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1. Introduction 
A main objective of most of agricultural experiments is to 

determine the effect of different treatments on a 

particular crop variety. Data collected from agricultural 

experiments have been analyzed using different 

statistical methods, such as analysis of variance, 

maximum likelihood, REML and Bayesian methods. 

Despite a great number of literatures on the design and 

analysis of agricultural field experiments, dating back to 

the early 1900s, and a large uptake of Bayesian methods 

in many other scientific fields in the last 30 years (Firat, 

et al., 1997a; Firat, et al., 1997b; Firat, 2001; Karaman, et 

al., 2014; Cemal, et al., 2016; Firat et al., 2016), Bayesian 

analysis for agricultural field experiments has not 

received very much attention. 

Statistical methods for the design and analysis of 

agricultural field experiments were essentially developed 

by R. A. Fisher, F. Yates and many others. However, most 

of the modern courses and text-books focus on industrial 

and medical applications. Field trials are rather different, 

because a researcher always knows that generally she/he 

will obtain similar yields on two experimental units that 

are close together than on units that are further apart 

(Besag and Higdon, 1999), and also fields trials are 

conducted real-world settings. 

Bayesian methods improve upon frequentist methods by 

expressing uncertainty regarding the unknown 

parameters and simplifies the interpretation of the 

results, especially in ranking and selection of crop 

varieties. Moreover, an analysis of complex formulations 

can be carried out with comparative ease, and 

computation of complicated functionals of high 

dimensional posterior distributions can be done by using 

MCMC methods. Although, faster computers and 

increasing popularity of MCMC methods have allowed 

Bayesian methods to become widely used in complex 

data analysis problems, the Bayesian approach has yet to 

provide a completely satisfactory answer in the analysis 

of agricultural experiments, since there has been a lack of 

application in this area. 

Besag and Higdon (1993, 1999) and Besag et al. (1995) 

discussed Bayesian approaches for analyzing agricultural 

field experiments. They proposed complex formulations 

for situations when spatial effects were considered, while 

our approach is for the standard additive mixed model. 

Our approach has some advantages over other Bayesian 

approaches; the marginals of complex functions of the 

unknown parameters can be easily obtained and 

implementation of high dimensional posterior 

probability functions can be conveniently done. 

In this research, the general concept of Bayesian analysis 

and the MCMC algorithm are presented. The 

implementation of the MCMC algorithm using the PROC 

MCMC procedure of SAS software package (SAS Institute, 

2004) is demonstrated through a real data set from an 

agricultural experiment. Some numerical comparisons 

with frequentist analyses are made. We shall have rather 

little to say about MCMC sampling. The analyses in this 
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paper were all carried out using simple Gibbs samplers. 

In organizing the paper, we decided to present the 

methodology first, followed by an application. We 

describe some Bayesian formulations for a particular 

field trial, in which (a) the treatment or variety effects 

have no special structure, and (b) Gaussian assumptions 

are appropriate, both in the likelihood and in the prior. 

We contrast Bayesian and frequentist formulations. 

Finally, the last section contains some discussion. 

 

2. Material and Methods 
2.1. Data Set and Descriptive Statistics 

In this section, we analyze a factorial randomized 

complete-block (RCB) experiment on cowpea. A data set 

is reported in Snedecor and Cochran (1989), page 308. 

There are four separate single-column replicates, each 

containing 9 combinations of 3 varieties and 3 spacings. 

Response is the yield of cowpea hay (lb/100 morgen 

plot) and the corresponding yields are given in Table 1. 

Descriptive statistics of Cowpea data set and boxplots of 

main factor effects and interactions are displayed in 

Table 2 and Figure 1, respectively, for the purpose of 

illustration. We note here that the basic Bayesian 

formulation, with Gaussian assumptions for variety, 

spacing and yield but a vague prior applied to varieties 

and spacings, produces variety and spacing effects that 

agree closely with those from a superficially similar 

frequentist extended first-differences analysis. The same 

holds for the standard deviations and corresponding 

standard errors for variety differences. 

 

Table 1. Data from Cowpea variety trial. The original 

dataset was published by Snedecor and Cochran (1989, p. 

308). This data set is called 'Cowpea data' in this study 
 

  Blocks 

Variety Spacing B1 B2 B3 B4 

V1 S1 56 45 43 46 

 S2 60 50 45 48 

 S3 66 57 50 50 

V2 S1 65 61 60 63 

 S2 60 58 56 60 

 S3 53 53 48 55 

V3 S1 60 61 50 53 

 S2 62 68 67 60 

 S3 73 77 77 65 

 

Table 2. Descriptive statistics of Cowpea data set 

Variety Spacing Mean Stdev. Min. Max. 

