
AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9‐Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x
http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344

Received : 03.04.2018 Editorial Process Begin: 28.04.2018 Published: 03.10.2018

An Experimental Evaluation of the Effect of SOLID Principles to
Microsoft VS Code Metrics

Osman TURAN, Ankara University Graduate School of Natural and Applied Sciences,
osmanturan@gmail.com

Ömer Özgür TANRIÖVER, Faculty of Engineering Computer Engineering Department Ankara
Turkey, Asst. Prof Dr. Özgür Tanrıöver, tanriover@ankara.edu.tr

ABSTRACT Software maintenance is necessary for reasons such as changes in user needs, changes in the

operating conditions of the system due to changes in the infrastructure and the occurrence of

unforeseen errors. The suitability of the software for maintenance operations is a significant

factor in reducing the cost. Using only basic object oriented programming concepts do not show

that we are writing maintainable code in our applications. Object oriented design principles

such as SOLID opt for reducing dependencies and increasing maintainability. ISO/IEC 9126

also aims for maintainability but ISO/IEC 9126 is not clear whether measurements should be

used together with design principles or seperately. ISO/IEC 9126 provides no specific guidance

on how to use these measures. Therefore, in this study each sub-characteristic of ISO/IEC

maintainability with help of Visual Studio (VS) code metric tool is assessed. The focus of this

assessment is on maintainability and its sub-characteristics namely analyzability, testability,

changeability and stability. Before doing an analysis of the effect of applying principles, each

sub-characteristics of maintainability part of ISO/IEC 9126 standard are mapped to five VS

code metrics for measurement of characteristics. This work shows the effect of object oriented

design principles (SOLID) to the maintainability, complexity and flexibility of the code while

associating ISO/IEC, VS code metric and SOLID.

Keywords: Object Oriented Design Principles, SOLID, ISO/IEC 9126, Code Metrics.

SOLID İlkelerinin Microsoft VS Code Metriğine Etkisinin Deneysel
Olarak Değerlendirilmesi

ÖZ

Yazılımın bakımı, kullanıcı ihtiyaçlarındaki değişiklikler, altyapıda meydana gelen değişiklikler,

sistemin çalışma koşullarındaki değişiklikler, öngörülemeyen hataların ortaya çıkması gibi

nedenlerle gereklidir. Yazılımın bakım işlemleri için uygunluğu maliyeti düşürmede önemli bir

etkendir. Sadece temel nesne tabanlı programlama kavramlarını kullanmak, uygulamalarımızda

sürdürülebilir kod yazdığımızı göstermez. SOLID gibi nesneye yönelik tasarım prensipleri

bağımlılıkları azaltmak ve yazılım bakımını artırmak ile ilgilidir. ISO/IEC 9126 bakım

yapılabilirlikle ilgilidir fakat ISO/IEC 9126 ölçüme ilişkin tüm girdilerin bir arada mı yoksa ayrı

olarak mı kullanılmaları gerektiği konusunda net değildir. Nitekim, ISO/IEC 9126 pratik olarak

veya deneysel tarzda yazılım ölçümlerinin nasıl yapılacağı, bu ölçümlerin nasıl basitçe toplanacağı,

ölçümlerin nasıl değiştirilebileceği konusunda rehberlik sağlamaz. Bu çalışmada,

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

Visual Studio (VS) kod metrik aracı yardımıyla ISO / IEC bakım yapılabilirliğin her alt-özelliği değerlendirilmiştir.

Bu değerlendirmenin odağı sürdürülebilirlik ve analiz edilebilirlik, test edilebilirlik, değiştirilebilirlik ve kararlılık gibi

alt özellikler üzerine odaklanmaktadır. Bir analiz yapmadan önce, ISO / IEC 9126 standardının bakım yapılabilirlik

bölümünün her bir alt-karakteristiği özelliklerin ölçümü için beş VS kod metriğine eşlenmiştir. Bu çalışma, nesneye

yönelik tasarım ilkelerinin (SOLID) ISO / IEC, VS kod metriği ve SOLID'i ilişkilendirerek kodun bakım

yapılabilirliği, karmaşıklığı ve esnekliği üzerindeki etkisini gösterir.

Anahtar Kelimeler: Nesne Yönelimli Programlama Prensipleri, SOLID, ISO/IEC 9126, Kod Metrikleri.

1. Introduction

Software-related post-works hold an important place in IT departments. A software system

that does not need change over time is unthinkable. Software maintenance is necessary for

reasons such as changes in user needs, changes in the operating conditions of the system due to

changes in the infrastructure, the occurrence of unforeseen errors. According to the literature,

maintenance typically consumes about 40 to 80 percent (60 percent average) of software costs. [1].

Therefore, it is probably the most important life cycle phase.

The suitability of the software for maintenance operations is a significant factor in reducing

the cost. Quality and maintenance have an interesting relationship. Trying to improve one

quality attribute often degrades another. For example, attempts to improve efficiency often

degrade modifiability [1]. Object oriented design principles can partly overcome of this problem.

