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1. INTRODUCTION

EEG signals have commonly used in many applications such 

as motor imagery, mental task, and sleep stage classifications 

in addition to emotion recognition, seizure detection and drug 

effects diagnosis. EEG records are required multiple electrodes 

to achieve good performance but some of electrodes may 

include irrelevant, redundant, and noisy features. Efficient 

channel selection algorithms are required to remove redundant 

contents from EEG signals. The purposes of channel selection 

are reducing computational complexity of any processing task 

with EEG signals and selecting the relevant channels. [1-2]. 
Various channel selection algorithms have been proposed in 

literature. Time domain analysis, wavelet transform, and power 
spectral estimation can be considered as signal processing tools 
for feature extraction and channel selection algorithms [2]. 
Population based search procedures such as Particle Swarm 
Optimization (PSO) and Differential Evolution Algorithm 
(DEA) have been in demand for researchers in past decades [3]. 
These algorithms look for the best subset of channels by 
individually assessing the usefulness of each channel with the 
help of search engine and fitness function. 

Many numbers of research have been carried out in the area 
of odor stimulation-based EEG pattern classification and 

recognition. Schriever et al. (2017) used time-frequency 
analysis of olfactory-induced EEG in respect to power change. 
They distinguished olfactory impairment from healthy 
individuals with sensitivity of 75% and specificity of 89% [4]. 
Vanarse et al. (2020) demonstrated the classification 
capabilities of 3D-spiking neural network using Java-based 
Neucube network by achieving overall accuracy of 94.5% to 
identify 20 different odor compounds [5]. Kim et al. (2019) 
investigates EEG activity in response to odors produced by 
different chemicals. They proved that structure of chemicals, 
odor types, and sensitivity of olfactory receptors may produce 
different EEG activity [6]. Aydemir (2017) extracted 
continuous wavelet transform based features to classify EEG 
records stimulated from valerian, lotus flower, cheese, and 
rosewater. He achieved 85.50% classification accuracy using 
k-NN. He also investigates that gamma EEG sub-band is highly
associated with olfaction stimulation [7]. Zhang et al. (2019)
presented that channel-frequency convolutional neural network
yields best accuracy of 68.79% in gamma band using power
spectrum density and differential entropy features using 13
odor stimuli [8]. Laha et al. (2018) evaluated concentration of
odors using general type-2 fuzzy set for odor classification.
According to their work, higher density of odor yields higher
classification performance [9]. Becerra et al. (2018) proposed
and odor identification system within 5 sub-bands. of EEG, and
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Figure 1. The followed methods in proposed study 
 

 

statistical features using SVM classifier. They achieved 99.9% 
classification performance and alpha and beta sub-bands are 
stated more relevant for odor pleasantness classification task 
[10]. Zhang et al. (2021) proposed wavelet-spatial domain 
feature to classify 2 different EEG datasets. They achieved 
100% and 94.47% average accuracy for eyes open and closed, 
respectively using SVM classifier [11]. Finally Hou et al. 
(2020) used different odors to develop an emotion recognition 
system based on average frequency band division of EEG 
signals using SVM. They found 98.9% accuracy for 2 (pleasure 
and disgust) and 88.5% accuracy for 5 degrees of pleasantness 
[12].  

Some researchers paid attention to apply optimization 
algorithms to achieve more efficient signal processing system 
in BCI systems. Li et al. (2020) recommended improved 
Particle Swarm Optimization (PSO) for feature selection to 
enhance BCI-based emotion recognition. They achieved 
76.67% accuracy for 4-class emotion recognition [13]. 
Moreover, Qi et al. (2020) showed that channel and feature 
selection scheme can accelerate the speed of convergence and 
global optimum and reduce training time in motor imagery 
based BCI system within PSO [14].  

The proposed study stands on the intersection avenue of 
previous studies. The main purpose of this study to develop a 
practical EEG channel selection method using population-
based methods, namely Particle Swarm Optimization (PSO) 
and Differential Evolution Algorithm (DEA). We used 
odorant-stimulated EEG records to classify pleasant and 
unpleasant odors. We obtained EEG sub-bands and extracted  

 

 

 

 

statistical features in line with the previous studies. Error rates 
obtained from classification algorithms are used for fitness 
function in optimization problem. We obtained 5 subset of 
EEG channels that work together perfectly. According to our 
knowledge, there is no study to carry out similar EEG channel 
selection task and it strengths the novelty of the paper. 

