIT when p1 = p2 = 1.

(N1, N2, M1, M2) (18,15,17,14) (25,16,25,18) (30,15,30,15) (40,12,40,13)
percentage of missing data 8.6% 16.0% 25.0% 34.4%
δ1 δ2 LRT UIT LRT UIT LRT UIT LRT UIT
0.0 0.0 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05
0.0 0.2 0.20 0.17 0.21 0.19 0.20 0.17 0.18 0.15
0.0 0.5 0.40 0.36 0.44 0.42 0.40 0.37 0.35 0.33
0.0 1.0 0.66 0.63 0.74 0.72 0.69 0.67 0.61 0.58
0.0 1.3 0.78 0.76 0.84 0.82 0.79 0.78 0.71 0.70
0.0 1.5 0.84 0.82 0.89 0.88 0.85 0.84 0.78 0.76
0.0 2.0 0.93 0.92 0.96 0.96 0.94 0.93 0.88 0.88
0.1 0.0 0.15 0.11 0.17 0.14 0.19 0.16 0.25 0.20
0.3 0.0 0.30 0.26 0.41 0.37 0.48 0.43 0.59 0.53
0.5 0.0 0.46 0.41 0.61 0.58 0.69 0.66 0.82 0.78
1.1 0.0 0.79 0.76 0.92 0.92 0.96 0.95 0.99 0.99
1.4 0.0 0.88 0.86 0.97 0.97 1.00 1.00 1.00 1.00
2.1 0.0 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00
3.1 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4.0 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.1 0.21 0.16 0.25 0.20 0.27 0.21 0.31 0.23
0.1 0.2 0.28 0.22 0.33 0.27 0.34 0.27 0.36 0.28
0.1 0.3 0.35 0.28 0.41 0.33 0.40 0.32 0.42 0.33
0.1 0.5 0.47 0.39 0.55 0.47 0.54 0.45 0.53 0.42
0.1 0.7 0.59 0.51 0.67 0.60 0.64 0.55 0.61 0.51
0.2 0.1 0.29 0.22 0.37 0.30 0.40 0.33 0.48 0.40
0.3 0.1 0.30 0.30 0.48 0.41 0.53 0.46 0.62 0.55
0.5 0.1 0.53 0.45 0.66 0.59 0.74 0.67 0.84 0.79
0.2 0.2 0.36 0.27 0.45 0.36 0.47 0.38 0.55 0.45
0.2 0.3 0.42 0.33 0.52 0.43 0.54 0.43 0.58 0.48
0.2 0.5 0.54 0.45 0.65 0.54 0.64 0.52 0.67 0.55
0.3 0.2 0.44 0.34 0.55 0.46 0.59 0.49 0.68 0.59
0.5 0.2 0.58 0.48 0.72 0.63 0.77 0.70 0.86 0.80
0.4 0.4 0.62 0.49 0.73 0.63 0.78 0.68 0.83 0.74
0.8 0.7 0.88 0.78 0.95 0.90 0.97 0.93 0.99 0.97
1.0 1.0 0.95 0.88 0.99 0.96 0.99 0.98 1.00 1.00
1.5 1.5 0.99 0.97 1.00 1.00 1.00 1.00 1.00 1.00
2.0 2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.5 3.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2. Simulated powers of the LRT and UIT when p1 = p2 = 2.

(N1, N2, M1, M2) (18,15,17,14) (25,16,25,18) (30,15,30,15) (40,12,40,13)
percentage of missing data 8.6% 16.0% 25.0% 34.4%
δ1 δ2 δ3 δ4 LRT UIT LRT UIT LRT UIT LRT UIT
0.0 0.0 0.0 0.0 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05
0.0 0.0 0.0 0.1 0.12 0.08 0.12 0.09 0.12 0.08 0.11 0.08
0.0 0.0 0.0 0.3 0.23 0.16 0.25 0.20 0.23 0.18 0.20 0.15
0.0 0.0 0.0 0.5 0.34 0.26 0.37 0.31 0.33 0.27 0.29 0.23
0.0 0.0 0.0 0.7 0.43 0.35 0.49 0.42 0.44 0.37 0.38 0.31
0.0 0.0 0.0 1.0 0.57 0.48 0.63 0.58 0.58 0.52 0.49 0.41
0.0 0.0 0.0 2.0 0.86 0.81 0.92 0.89 0.88 0.85 0.79 0.74
0.0 0.0 0.0 3.0 0.97 0.96 0.99 0.98 0.97 0.96 0.92 0.90
0.0 0.0 0.0 4.0 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.98
0.0 0.0 0.2 0.2 0.28 0.21 0.3 0.24 0.28 0.22 0.24 0.18
0.0 0.0 0.4 0.4 0.48 0.39 0.54 0.47 0.49 0.42 0.43 0.35
0.0 0.0 0.6 0.6 0.66 0.59 0.73 0.68 0.66 0.60 0.57 0.50
0.0 0.0 0.8 0.8 0.78 0.72 0.84 0.80 0.79 0.75 0.70 0.64
0.0 0.0 1.0 1.0 0.87 0.82 0.91 0.90 0.87 0.84 0.80 0.75
0.0 0.0 2.0 2.0 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.97
0.15 0.1 0.1 0.2 0.38 0.25 0.46 0.34 0.49 0.35 0.55 0.41
0.25 0.35 0.3 0.5 0.77 0.68 0.86 0.74 0.89 0.79 0.92 0.84
0.45 0.55 0.6 0.7 0.93 0.82 0.98 0.94 1.00 0.99 0.99 0.98
0.85 0.8 0.75 0.8 0.99 0.94 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.1 1.1 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 3. Simulated powers of the LRT and UIT when p1 = 4, p2 = 4.