But, using only basic object oriented programming concepts do not show that we are writing

maintainable code in our applications. So any architect, developer, or information technology (IT)

professional who designs, builds, or operates applications and services should know how to

implement object oriented programming systems (OOPS) and use OOP in right manner, that is

where five object oriented principles (also called as SOLID Principles) comes to picture. SOLID is

an acronym for the first five object oriented design principles (Single responsibility, Open-closed,

Liskov substitution, Interface segregation, Dependency inversion) introduced by Robert C.

Martin [2]. These principles, when combined together, make it easy for a programmer to develop

software which is easy to maintain and extend over time [3]. Metric changes on the code can be

measured by Microsoft Visual Studio (VS) Code Metrics tool. Code metrics in Visual Studio is a

tool for measuring the quality and complexity of our code. It provides us with various metrics

whose values may help to validate the quality of the code [18][23]. VS code metric plugin is used

as it is one of the widely used development environment to do code enhancements on VS.

While maintainability index can give an opinion for determining the maintainability of the

source code of a system, it is difficult to use the maintainability index directly for the desired

effect. Because computed value of the maintainability index does not provide clues about

subcharacteristics of maintainability or it does not give a clue about how to take actions to

improve this value. The maintainability index had been proposed to determine the

maintainability of the whole software systems based on the status of the corresponding source

code. In this study each sub-characteristics of ISO/IEC maintainability with help of Visual Studio

(VS) code metric tool is assessed. The evaluation was made by associating VS code metric

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
8

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.
TURAN, Ö. Ö. TANRIÖVER

for each maintainability characteristic. Before doing an analysis, each sub-characteristics of
maintainability part of ISO/IEC 9126 standard are mapped to five VS code metrics for
measurement of characteristics.

Specifically, this study contains an assessment of the effect of SOLID principles on the

Visual Studio code metrics by using a human resource management system project, named

as HRS. The system is compared with two different approches; without and with solid

design principles. We obtained the code metrics of HRS in the initial design and after

implementation design principles in the second design. We compared the results with the

context of the improvements and benefits obtained from the second implementation.

Athough the ISO/IEC 9126 has some usefulness for counting and assessing metrics [20], the

results have been assessed within the scope of ISO/IEC 9126 [19]. Although it proposes six

main factors that determine overall quality such as maintainability, usability, efficiency,

portability, functionality and reliability the focus of this assessment is on maintainability and

its sub-characteristics which are analyzability, testability, changeability and stability.

The paper is organized as follows. Section 2 provides literature analysis on SOLID

principles and code metrics. Section 3 present a brief overview of the SOLID principles and

VS code metrics. Section 4 and its sub-sections recapitulate the ISO/IEC 9126 standard for

software product quality, focusing on the characteristics of maintainability and provide the

application method of design principles to classes and application results of code metrics.

Section 5 compares and discusses with related works. The last section summarizes the main

findings.

2. Related Work

Although separately each of SOLID design principles as Object Oriented Design

Principles have been investigated widely such as effect of quality on software, rules and

techniques in object-oriented programming, contribution to maintenance cost etc. There are

not much published papers include all SOLID principles and addressing all of these

principles which deal with the software effect with Visual Studio code metrics. In paper [4]

Al-Ahmad contribute a framework for conceptual modelling and focuses on the conceptual

modelling facet of inheritance and suggests better support for it in object oriented

programming. He has examined the influence of the Liskov Substitution Principle, interfaces,

separate type, and class hierarchies on conceptual modeling. There are some papers

mentioned that Liskov Substitution Principle in such papers as [7], [9], [11]. In [5] Zotos

presents object-oriented design principles to solve the software crisis between mathematics

and computer science. He used all of the design principles contained in this paper. These

principles show the right direction of designing and helps in avoiding costly mistakes at the

designing stage. In order to write quality code, it is needed to understand the principles and

methodologies behind the language.

Deligiannis, Shepperd, Roumeliotis and Stamelos made an empirical investigation of object-

oriented design heuristic for maintainability [6]. They aim two goals. First, to investigate the

impact of a design heuristic on the maintainability of object-oriented designs. The second goal is

to investigate the relationship between OO design heuristic and metrics. A good design

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
9

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

allows us to easily plug-in new functionality in terms of new classes and new methods

without a need to re-implement the results of the previous iteration cycles. In paper [8]

Bavota, De Lucia and Oliveto try identifying extract class refactoring opportunities using

structural and semantic cohesion measures. They propose an Extract Class refactoring

method based on graph theory that exploits structural and semantic relationships between

methods. They summarize that during software development the classes of a system undergo

continuous modifications making the source code more complex and drifting away from its

original design. In particular, due to strict deadlines programmers do not always have a

bunch of time to make sure everything conforms to object oriented programming (OOP)

guidelines. When the added responsibility grows and breeds, the class becomes too complex

and its quality deteriorates. Paper [10] presents an observational study on students’ ability to

understand and apply design patterns and used Object-Oriented Design Principles, such as

Open-Closed, Single Responsibility, Dependency Inversion, Interface Segregation and Liskov

Substitution principles. Paper show that the majority of students correctly identified

maintenance problems as the main symptom of a poor architecture that according to the

general belief that design patterns solve maintenance issues.