The rest of this paper is organized as follows: Section 2 

describes the population-based channel selection methods. 

Section 3 introduces experimental dataset, preprocessing steps 

and feature extraction techniques. Section 4 illustrates practical 

results of PSO and DEA with selected channels. Finally, 

proposed work is concluded in Section 5. 

 

 
2. POPULATION-BASED METHODS FOR CHANNEL 
SELECTION 
2.1. Particle Swarm Optimization  
 

PSO was developed by Kennedy and Eberhart (1995) as a 
meta-heuristic algorithm based on the social behavior exhibited 
by birds when struggling to reach a destination. The scenario  
can be assumed as follows: group of birds are randomly 
looking for food in an area and they don’t know where to food 
is. Effective strategy to find food is following the bird that is 
known to be nearest to the food [15]. 

Position and velocity of particles are randomly initialized in 
search space. Firstly, fitness values of particles are calculated. 
The best position among all particles is the global best position. 
The velocity and position of each particle are updated to 
produce new solutions. Then, the fitness values of the updated 
particles are recalculated, and best positions are updated. 
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Finally, velocities and positions of new particles are 
generated. When the termination criteria are met, algorithm 
ends its iterations [15-16].  

The velocity of the 𝑗𝑡ℎ particle (𝑉𝑗) represented by N 

dimensional optimization problem 1xN array is as follow:  

𝑉𝑗= (𝑉𝑗,1+𝑉𝑗,2+…. +𝑉𝑗,𝑖+𝑉𝑗,𝑁)            (1) 

where j= 1, 2, …, M. 𝑉𝑗,𝑖 is the velocity of the 𝑗𝑡ℎ particle in the 

𝑖𝑡ℎ dimension calculated as follow: 

𝑉𝑗= (𝑉𝑗,1+𝑉𝑗,2+….+𝑉𝑗,𝑖+ 𝑉𝑗,𝑁)           (2) 

where j= 1, 2, …,M. 𝑉𝑗,𝑖 is the velocity of the 𝑗𝑡ℎ particle in the 

𝑖𝑡ℎ dimension calculated as follow: 

𝑉𝑗,𝑖
(𝑛𝑒𝑤)

=𝜔*𝑉𝑗,𝑖 + 𝑐1*Rand*(𝑝𝑗,𝑖 − 𝑥𝑗,𝑖)+𝑐2*Rand*(𝑔𝑖 − 𝑥𝑗,𝑖)     (3) 

where 𝑉𝑗,𝑖
(𝑛𝑒𝑤)

 is the new velocity, 𝑉𝑗,𝑖 is previous velocity, ω is 

inertia weight parameter, Rand is a random value in [0,1], 𝑐1 is 

cognitive parameter and 𝑐2 is social parameter. 

Particles move from old position to new position and this 

movement is based on the velocities. Particle’s position is 

updated as follows: 

𝑥𝑗,𝑖
′ =𝑥𝑗,𝑖+𝑉𝑗,𝑖

(𝑛𝑒𝑤)
               (4) 

where 𝑥𝑗,𝑖
′  is new value of ith variable of jth new solution. 

 

2.2. Differential Evolution Algorithm 
 

DEA was developed by Storn and Price (1997).  Algorithm 
was designed mainly for continuous optimization problems. 
Method compares each trial solution with the best solution 
previously obtained, and the result of the comparison 
determines the next trial solution. Population of candidate 
solutions in algorithm are called agents. These agents are 
moved in the decision space by using crossover and mutation 
operators that change their position. If the new position of an 
agent is an improvement, it is accepted and it replaces the old 
solutions. This is accepted as success and trial agent is added 
to population of solutions [15].  

In proposed work, the algorithm in [17] was implemented as 
DEA. This algorithm is simply form of Genetic Algorithm 
(GA). It looks for the combinational channels that works the 
best together. For both PSO and DEA, methods are simplest 
versions of these algorithms.  