(N1, N2, M1, M2) (18,15,17,14) (25,16,25,18) (30,15,30,15) (40,12,40,13)
percentage of missing data 8.6% 16.0% 25.0% 34.4%
(δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8) LRT UIT LRT UIT LRT UIT LRT UIT

(0,0,0,0,0,0,0,0) 0.14 0.05 0.11 0.05 0.13 0.05 0.14 0.05
(0,0,0,0,0,0,0,0.5) 0.33 0.17 0.34 0.20 0.33 0.19 0.31 0.16
(0,0,0,0,0,0,0,1) 0.53 0.33 0.34 0.21 0.52 0.36 0.48 0.30

(0,0,0,0,0,0,0.5,0.5) 0.53 0.32 0.57 0.41 0.52 0.37 0.47 0.29
(0,0,0,0,0,0,1,1) 0.80 0.64 0.85 0.76 0.80 0.69 0.73 0.56

(0,0,0,0,0.35,0.5,0.6,0.8) 0.85 0.70 0.88 0.81 0.84 0.74 0.77 0.61
(0,0,0,0,1,1.5,1,1.2) 0.99 0.96 1.00 0.99 0.99 0.97 0.97 0.92
(0,0,0,0.5,0,0,0,0) 0.38 0.19 0.46 0.31 0.53 0.36 0.68 0.45
(0,0,0,1.0,0,0,0,0) 0.60 0.43 0.74 0.64 0.82 0.71 0.93 0.84
(1,1,1,1,0,0,0,0) 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

(0.45,0.6,0.35,0.7,0.3,0.3,0.4,0.6) 0.99 0.90 1.00 0.98 1.00 0.99 1.00 1.00
(0.75,1,0.68,1.2,0.7,1,0.8,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1,1, 2,2,2,2,3,3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4. Simulated powers of the LRT and UIT when p1 = 2, p2 = 6.

(N1, N2, M1, M2) (18,15,17,14) (25,16,25,18) (30,15,30,15) (40,12,40,13)
percentage of missing data 12.8% 24.0% 37.5% 51.0%
(δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8) LRT UIT LRT UIT LRT UIT LRT UIT

(0,0,0,0,0,0,0,0) 0.14 0.05 0.12 0.05 0.14 0.05 0.16 0.05
(0,0,0,0,0,0,0,0.5) 0.33 0.18 0.35 0.22 0.33 0.18 0.32 0.15
(0,0,0,0,0,0,0,1) 0.33 0.20 0.58 0.42 0.54 0.36 0.49 0.27

(0,0,0,0,0,0,0.5,0.5) 0.53 0.34 0.57 0.43 0.54 0.36 0.49 0.27
(0,0,0,0,0,0,1,1) 0.80 0.64 0.85 0.75 0.80 0.68 0.74 0.53

(0,0,0,0,0.35,0.5,0.6,0.8) 0.85 0.71 0.90 0.82 0.86 0.73 0.79 0.59
(0,0,0,0,1,1.5,1,1.2) 0.99 0.97 1.00 1.00 0.99 0.98 0.97 0.91
(0,0,0,0.5,0,0,0,0) 0.34 0.18 0.35 0.21 0.33 0.18 0.33 0.15
(0,0,0,1.0,0,0,0,0) 0.53 0.33 0.58 0.42 0.54 0.37 0.49 0.28
(1,1,1,1,0,0,0,0) 1.00 0.98 0.99 0.94 0.99 0.95 1.00 0.98

(0.45,0.6,0.35,0.7,0.3,0.3,0.4,0.6) 0.99 0.82 0.99 0.88 0.99 0.85 0.99 0.82
(0.75,1,0.68,1.2,0.7,1,0.8,1) 1.00 0.99 1.00 1.00 1.00 0.99 0.99 0.99

(1,1, 2,2,2,2,3,3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4. An illustrative example
Now, we use “Fishers Iris data” to illustrate the method. These data represent mea-

surements of the sepal length and width, and petal length and width in centimeters of
fifty plants for each of three types of iris: Iris setosa, Iris versicolor and Iris virginica.
The data sets are posted in many websites, and we use data set IRIS in R language. For
illustrative purposes, we use the data on versicolor (x) and virginica(y). Also, we only use
sepal length and width as two components.

We applied the LRT to check the equality of covariance matrices. The test produced a
p-value of 0.398, and so the assumption of equality of covariance matrices are tenable.

We created monotone patterns by discarding the last 20 measurements on x2 (sepal
width of virginica), the last 25 measurements on y2 (sepal width of setosa ). That is, we
have p1 = 2, p2 = 2, (N1, N2) = (50, 30), and (M1, M2) = (50, 25).

Let µ1 and µ2 be the average sepal length and width of versicolor respectively, µ′ :=
(µ1, µ2). And let β1 and β2 be the average sepal length and width of virginica respectively,
β′ := (β1, β2). We want to test

H0 : µ = β vs. Ha : µ ̸= β

After careful calculation, we get log T1 = −71.602, log T2 = −25.582, and Λ = 187.532.
The critical value Q∗

1 = 31.688, R∗ = 0.00581. So, M0 = 31.688. Since p-value=9.09e-7,
we have sufficient evidence to reject H0 at 95% confidence level.
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5. Conclusion
In this article, we have developed an exact test for equality of two normal mean vectors

based on monotone missing data with the assumption that the population covariance ma-
trices are equal. It is easy to use and as powerful as the LRTs. Furthermore, the proposed
test is useful to identify the components that caused the rejection of H0.
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