Paper [12] introduce an algorithm for the discovery of refactoring and assess Dependency

Inversion Principle use Liskov’s Substitution Principle and Design by Contract requirements

on class contract preservation during sub- classing to become clearer of implementation

inheritance. Context aware mobile patient monitoring framework development issue is

discussed in [13]. As the paper, design patterns can be used as a method to document

application frameworks and design principles are good ideas help software developers to

build better design. Design patterns are used as tools for applying the design principles. Five

design principles that takes place in this paper support reusability and extensibility. Paper

[14] makes models for predicting extract subclass refactoring using object oriented quality

metrics. Talk about refactoring that it has several benefits such as enhancing the code’s

understandability, maintainability, testability. Therefore, design principles provide these

properties. Paper [15] try to identify and apply of extract class refactoring in object oriented

systems. It talks about a class that should implement only one concept and should only

change when the concept it encapsulates evolves.

3. Definition of Solid Design Principles and Used VS Code Metrics

The Single Responsibility Principle – S means that there should never be more than one
reason for a class to change [2]. If there is more than one motive for changing a class, then

that class is assumed to have more than one responsibility, which results as high coupling.

This kind of coupling leads to fragile designs that can break in unexpected ways for any
change requirements [16].

The Open Close Principle – O requires software entities like classes, modules and

functions should be open for extension, but closed for modification [2]. An entity can allow

its behavior to be extended without modifying its source code or a class should be easily
extendable without modifying the class itself. When requirements change, you extend the

behavior of such modules by adding new code, not by changing old code that already works.

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
10

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.
TURAN, Ö. Ö. TANRIÖVER

The Liskov Substitution Principle – L requires derived type must fully support the

substitution of their base types. [2] Every subclass/derived class should be substitutable for

its base/parent class. If any module is using a Base class then the reference to that Base class

can be replaced with a Derived class without affecting the functionality of the module. While

implementing derived classes, derived classes just extend the functionality of base classes

without replacing the functionality of base classes.

The Interface Segregation Principle – I requires clients should not be forced to depend
upon interfaces that they do not use [2]. When a client depends upon a class that contains
interfaces that the client does not use, but that other clients do use, then that client will be
affected by the changes that those other clients force upon the class.

The Dependency Inversion Principle – D requires High Level Modules should not depend
upon Low Level Modules. Both should depend upon abstractions. Abstractions should not

depend upon details. However, details should depend upon abstractions [2]. Entities must

depend on abstractions not on concretions. It states that the high-level module must not

depend on the low-level module, but they should depend on abstractions.

Then how important are these principle? Is one more important than the other is or are
they all equally? In this experiment we will to address these questions.

On the other hand, code complexity deals with the lack rate and robustness of the

application. Complex code is difficult to test and it is difficult to maintain. When a developer

writes a code, developer must adhere boundary values of metrics to ensure the code is well

written, understandable and maintainable. Code Metrics is an important measure that let us

understand the complexity and maintainability of the code. These metrics are specified that

estimation how error prone the program source code is due to its complexity or which are

most likely to cause problems in the future. Developer can understand which classes, which

methods, which module should be reworked or refactored. Visual Studio uses five code

metrics to help users understand their code better [18] [23]. They are maintainability index,

cyclomatic complexity, the depth of inheritance, class coupling and the line of code.

Maintainability Index (MI) is a metric aimed at assessing software maintainability. The

Maintainability Index was introduced at the International Conference on Software

Maintenance in 1992 [17]. MI has evolved into numerous variants. It has been successfully

applied to a number of industrial strength software systems. It is based on three code

metrics: Namely the Halstead Volume, the Cyclomatic Complexity and Lines of Code. It is

based on the following formula [18]:

Maintainability Index (MI) =

MAX (0, (171 - 5.2 * ln (Halstead Volume)

- 0.23 * Cyclomatic Complexity

- 16.2 * ln (Lines of Code)) * 100 / 171)

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
11

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

Maintainability Index (MI) is a composite metric that incorporates a number of traditional

source code metrics into a single number that indicates relative maintainability. The MI is

comprised of weighted Halstead Volume (HV), McCabe's cyclomatic complexity (CC) and

Lines of Code (LOC). MI calculates an index value between 0 and 100 that represents the

relative ease of maintaining the code. A high value means better maintainability. As can be

seen from the formula increasing of the cyclomatic complexity or line of code reduces the

value of maintainability index. As pointed by Van der Meulen and M.A Revilla [25], there are

very strong connections between LOC and HV, LOC and CC. The study provides an

approximate expression that have been used in our study for MI value.

The Cyclomatic Complexity (CC) measures the structural complexity of the code. It is created

by calculating the number of different code paths in the flow of the program. Depends on how

many different control flow of your code can execute depending on various inputs. A program

that has complex control flow will require more tests to achieve good code coverage and will be

less maintainable. The cyclomatic complexity definitely reveals a code smell.

The Depth of Inheritance indicates the number of class definitions that extend to the root

of the class hierarchy. The deeper the hierarchy the more difficult it might be to understand

where particular methods and fields are defined or redefined. The idea is that if more types

exist in an inheritance hierarchy, the code will likely be more difficult to maintain as a result.