2. EXPERIMENTAL DATASET, PRE-PROCESSING, 
AND FEATURE EXTRACTION TECHNIQUES 

 

3.1. EEG Dataset 
EEG records are collection of 14 channel, 128 Hz 𝑓𝑠 data 

from 6 male, non-smoker, right-handed undergraduate students 

between 22-26 ages using the EMOTIV headset while their 

eyes were closed. Channel labels are AF3, F7, F3, FC5, T7, P7, 

O1, O2, P8, T8, FC6, F4, F8 and AF4. Related channels can be 

seen in Table 1. 10-20 international positioning of scalp 

electrodes is given in Figure 2. 2 pleasant (rosewater, vanilla) 

and 2 unpleasant (onion-garlic) odors were used in this study. 

Odors were selected based on other studies [7]. Rosewater and 

vanilla are expected to include same patterns since both odors 

give relaxation and pleasantness to subjects, so two odors were 

taken into one class. Onion and garlic are unpleasant odor 

substances and allocated for another class. Subjects were asked 

to breathe normally while sitting on comfortable chair in a 

ventilated room. The experiment consists of 10 runs. In each 

run, experimenter was randomly selecting glass tube of odor 

and kept it under subject’s nose for 8 seconds. The reason for 

choosing short stimuli duration is to prevent unwanted 

adaptations. The time interval between successive odors is 20 

seconds and this break is not included in EEG recordings. After 

completed 10 trial, same steps were repeated for another odor 

until 4 odors were used. 

 
TABLE I 

CHANNEL NUMBERS AND LABELS 

Channel # Labels 

1 AF3 (Left frontmost) 

2 F7 (Leftmost frontal) 

3 F3 (Left frontal) 

4 FC5 (Left frontal-central) 

5 T7 (Left temporal) 

6 P7 (Left parietal) 

7 O1 (Left occiptal) 

8 O2 (Right occipital) 

9 P8 (Right parietal) 

10 T8 (Right temporal) 

11 FC6 (Right frontal-central) 

12 F4 (Right frontal) 

13 F8 (Rightmost fontal) 

14 AF4 (Right frontmost) 

 

 

 

 
Figure 2. 10-20 International Electrode Positioning of 14 scalp electrodes 
 

3.2. Pre-processing and Feature Extraction techniques 
 

Received EEG records have 0.2-45 Hz signal bandwidth 

and 50 Hz notch filtered. 3rd order Butterworth band-pass filter 

was applied to EEG records to extract 0.5-42 Hz band 

frequency. 8s EEG records were divided into 1 second epochs. 

Discrete Wavelet Transform (DWT) with db4 was 

implemented to each epochs using 4th decomposition levels. 

DWT coefficients were averaged for 8 epochs. 10 trials were 

combined for each odor. Delta (0.5-4Hz), theta (4-8 Hz), alpha 

(8-14 Hz)- beta (14-30 Hz) and gamma (30-100 Hz) EEG sub-

bands were obtained. Before feature extraction step, data was 

normalized between 0-1.  Normalization method was processed 

as follows: 
𝑧𝑖= (𝑥𝑖 − min (𝑥)) (max(𝑥) − min (𝑥))⁄            (5) 
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where x = (𝑥1, … … , 𝑥𝑛 ) and 𝑧𝑖 is 𝑖𝑡ℎ normalized data. 7 

statistical feature extraction methods were used to reduce the 

dimension of EEG sub-bands to a smaller set of features. The 

present features are Approximate and Sample Entropy, 

minimum and maximum of absolute values, mean value, 

standard deviation and median. 

Besides general known statistical features, Approximate and 

Sample Entropy need to be explained. Approximate Entropy 

(ApEn) quantifies regularity in short, noisy neural time series 

by pattern length (m) and similarity coefficient (r). ApEn is 

defined by 

𝐴𝑝𝐸𝑛 = ln (
𝐶𝑚(𝑟)

𝐶𝑚+1(𝑟)
)             (6) 

in which 𝐶𝑚(𝑟) refers to pattern mean of length m. ApEn 

depends on pattern length. Sample Entropy (SamEn) also gives 

the regularity of signal, and it is independent of pattern length. 

SamEn is calculated as: 

𝑆𝑎𝑚𝐸𝑛 = −𝑙𝑛 (
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
)               (7) 

where 𝐵𝑚(𝑟) refers to probability of 2 sequences match for m 

points and 𝐴𝑚(𝑟) does for m+1 points. In this work, m is chosen 

as 2 and r is chosen as 0.2 times standard deviation of time 

series [19]. 