V1 S1 47.50 5.802 43 56 

 S2 50.75 6.500 45 60 

 S3 55.75 7.588 50 66 

V2 S1 62.25 2.217 60 65 

 S2 58.50 1.915 56 60 

 S3 52.25 2.986 48 55 

V3 S1 56.00 5.354 50 61 

 S2 64.25 3.862 60 68 

 S3 73.00 5.657 65 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Boxplots of main factor effects and 

interactions: (a) boxplot of variety effect, jβ ’s, (b) 

boxplots of treatment (spacings) effects,  kγ  (c) boxplots 

of interactions  jkβγ ’s. 

 

2.2. Bayesian Formulation of Field Experiments 

For definiteness, we focus on a full factorial Randomized 

Block Design (RBD) with two three-level treatment 

factors (variety and spacing) occurring in a factorial 

structure. The randomized block design is used to control 

and reduce experimental error. It is intended to make 

yield comparisons between the levels of treatment 

factors of a crop. We assume that measurements are 

effectively continuous, resulting in an n-vector y of yields 

over n rectangular plots. However, our formulation 
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extends to more complicated treatment structures and to 

discrete observations, such as litter size or number of 

laid eggs per month. 

We consider the additive fixed model, with one 

observation per cell. The model for a two-factor factorial 

in a randomized complete block (equation 1) is 
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where ijky  is the observed response when factor factor 

A is at the jth level and factor B at the kth level in the ith 

block, µ is the overall mean effect, iα  is the effect of ith 

block, jβ  is the effect of jth level of factor A, kγ  is the 

effect of kth level of factor B,  jkβγ  is the effect of the 

interaction between factor A and B, and ijke  is a random 

error component. Both factors are assumed to be fixed. 

Similarly, the interaction effects are fixed. The 

experimental errors are assumed independent and 

normally distributed with zero means and common 

variance 2
eσ . To our knowledge, an analysis of the 

agricultural field data using PROC MCMC has never been 

done before, and it will be the first time to use the model 

in equation 1 under new priors to make Bayesian 

inferences. 

The conditional distribution of  ijky  given μ , iα , jβ , kγ

,  jkβγ  and 2
eσ  is 
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Under this assumption of normality, the likelihood 

function (equation 2) is as follows: 
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Prior distributions for variety or treatment effects: In 

order to carry out Bayesian analysis, in addition to the 

likelihood function we need prior distributions for each 

parameter of the model, μ , iα , jβ , kγ ,  jkβγ  and 2
eσ . We 

consider a conjugate prior for each of these parameters. 

For the overall mean, μ , a flat prior was used, so that  

  constantμf , indicating no prior knowledge about 

this parameter. The simplest choice of prior for the 

variety effect, iα , in a single trial is either a uniform 

distribution or a Gaussian distribution, when the data 

provide little evidence of differences between varieties. 

In this paper, our prior is the simple Gaussian or uniform 

distribution,   constantiα : the latter is useful mainly 

in making numerical comparisons with standard 

frequentist analyses. For the priors, a Uniform 

distribution was also assumed for other fixed effects jβ , 

kγ  and  jkβγ ,   constantjβ ,   constantkγ  and 

   constantjkβγ , respectively. Finally, for the variance 

component 2
eσ , a diffuse but proper 

 2,2~, 222
eeeeee SννIGSνσ  prior (i.e. an inverse gamma 

distribution) was assigned (equation 3). 
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where 2
eS   and eν   are scale and shape (degrees of 

freedom) parameters for variance component 

respectively. 

 

Posterior distribution: By multiplying likelihood function 

with the prior distributions of all the parameters, the 

joint posterior density of parameters (equation 4) is 

obtained as: 
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To implement the Gibbs sampling algorithm, we require 

the full conditional posterior distributions of μ , iα , jβ ,

kγ ,  jkβγ and 2
eσ . The full conditional posterior 

distribution of any parameter of interest can be obtained 

by integrating over the remaining parameters from joint 

posterior distribution. It is well known that the conjugate 

priors are very easy to work with because the posterior 

and prior have the same distributional form and the 

effect of the data is just to update the parameters from 

the prior to the posterior. Therefore, the resulting full 

conditional posterior distributions of μ , iα , jβ , kγ  jkβγ  

and 2
eσ  (equations 5-10) are summarized as follows:  
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As can be seen from equations 5-10, the first five 

conditional distributions are from the normal and the last 

one is from the inverse chi-square distributions, 

therefore only two random number generators are 

required in this problem, the normal variable generator 

and the scaled inverse chi-square variable generator. 