However, a high depth of inheritance can also indicate a greater level of code reuse. This

means that it is difficult to say what a good depth is. Remark that, (Microsoft) MS Visual

Studio does include a code analysis rule, which generates a warning when an inheritance

hierarchy is more than four levels deep.

The Class Coupling measures the coupling to unique classes through parameters, local

variables, return types, method calls, generic or template instantiations, base classes, interface

implementations, fields defined on external types, and attribute decoration. Good software

design dictates that types and methods should have high cohesion and low coupling. High

coupling indicates a design that is difficult to reuse and maintain because of its many

interdependencies on other types. If we have a class that does not reference other class then

its class coupling will be zero whereas if we refer to various classes in our class (like creating

complex type properties) then it will increase class coupling.

The Lines of Code indicates the approximate number of lines in the code. The count is

based on the intermediate language code and is therefore not the exact number of lines in the

source code file. A very high count might indicate that a type or method is trying to too much
work and it should be split up. It might also indicate that the type or method might be hard

to maintain.

4. Mapping of VS Metrics to ISO/IEC 9126 Software Product Quality

ISO/IEC 9126 defines a quality model that comprises 6 characteristics and 27 sub characteristics

of software product quality. ISO/IEC 9126 also defines one or more metrics to measure each of its

sub characteristics [24]. For example, the quality level of a software product’s maintainability can

be represented by measured values of its sub characteristics. The

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
12

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.
TURAN, Ö. Ö. TANRIÖVER

ISO/IEC 9126 standard is divided into four parts. Quality model, internal metrics,

external metrics and quality in use metrics. The first three parts are concerned with

describing and measuring the quality of the software product, the fourth part evaluates
the product from the user point of view. Internal quality is believed to impact external

quality, which in turn affects quality in use.

Internal quality is assessed based on four characteristics (functionality, efficiency,

maintainability, portability) and their respective sub-characteristics. These are evaluated

by employing a set of metrics. For instance, the quality level for maintainability takes

into account the measured values of four sub-characteristics. The above quality

characteristics are abstract concepts and therefore not directly measurable and

observable. Each of them is characterized by a set of sub-characteristics.

In this study, we focused on the maintainability characteristics that sub-characterized:

• Analyzability: Degree to which the software product can be diagnosed for deficiencies or
causes of failures in the software, or for the parts to be modified to be identified.

• Changeability: Degree to which the software product enables a specified modification to

be implemented or the ease with which a software product can be modified.

• Stability: Degree to which the software product can avoid unexpected effects from

Modifications of the software.

• Testability: Degree to which the software product enables modified software to be
validated.

However, in new version of ISO/IEC, modularity and reusability are added to sub-
characteristics [21].

• Modularity: Degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on other
components.

•
• Reusability: Degree to which an asset can be used in more than one software system or

in building other assets.

ISO/IEC 9126 is not clear about whether all inputs to measurement should be used
together in conjunction or whether they should be used as appropriate or available.
Indeed, ISO/IEC 9126 provides no guidance, heuristics, rules of thumb, or any other
means to show how to trade off measures, how to weight measures or even how to
simply collate them [20].

Since our main aim was to evaluate maintainability coupled with MS VS standard

environment, each sub-characteristics of maintainability part of ISO/IEC 9126 standard

are mapped to five VS code metrics for measurement of characteristics. The

changeability characteristic of a system is linked to properties such as complexity of the

source code.

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
13

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

Source code complexity is measured in terms of cyclomatic complexity. The analyzability

characteristic of a system is effected from lines of code (LOC) and complexity attributes. The

testability characteristic of a system is effected from complexity and LOC attributes. Stability

is effected from coupling. A larger system requires, in general, a larger effort to maintain.

Higher size causes lower analyzability and it is hard to understand the system. The

complexity property of source code refers to the degree of internal disorder of the source

code. Large code units are complex. In addition, complex units are difficult to analyze and

difficult to test. İf there is duplication in the source code then it is difficult to maintain it.

Excessive duplication makes a system larger than it needs to be. In addition, it effects the

analyzability and changeability. VS code metrics and the mapping of system characteristics

onto these properties is shown in Table 1 [22].

Table 1. Mapping system characteristics onto code metrics

Maintainability Sub-Characteristics Code Metrics Value

Analyzability 1. Lines of Code (LOC)

 2. Cyclomatic Complexity (CC)

 3. Number of Method & Weighted Methods in Class (WMC)

Changeability 1. LOC

 2. CC

 3. Depth of Inheritance (DIT)

Stability 1. Coupling

Testability 1. LOC

 2. CC

Modularity 1. Coupling

 2. DIT

Reusability 1. Coupling

 2. WMC

4. The Effect of Application of SOLID Design Principles

The project is a Human Resource Management program. It is working on n-tier

architecture. The project has modules about employee which employee data management,

personnel tracking, accounting and payroll system, reporting etc. Changes made in the

project were made in business and UI layer in the architecture. When we take the class

diagram in the Microsoft Visual Studio, we see that the software has 48 class in working

layer. It is indicated Figure 10.