Feature vectors were arranged as illustrated in Figure 3.  Each 

odor has 10 trials, and each trial has 14 active channels. 7 

features were extracted from each channel. We totally have size 

of (10 x (14*7)) = 10 x 98 vectors. This size just belongs to one 

odor and one sub-band. If we take 4 odors into consideration, 

overall size reaches 40x98. Labels (0-1) were given to last 

column of vectors for unpleasant and pleasant classes 

accordingly. Finally, 200x99 feature matrix for each subject 

was created within combination of EEG sub-bands. Feature 

vectors were randomized and the 60% of them was considered 

as training and the rest was for validation. 

 

 
Figure 3. Arranging extracted features in order of channels 

 

3. PRACTICAL RESULTS 
 

Same initial population was defined for both PSO and DEA. 

Population size was chosen as 100. Number of iterations are 

limited with 100 and both algorithms stop when iteration 

number exceeds 100. 5 optimal channels were selected between 

14 channels and performance evolution of both optimization 

algorithms were analyzed. Experiment was repeated for 25 

times and classification results were averaged for both 

algorithms. This study doesn’t select optimal number of 

channels but presents which channel combinations are best for 

classification. Classification error rates are defined by 

classifiers and error rates are for fitness functions. In this work, 

4 different classifiers were selected which are Linear 

Discriminant Analysis (LDA) quadratic classifier, k Nearest 

Neighbor (k-NN) classifier, Naïve Bayes (NB) classifier and 

Regression Tress (RegTree) classifier. LDA assumes both 

classes have normal distribution and same covariance matrices. 

The purpose of LDA is to solve following problem: 
𝑦 = 𝑤𝑇𝑥 +  𝑤0             (8) 

When the distance between two classes maximizes and 

variance minimizes, the separating hyper plane is obtained and 

vector of w and w_0 are determined. x refers to feature vector 

in (7). k-NN uses Euclidean distances with k=3 closest 

samples. The unlabeled test values are labeled according to 

closest distance from class samples. NB is a ordinary 

probabilistic algorithm which uses Bayes’ theory. When we 

consider a group of training trials which includes m discrete 

features and a class named C, NB can estimate the class of 

unknown trials using probability to calculate highly probable 

output. Decision Trees have root of the tree which refers to 

problem statement and branches of tree which represents set of 

solutions and consequences. Classification Trees and 

Regression Trees are types of Decision Trees. Classification 

Tree is used for categorical target variable and Regression Tree 

is utilized when Decision Tree has continuous target variable. 

Root represents population sample, leaves are terminal nodes 

and child node occurs when nodes are divided into sub-

branches. Each step in RegTree can be visualized to help users 

to make logical decisions. If one criteria is more important than 

other, RegTree gives priority this criteria and brings it on top 

of tree. Thus, redundant data is filtered out after each step [20]. 

 

4.1. Experiments with PSO 
Dimension of the problem equals to number of desired EEG 

channels. Coefficients 𝑐1 and 𝑐2 were selected as 2. ω was 
chosen as 0.9 [21]. Optimal 5 channels were determined by the 
lowest error rates after all runs. Optimal classification error 
rates for PSO were averaged among 6 subjects and results can 
be shown in Figure 4. Average optimal error rate in LDA is 
11.42%, in k-NN is 5,825, in NB is 12.775 and in RegTree is 
0.55% for PSO. Success of selecting optimal sub-channels 
increases when error rates converge to zero.  RegTree classifier 
gave lowest classification error rate, and it seems to be best 
algorithm as a fitness function to select optimum 5 EEG 
channels. NB classifier showed highest classification error rate 
and it seems to be not a preferable method to select optimum 
subsets of EEG channels when using PSO. 

 
Figure 4. Optimal error rates taken in PSO 

 

4.2. Experiments with DEA 
DEA to select optimal subset of channels works as follows: 

Algorithm selects the first channel, then the second-best 
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channel that works the best with first selected, then the third 
channel that works the best with the first two selected channels, 
and these steps continue until selecting last channel. 5 separate 
channels may perform so weak individually, but when best 
channels are combined together, they easily outperform. DEA 
looks for best combination of individual channels. Optimal 
classification error rates for DEA were averaged among 6 
subjects and results can be shown in Figure 5. 