Since every unknown has a closed form distribution, the 

Gibbs sampler algorithm can be used for the MCMC 

experiment. The Gibbs sampling algorithm generates 

random samples from the full conditional distributions of 

the parameters, without having to calculate the density. 

Gibbs sampling algorithm requires an initial starting 

point for the parameters. Then, one at a time, a value for 

each parameter of interest is sampled given the values 

for the other parameters and data. Once all of the 

parameters of interest have been sampled, the nuisance 

parameters are sampled given the parameters of interest 

and the observed data. At this point, the process is 

started over. The power of Gibbs sampling is that the 

joint distribution of the parameters will converge to the 

joint probability of the parameters given the observed 

data. 

 

2.3. Bayesian Analysis of Cowpea Data Set Using 

PROC MCMC 

There are two steps involved in data analysis using SAS, 

(1) First the data step and (2) Second the procedure step. 

The data step is used to input the data. The statistical 

analyses are performed in the procedure step via a built-

in subroutine within the SAS system. Each subroutine is 

called a procedure performing some specific tasks. There 

is one particular SAS procedure called the MCMC which is 

designed for the MCMC implemented Bayesian analysis 

and handles problems with a high level of complexity. 

SAS Code for the data and procedure steps 

 

data cowpea; 

input Blok Variety $ Spacing $ Yield; 

A=Blok; B=Variety; C=Spacing; y=Yield; 

cards; 

1 V1 S1 56  

2 V1 S1 45 

3 V1 S1 43 

4 V1 S1 46 

1 V1 S2 60 

2 V1 S2 50 

3 V1 S2 45 

4 V1 S2 48 

1 V1 S3 66 

2 V1 S3 57 

3 V1 S3 50 

4 V1 S3 50 

1 V2 S1 65 

2 V2 S1 61 

3 V2 S1 60 

..... 

1 V3 S3 73 

2 V3 S3 77 

3 V3 S3 77 

4 V3 S3 65 

run; 

 

*nmc = specifies the number of MCMC iterations; 

*nbi =specifies the number of number of burn-in 

iterations; 

*thin = specifies the thinning rate ; 

*plot = produces plots; 

*monitor = gives output of a list of symbols; 

*array = gives a list of array elements; 

*parms = gives a list of parameters in the model; 

*prior = specifies the prior distribution of the 

parameters; 

*model = specifies the likelihood function; 

*call = computes the statistics; 

 

proc mcmc data=recodedb outpost=postb 

propcov=quanew seed=&seed nmc=500000 

nbi=100000 thin=100 plots=all 

monitor = (beta1-beta&nvar sigmae diffV1V2 diffV1V3 

diffV2V3 diffS1S2 diffS1S3 diffS2S3 ); 

array covar[&nvar] intercept &_trgind; 
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array beta[&nvar] ; 

parms sigmae1  ;   

parms (beta1-beta&nvar) 0; 

prior beta:~normal(0,var=100000); 

prior sigmae~igamma(shape=0.001, scale=0.001); 

* Differences between Varieties  ; 

  diffV1V3 = beta5; 

  diffV2V3 = beta6; 

  diffV1V2 = beta5 - beta6; 

* Differences between Spacings  ; 

  diffS1S3 = beta7; 

  diffS2S3 = beta8; 

  diffS1S2 = beta7 - beta8; 

call mult(covar, beta, mu); 

model y ~ normal(mu, var=sigmae); 

run; 

ods graphics off; 

ods rtf close; 

 

Statistical analyses for REML estimations were obtained 

using PROC MIXED procedure, and Bayesian analysis was 

conducted using the PROC MCMC procedure of SAS 

software in the analysis of Cowpea data. A single chain of 

size 500000 iterations was run. The initial 100000 

iterations were discarded as a burn-in, and every 100th 

sample was recorded to reduce the auto-correlation. In 

total, 5000 samples were stored for each parameter, and 

means of the sample values were used as an estimate of 

the parameters. 

 

3. Results 
The summary statistics for all the variables, including 

functions of the parameters and the variance component 

from REML and MCMC approaches for the analysis of 

Cowpea data set are presented in Table 3. The posterior 

means are based on 5000 Gibbs sampler. 