In the first phase of work, Visual Studio (VS) code metric tool started and default metric

values of the whole project received before making any change. It is shown on the Table 2. In

table 2, Personnel refers to the whole solution. General, Report and Payroll represent a project

in the solution. ListUpdate, takeFormData and dataSave indicates a method. The modules to

be modified are selected within the range of low MI values. İn the first stage, only one

method was modified according to the SOLID design principles. The changes were made in

order. Modified method is about subsistence money calculation. The task of method is to get

form data and assign these data to list object. The method does checks about journal control

when doing these operations. There are several if blocks in the method. Code metric values

recalculated after every change made.

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
14

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.
TURAN, Ö. Ö. TANRIÖVER

Table 2. VS Code Metrics Result

 MI CC DIT Coupling LOC

Personnel 73 1593 5 271 5632

Personnel. General 71 97 5 50 428

Personnel. Report 68 109 5 93 365

Personnel. Payroll 73 452 5 79 1835

listUpdate 49 5 15 24

takeFormData 40 6 21 46

dataSave 49 5 15 24

Single Responsibility Principle: To solve a problem, find the sub problems in the domain

that working in. Divide each sub problem into sub-sub-problems until reaching the point

where such a mini problem has just one single task left. Then solve each of these mini

problems in its own class. Initially, we had a method that used to retrieve form data and bind

them to list items. It is shown in the Figure 1. In addition, there were “if blocks” in the

method for controlling data. Controlling data is for assurance of input validation.

retrieveFormData

List<string> formItem

public List<string> retrieveFormData()

Figure 1. Initial version on SRP

To implement this principle within the method, list items are declared in another class. It

is invoked from there. All controls such as steps for form control and assignment of data to

list items (controlListData) which exist in the single incohesive large method is separated to

different cohesive methods. Each new mehod is simple and has just one single responsibility.

Result classes after applying SRP is shown in Fiure 2. At the end of single responsibility

principle refactor, Visual Studio code metric tool was run again. Maintainability index

increased by 7 percent. In addition, class-coupling value decreased. On the other hand,

according to ISO/IEC 9126 system characteristics stability, modularity and reusability have

increased. Because coupling value has decreased.

Figure 2. After applying refactoring on SRP

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
15

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

Open Closed Principle: An entity can allow its behavior to be modified without altering its

source code. Modules that adhere to open-closed principle have two primary attributes. First

is open for extension that it is possible to extend the behavior of the module as the

requirements of the application change. Second is closed for modification that extending the

behavior of the module does not result in the changing of the source code or binary code of

the module itself. There are controls about detecting journal entries and filtering operations

about type of journal data in the modified class.

Ledger

public Message<string> JournalEntries()
public FilterResult<string> FilterJournalData()

Figure 3. Initial class before applying OCP

To implement open closed principle all controls and filtering processes were reorganized.

To do this, we put the implementation of filtering or implementation of controlling in another

class. After applying implementation, we do not have to modify the new class for filtering or

for controlling new criteria. Because the behavior of the requested operations are marshalled

to the new class. Moreover, we can extend the behavior of the new class to support new

criteria. Because all we simply have to do is, pass in a new class. Therefore, it is open for

extension. Subclass provides extension by not putting the abstraction in codified interfaces but

in over ridable behavior. It often leads to composite systems and overall realizes more

opportunities for reuse. At the end of open closed principle implementation, Visual Studio

code metric tool was run again. Maintainability index (MI) increased by about 4.5 percent.

Cyclomatic Complexity did not change, class coupling decreased by about 6.25 percent. İn

addition to MI, stability, modularity, reusability, analyzability and changeability have

increased. Because some of them depend on coupling and coupling is decreased. In addition,

because of the ease of adding new features or changing existing ones analyzability and

changeability characteristics were positively affected.

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
 16

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.
TURAN, Ö. Ö. TANRIÖVER

Figure 4. Diagram after applying OCP

Liskov Substitution Principle: References to base classes must be able to use objects of
derived classes without knowing it. If a software has a base class and a few number of
subclasses, the rest of the code should always refer to base and not to subclasses. This
principle is just an extension of the Open Close Principle.

 CalculateAccount

 Public AccountInfo TransferBookAccount()

 Account CalculateBookAccount(Account acc)
 Account CalculateTransaction(Account acc) ,
 Account CalculateEntries(List<string> entry)

Figure 5. First class before applying LSP

Initially, we had class calculateAccount that contains methods about book of account for

accounting monetary transactions. However, method of calculation can be differ between

accounts. In addition, we had another class getAccount derived from calculateAccount class.

In the method of getAccount class calculations are done as type of account information.

Method of calculation for BookAccount, Transaction and Entries was diverging according to

the account information with if blocks. For applying this principle, calculateAccount is re-

written as the type of account information and calculateAccount class is derived from the

related class.

:
ICalcType

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
17

AJIT-e: Online Academic Journal of Information Technology

2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

Figure 6. Diagram after applying LSP

After making changes for Liskov Substitution Principle, maintainability index of the

project increased by about 1.3 percent. However, cyclomatic complexity increased by about
0.15 percent. If we assess this according to ISO/IEC 9126, base types can be reused and the
derived types can be changed.