Average optimal error rate in LDA is 14.16%, in k-NN is 
9.99%, in NB is 18.61 and in RegTree is 4.16 for DEA. 
RegTree classification algorithm gave also lowest error rate, 
and it seems to be appropriate algorithm as a fitness function 
for selecting 5 subsets of channels. The rankings to produce 
successful fitness values are same as in PSO. 

 
Figure 5. Optimal error rates taken in DEA 

 

In Fig. 4-5, only lowest error rates belong to 6 subjects were 

taken and averaged. In Fig. 6, average classification results of 

the selected 5 channels are shown. 

 
 
Figure 6. Average error rates of PSO and DEA 

 

Average error rates belong to PSO is nearly 2% lower than 

DEA. It was noticed that PSO showed better performance than 

DEA regardless of selected classifiers. Best choice of 5 EEG 

channel selection is achieved by PSO with RegTree classifier. 

Selected channels for each subjects using PSO and DEA with 

RegTree classifier is given in Tab. 2 and 3 respectively. 

 

 

 
TABLE II 

SELECTED CHANNELS USING PSO WITH REGTREE 

 

Subjects Optimized Channels Error Rate(%) 

A AF3 – F7 – T7 – O1 – AF4 1.66 

B F7 – T7 – P7 – F8 – AF4 0 

C F3 – FC5 – T7 – P7 – F8 0 

D F3 – O1 – O2 – P8 – F4 1.66 

E FC5 – T7 – P7 – FC6 – AF4 0 

F F7 – P7 – O1 – FC6 – AF4 0 

TABLE III 

SELECTED CHANNELS USING DEA WITH REGTREE 

Subjects Optimized Channels Error Rate(%) 

A AF3-FC5-T7-O1-F8 3.33 

B  F3-T7-P7-O1-T8 0 

C  F7-F3-P7-O2-F8 15 

D F7-O2-P8-T8-FC6 5 

E F3-T7-P8-FC6-F8 1.66 

F P7-O1-O2-F4-F8 0 

 

The combinations of channels differ from each other for both 

PSO and DEA even in each iteration, so specific brain regions 

that are more sensitive with odors cannot be deduced. Table II-

III only gives combinations of 5 superior EEG channels that 

have lowest fitness function values and highest classification 

accuracies. High error rate gained from subject C using DEA 

was improved applying PSO. 

 

4. SUMMARY AND FUTURE WORK 
 

In the present study, pleasant and unpleasant odors were 
applied to 6 subjects to record EEG signals. Filtering process 
was implemented using band pass filter. DWT was applied to 
1 s epochs of signals and wavelet coefficients were calculated. 
EEG sub-bands were gained using these coefficients. Sub-
bands were normalized in range of 0-1. 7 statistical features 
were extracted to decrease feature space. All EEG sub-bands 
were combined and totally 200x99 feature matrix were gained. 
%60 of this features were used for training and rest were for 
validation. 

 Population based PSO and DEA optimization techniques were 

used to select optimal 5 EEG channels and performance of 

these methods were evaluated. LDA, KNN, NB and RegTree 

classifiers defined classification error rates to estimate fitness 

function values. RegTree gave minimum error rates for both 

PSO and DEA. NB failed to give minimum error rates among 

other classifiers, but results obtained from NB were still 

satisfactory. PSO showed better performance than DEA for 

EEG channel selection in all cases. In current work, 5 optimal 

out of 14 channels are selected to classify pleasant and 

unpleasant odor EEG records. The EEG electrode settlement 

including a greater number of EEG channel may be more 

convenient to investigate brain regions sensitively. We may 

also analyze not only 5 but more optimal channels for another 

study. Selecting different classifiers may be another goal to 

decrease the classification error rate converging to zero. 

Including more participants from different gender can strength 

the generalization of proposed method.  In the future work, 

more population-based algorithms with different fitness 

function methods may be applied to odor EEG records. 

Statistical features can be evolved to get higher accuracies. In 

this sense, selection of EEG subset channels might be in more 

optimized form.  
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