 

Table 3. Summary statistics for all the variables from REML and MCMC methods 

  Posterior Summaries 

Parameter 

 

REML Mean SD1 

Posterior Intervals M. Carlo SEs 

HPD2 Interval Equal-Tail Interval MCSE3 MCSE/SD 

beta1,   70.75 70.773 2.530 65.908 75.755 65.909 75.758 0.037 0.015 

beta2, 
1  6.11 6.095 2.067 1.927 9.938 2.018 10.155 0.030 0.015 

beta3, 
2  3.33 3.296 2.070 -0.655 7.413 -0.723 7.368 0.032 0.016 

beta4, 
3  -0.44 -0.459 2.134 -4.643 3.765 -4.699 3.739 0.031 0.015 

beta5, 
1  -17.25 -17.172 3.119 -23.118 -11.021 -23.238 -11.108 0.044 0.014 

beta6, 
2  -20.75 -20.794 3.076 -26.639 -14.437 -26.974 -14.737 0.045 0.015 

beta7, 
1  -17.00 -17.039 3.102 -23.464 -11.234 -23.312 -11.034 0.047 0.015 

beta8, 
2  -8.75 -8.744 3.183 -14.837 -2.349 -14.967 -2.419 0.047 0.015 

beta9, 

 11  

8.75 8.729 4.465 -0.364 17.060 -0.138 17.406 0.067 0.015 

beta10,

 12  

3.75 3.661 4.497 -5.169 12.468 -5.422 12.358 0.065 0.014 

beta11,

 21  

27.00 27.111 4.381 18.173 35.323 18.606 35.789 0.068 0.016 

beta12,

 22  

15.00 15.011 4.390 6.306 23.659 6.312 23.679 0.064 0.015 

Sigmae, 2

e  17.67 19.407 6.345 9.958 32.108 10.794 34.883 0.091 0.014 

diffV1V2 3.50 3.623 3.125 -2.729 9.692 -2.576 9.939 0.044 0.014 

diffV1V3 -17.25 -17.172 3.119 -23.118 -11.021 -23.238 -11.108 0.044 0.014 

diffV2V3 -20.75 -20.794 3.076 -26.639 -14.437 -26.974 -14.737 0.045 0.015 

diffS1S2 -8.25 -8.296 3.155 -14.793 -2.364 -14.633 -2.100 0.046 0.015 

diffS1S3 -17.00 -17.039 3.102 -23.464 -11.234 -23.312 -11.034 0.047 0.015 

diffS2S3 -8.75 -8.744 3.183 -14.837 -2.349 -14.967 -2.419 0.047 0.015 
1SD= standard deviation, 2HPD= (95%), the 95% highest posterior density credible interval, 3MCSE= monte carlo standard 

error, REML= Restricted maximum likelihood, MCMC= Markov chain monte carlo. 

 

It can be noted that the Bayesian method overestimates 

the variance component compared with the REML 

estimate. The variance component obtained by REML is 

only marginal with respect to fixed effects but 

conditionals to other nuisance parameters of the model. 

The Bayesian analysis allows further marginalization via 
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Markov Chain Monte Carlo methods. This approach is 

particularly interesting for models, as the present, with 

high number of variance components. In consequence, 

point estimates of variance components obtained in the 

Bayesian analysis under that priors presented some 

differences with the REML estimate. These differences 

are due to the prior information. 

The 95% High Probability Density (HPD) interval is the 

same as the equal tail intervals due to the normality of 

the posterior distribution. The equal-tail credibility 

intervals and the HPD intervals all show that all the 

pairwise differences are significantly different from zero 

(Table 3). The two varieties and two spacings have 

significant effect on the yield of Cowpea, i.e., β1, β2, γ1 and 

γ1 are significantly different from zero. Two of the 

interaction effects are also significant, i.e.,  21  and 

 22  are different from zero. 

Table 4 shows the Geweke z test for convergence and 

other diagnostic statistics for all the unknowns. If the 

result of the Geweke z test is significant, the chain may 

not have converged. From this table it can be clearly seen 

that the Markov chains behave very well for all the 

unknowns, since the p values for the Geweke z-test are 

larger than 0.05 for all unknowns. Because the 

autocorrelation is always positive, the effective sample 

size is always less than the actual posterior sample size. A 

much smaller effective sample size than the actual size 

indicates poor mixing of the Markov chain. The concept 

of effective sample size is much the same as the effective 

population size in population genetics. Our results show 

that effective sample sizes are very close to the actual 

posterior sample sizes. 