Interface Segregation Principle: No client-code-object should be forced to depend on

methods it does not use. Each code object should only implement what it needs, and not be

required to implement anything else. The interface segregation principle is all about

reducing code objects down to their smallest possible implementation and removing

dependencies the object does not need to function properly. Because of applying this

principle is to have small and focused interfaces that define only what is needed by their

implementations. For implementing this principle in our project, the main interfaces that

keep the journal records are divided into interfaces that are smaller but contain no

unnecessary objects.

18

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.

TURAN, Ö. Ö. TANRIÖVER

Figure 7: First version of the classes

Dependency Inversion Principle: Primarily concerned with reducing dependencies

amongst the code modules. It needs the low-level objects to define contracts that the high-

level objects can use without the high-level objects needing to care about the specific

implementation the low-level objects provide. In the project there are classes and interfaces

for reporting and notification. Reports are written in the database or in different formats.

Notification was using as sms or e-mail. To implement this principle the report generation

task and printing part separated to different interfaces. On the notification part, an

abstraction is introduced and notification methods implement it. As a result, it is allowed

that both high level and low level classes to rely on abstractions. At the end of Dependency

Inversion Principle implementation, Visual Studio code metric tool was run again.

Maintainability index increased as expected. Already expected that this principle be

primarily concerned with reducing dependencies. As a result of interface separation, high-

level policy modules and low-level detail modules were reusable and maintainable.

For dependency inversion principle, a class about worker amount and transfer to balance

sheet is changed. First version is shown on Figure 8. In the first version the high level

TransferAmount class is depend on the low level PersonnelAccount class. This increase the

coupling. The sender and receiver references the PersonnalAccount type in the

TransferAmount class. Therefore, if another account types are not taking place in the

PersonnalAccount then it is impossible to use them. If we want to use for aiming only adding

pay for other class, the new class have to be inherited from PersonnelAccount. However, in

this situation new class would not apply the removal of pay. This violates the Liskov

Substitution Principle. On the other hand, if we want to change TransferAmount class then

this violates the Open-Closed Principle. If we make a change in the PersonnelAccount class

then it effects the TransferAmount class. Similar problems can be arise and the software can

be rigid when the software grows. Times are taken when changing or extending

functionality. For these reasons, Dependency Inversion Principle is applied to software. After

applying DIP, second version is shown on Figure 9.

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344

19

PersonnalAccount (Low Level
Class)

public long AccountNo

public decimal Balance

void addPay(decimal value)
void removePay(decimal value)

TransferAmount (High Level
Class)

public PersonnelAccount sender

public PersonnelAccount receiver
decimal value
void transfer()

Figure 8: Diagram after applying ISP

After applying DIP higher level classes refer to dependencies using interface or abstract

classes. It decreases the coupling. Lower level class implements the interfaces or makes

inheritance that inherited from abstract classes. So new classes can be used without any impact.

Flexibility of software improves. Implementing this principle needs extra effort and code view

can be complex but it is handy for maintainability. Independence of classes increase reusability.

Table 3: VS Code Metric Result

 MI CC DIT Coupling LOC

Personnel 79 1561 5 259 5629

Personnel. General 73 98 5 49 430

Personnel. Report 68 109 5 92 367

Personnel. Payroll 75 453 5 76 1833

listUpdate 51 5 14 23

takeFormData 43 4 16 33

dataSave 52 5 14 19

interfaceinterfaceITransfer

SenderITransferSender

long AccountNo

decimal Balance
void addPay(decimal value)

interface ITransferReceiver

long AccountNo

decimal Balance
void removePay(decimal
value)

PersonnalAccount: ITransferSender, ITransferReceiver

long AccountNo
decimal Balance
void addPay(decimal value)

void removePay(decimal value)

TransferAmountrasfert

decimal Amount
void Transfer (ITransferSender transferSender,

ITransferReceiver transferreceiver)

Figure 9: Second version after applying DIP

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344

20

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

All results may vary depending on the coding technique. However, maintainability index

value for all principles will increase. The metric values formed after the application of all the
principles are shown on the Table 3.

Figure 10. Class Diagram of the Project

5. Discussion with Related Work

There is not much work about Single Responsibility Principle on literatur. But when we search

with keyword about refactoring, god class dividing, seperation of concern then we see that there

are works and papers. Researches have been made on the impact of refactoring on code quality

and maintenance cost in general by considering more than one project. In [28] Hegedus and

others made a study about empirical evaluation of software maintainability. The concept of

refactoring is an essential part of the development process. Fowler [29] proposed that code smells

should be the primary technique for identifying refactoring opportunities in the code. The paper

compares the differences in maintainability and source code metrics as refactored and non-

refactored source code elements. Result of the study source code elements subjected to

refactorings had significantly lower maintainability than elements not affected by refactorings.

Moreover, refactored elements had significantly higher size related metrics, complexity, and

coupling. Also these metrics changed more significantly in the refactored elements. In our

research we show that if source code is refactored as the principles then code can reach the high

cohesion, low coupling, high maintainability index values. Another study [30] states that single

refactorings only make a very little changes on maintainability but a whole refactoring

period can significiantly increase maintainability.

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344

21

GeneralPersonel
Sınıf

dutyInfo
GenelSayfa

Sınıf

EducationDetail
GenelSayfa

Sınıf
PersonelGeneral …
Sınıf

PersonnelProcess
GenelSayfa

Sınıf

Budget
Sınıf

BudgetDetail
Budget

Sınıf

Accrual
Sınıf

LedgerApproval
GenelSayfa

Sınıf
BookEntry
GenelSayfa

Sınıf

PersonelList
Page

Sınıf

EducationInfo
GenelSayfa

Sınıf

dutyOpenTime
Sınıf

Object
Sınıf

EnrtyDetail
Sınıf

PaymentInfo
Sınıf

Payroll
Sınıf

Report
Sınıf

Ledger
Sınıf

Account
Sınıf

CalculateAccount
Sınıf

PersonnelAccount
Sınıf

TransferAmount
Sınıf

DayoffInfo
Sınıf

DayOffDetail
Budget

Sınıf

EarningperPer
GenelSayfa

Sınıf
EarninigDetail
GenelSayfa

Sınıf

FamilyDetail
GenelSayfa

Sınıf
FamilyGeneral
GenelSayfa

Sınıf

JobInfo
GenelSayfa

Sınıf
ChildInfo
GenelSayfa

Sınıf

EndDayInfo
GenelSayfa

Sınıf

EndMonthInfo
Sınıf

SubsCommon
GenelSayfa

Sınıf

SubsistenceInfo
Sınıf

AccDetail
Sınıf

AccountType
Sınıf

AccountTypeInfo
Sınıf

AccountTypeDe …
Sınıf

AccountTypeDe …
Sınıf

PaymentForPers …
Sınıf

PersonnelSalary …
Sınıf

PersonnelSalary …
Sınıf

PersonnelSalary …
Sınıf

WageCutForGen …
Sınıf

WageCutForPer …
Sınıf

TotalWageCut
Sınıf

PersonnelPaidaf …
Sınıf

PersonnelObject
GenelSayfa

Sınıf

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.

TURAN, Ö. Ö. TANRIÖVER

In [31] mention the existing literature lacks observations about the relations between

metrics/code smells and refactoring activities performed by developers. But our paper

indicates relation between metrics and refactoring activities. We show that code metrics

depend on a good design refactoring. Other researches like [32], [33] state extract class and

move method are found the most frequently considered refactoring activities. For making a

good refactoring as the SOLID principles that we state, developer should make extracting

class and moving method.

6. CONCLUSION

The SOLID principle aims reducing dependencies and increasing maintainability. Every

principle require additional time and effort spent to apply it during the design time and they can

increase the complexity of code because of increasing number of interfaces or classes. However,

they produce a flexible design, loose coupling, and higher maintainability. Code is more robust,

more stable and better understandable. İn addition to these Visual Studio code metric values can

give an insight about maintainability and complexity of the code. The developer can make an

assessment about code with help of code metric values before beginning maintenance task or

refactoring.

In ISO 9126 and in this VS-SOLID mapping, coupling is seen to be related stability and modularity.

Mitigating new technologies or evolving changes makes it critical for software developers to stabilize

their system and preserve its design. Instable software tends to increase maintenance cost up to 75 %

of the software total costs [26, 27]. Therefore, stability is very important. Applying stability early at the

model level enables the developers to improve maintainablity of software and reduce the total cost.

Stability can also enhance reusability, as it focusses on providing code parts that remain unchanged

over time. This ensures a stable core design and thus a more stable software. In order to opt for stable

software, it is important to emphasize that low coupling is neede. If coupling is low, then the

difficulty of making impact analysis also requires less effort.

This work shows that SOLID design principles increase the maintainability of the code,

generally reduce complexity of the code and reduce dependency, provide flexibility to the code.

Design principles improve the separation of concern through weaker coupling and stronger

cohesion. However, if these principles are applied without measure then some potentially

undesirable consequences may occur. They are the proliferation of relatively small concrete

classes, the proliferation of abstract classes and interfaces, increasing in the depth of the

inheritance tree. As a result, Visual Studio code metrics can tell which class and which method

should be studied. Moreover, code can be structured better with the help of SOLID design

principles. Further study could be to investigate the SOLID effect with different code metric

measurement programs by making more changes in a larger project or it could be to build a

design principle compliant architecture infrastructure and force developers to code accordingly.

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344

22

AJIT-e: Online Academic Journal of Information Technology
2018- Cilt/Vol: 9 - Sayı/Num: 34
DOI: 10.5824/1309‐1581.2018.4.001.x

REFERENCES

[1] Robert L. Glass , "Frequently Forgotten Fundamental Facts about Software Engineering", An Article in
IEEE Software May/June 2001

[2] R. C. Martin, “Design Principles and Design Patterns”, [Online]. Available:

http://www.objectmentor.com, 2000

[3] Sandi Metz (Duke University) , “SOLID Object-Oriented Design”, Talk given at the 2009 Gotham Ruby

Conference in May, 2009. Online at http://www.youtube.com/watch?v=v-2yFMzxqwU

[4] Walid Al-Ahmad, “A framework for conceptual modeling in OOP”, Journal of the Franklin Institute, 2006

[5] Kostas Zotos, “Object-oriented design principles in mathematics”, Applied Mathematics and

Computation, 2006

[6] Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, Ioannis Stamelos, “An empirical

investigation of an object-oriented design heuristic for maintainability”, The journal of system
and software, 2001

[7] Magiel Bruntink, Arie van Deursen, “An empirical study into class testability”, The Journal of

System and Software, 2006

[8] Gabriele Bavota, Andrea De Lucia, Rocco Oliveto , “Identifying Extract Class refactoring

opportunities using structural and semantic cohesion measures”, The Journal of Systems and
Software, 2011

[9] David Lievens, William Harrison, “Abstraction over implementation structure with symmetrically

encapsulated multimethods”, Science of Computer Programming, 2013

[10] Alexander Chatzigeorgiou, Nikolaos Tsantalis, Ignatios Deligiannis , “An empirical study on

students ability to comprehend design patterns”, Computers & Education, 2008

[11] Gabriale Arevalo, Stephane Ducasse, Silvia Gordillo, Oscar Nierstrasz , “Generating a catalog of

unanticipated schemas in class hierarchies using Fomal Concept Analysis”, Information and
Software Technology, 2010

[12] Vassilis E. Zafeiris, Sotiris H. Poulias, N.A. Diamantidis, E.A. Giakoumakis, “Automated

refactoring of super-class method invocations to the Template Method design pattern”,
Information and Software Technology, 2016

[13] Mahmood Ghaleb Al-Bashayreh, Nor Laily Hashim, Ola Taiseer Khorma, “Context- Aware Mobile

Patient Monitoring Framework Development”, 2013 International Conference on Electronic

Engineering and Computer Science, 2013

[14] Jehad Al Dallal , “Constructing models for predicting extract subclass refactoring opportunities

using object-oriented quality metrics”, information and Software Technology, 2012

[15] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, Alexander Chatzigeorgiou, “Identification and

application of Extract Class refactorings in object-oriented systems”, Journal of Systems and
Software, 2012

[16] Harmeet Singh, Syed Imtiyaz Hassan , “Effect of SOLID Design Principles on Quality of Software:

An Empirical Assessment”, International Journal of Scientific & Engineering Research, April-201

 http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
23

An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics O.

TURAN, Ö. Ö. TANRIÖVER

[17] Paul Oman and Jack Hagemeister. “Metrics for assessing a software system’s maintainability”.

Proceedings International Conference on Software Mainatenance (ICSM), 1992, pp 337-344.

[18] www.microsoft.com, 01.08.2017

[19] ISO 9126-1 Software Engineering - Product Quality - Part 1: Quality Model, 2001.

[20] Hiyam Al-Kilidar, Karl Cox, Barbara Kitchenham, “The Use and Usefulness of the ISO/IEC 9126

Quality Standard”, International Symposium on Empirical Software Engineering, 2005

[21] ISO/IEC 25010:2011, http://www.iso.org/iso/catalogue_ detail.htm?csnumber=35733, 01.08.2017

[22] Morteza Asadi, Hassan Rashidi, “A Model for Object Oriented Software Maintainability

Measurement”, I.J. Intelligent Systems and Application (MECS), 2016

[23] https://docs.microsoft.com/tr-tr/visualstudio/code-quality/code-metrics-values, 01.08.2017

[24] Ho-Won Jung, Seung-Gweon Kim, Chang-Shin Chung, “Measuring Software Product Quality: A

Survey of ISO/IEC 9126”, IEEE Software, vol. 21, pp. 88-92, 2004

[25] Meine J.P. van der Meulen, Miguel A. Revilla, “Correlations between Internal Software Metrics and

Software Dependability in a Large Population of Small C/C++ Programs”, 18th IEEE
International Symposium on Software Reliability Engineering, 2007

[26] Galorath, D.D., “Software total ownership costs: development is only job one” Softw. Tech. News,

23–32, 2008

[27] Chen, J.-C., Huang, S.-J., “An empirical analysis of the impact of software development problem

factors on software maintainability” System Software. 82, 981–992, 2009

[28] Péter Hegedűsa, István Kádárb, Rudolf Ferenc, Tibor Gyimóthyb, “Empirical evaluation of software

maintainability based on a manually validated refactoring dataset”, Information and Software Technology,
2017

[29] M. Fowler, “Refactoring: Improving the Design of Existing Code”, Addison-Wesley, 1999.

[30] Gábor Szoke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, Tibor Gyimóthy, “Empirical study on

refactoring large-scale industrial systems and its effects on maintainability”, The Journal of Systems
and Software, 2016

[31] Gabriele Bavotaa, Andrea De Luciab, Massimiliano Di Pentac, Rocco Olivetod, Fabio Palombab, “An

experimental investigation on the innate relationship between quality and refactoring”, The Journal of

Systems and Software, 2015

[32] M. Gatrell, S. Counsell, “The effect of refactoring on change and fault-proneness in commercial C#

Software”, Science of Computer Programming, 2014

[33] Jehad Al Dallal, “Identifying refactoring oppurtunities in object oriented code: A systematic literatur

review”, Information and Software Technology, 2014

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=344
24