Figure 2 shows the posterior TAD (trace-autocorrelation-

density) panels for α1 (beta2) and β1 (beta5), only. The 

Markov chain converges very well with very low 

autocorrelation and almost a perfect normal posterior 

distribution in all TAD panels representing different 

parameters. Overall, this dataset is sufficient to allow 

more precise estimates of the parameters. 

 

Table 4. Diagnostic test statistics for the Markov chain convergence of the Cowpea data 

Geweke Diagnostics Effective Sample Sizes Posterior Autocorrelations 

Parameter z Pr>|z| ESS1 

Autocorrelation 

Time Efficiency Lag 1 Lag 5 Lag 10 

beta1,   0.851 0.3947 4593.1 1.0886 0.9186 0.0244 -0.0292 -0.0180 

beta2, 
1  -0.289 0.7725 4601.2 1.0867 0.9202 0.0433 0.0009 -0.0092 

beta3, 
2  -0.876 0.3812 4159.7 1.2020 0.8319 0.0164 -0.0015 0.0126 

beta4, 
3  0.178 0.8588 4684.4 1.0674 0.9369 0.0337 -0.0001 0.0151 

beta5, 
1  0.448 0.6539 5000.0 1.0000 1.0000 0.0035 0.0040 -0.0268 

beta6, 
2  -0.445 0.6562 4725.4 1.0581 0.9451 0.0291 -0.0277 -0.0213 

beta7, 1  -0.557 0.5778 4346.6 1.1503 0.8693 0.0521 -0.0078 -0.0072 

beta8, 2  -1.542 0.1232 4536.7 1.1021 0.9073 0.0404 0.0072 -0.0072 

beta9,  11  0.322 0.7474 4463.0 1.1203 0.8926 0.0428 -0.0058 -0.0054 

beta10,  12  0.541 0.5887 4818.2 1.0377 0.9636 0.0189 0.0231 0.0024 

beta11,  21  0.476 0.6342 4160.8 1.2017 0.8322 0.0540 -0.0348 -0.0174 

beta12,  22  1.119 0.2629 4741.8 1.0545 0.9484 0.0272 0.0036 -0.0078 

Sigmae, 2

e  0.468 0.6395 4825.4 1.0362 0.9651 0.0181 -0.0051 -0.0119 

diffV1V2 0.818 0.4136 5000.0 1.0000 1.0000 -0.0055 -0.0164 -0.0016 

diffV1V3 0.448 0.6539 5000.0 1.0000 1.0000 0.0035 0.0040 -0.0268 

diffV2V3 -0.445 0.6562 4725.4 1.0581 0.9451 0.0291 -0.0277 -0.0213 

diffS1S2 0.972 0.3309 4687.8 1.0666 0.9376 0.0333 -0.0037 -0.0088 

diffS1S3 -0.557 0.5778 4346.6 1.1503 0.8693 0.0521 -0.0078 -0.0072 

diffS2S3 -1.542 0.1232 4536.7 1.1021 0.9073 0.0404 0.0072 -0.0072 
1ESS= effective sample size. 
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Figure 2. Posterior TAD panels for Markov chain convergence diagnosis from the model α1 (beta2) and β1 (beta5). 

 

4. Discussion 
In this paper, we have presented the general concept of 

Bayesian methodology and the MCMC algorithm for the 

analysis of agricultural field experiments, a subject that 

has received not much previous attention despite an 

enormous number of frequentist literatures, in a way that 

can be understood by agricultural practitioners. We also 

demonstrated the implementation of the MCMC 

algorithm using PROC MCMC procedure of SAS software 

package to obtain posterior distribution of parameters of 

interest through a real data set from a two-factor 

factorial randomized complete-block (RCB) design. 

Bayesian approach is compatible with factorial 

experiments when studying interactions. In two factors 

full factorial experiment, the posterior estimates of the 

means of mains effects and interactions were obtained 

and compared with those under the likelihood-based 

method, REML. 

It is always useful to compare and contrast the results of 

Bayesian analysis with that of the REML analysis. If they 

are completely different or not comparable in any way, 

there are at least three approaches to consider; new 

analyses with different models, the use of different priors 

and analysis of simulated data to verify the model and 

the priors. In the agricultural field data analysis, we used 

a new model under new priors, and produced results 

using PROC MCMC that have never been reported before. 

Then, we analyzed the same data using PROC MIXED to 

obtain the REML estimates under the mixed model. The 

two results do share some similarity. Based on the results 

from our data set, REML estimations of the unknown 

parameters are almost similar with MCMC posterior 

means. We can conclude that the estimates of REML are 

accurate but the posterior point estimates from the 

MCMC algorithm can be overestimated depending on the 

nature of the data set. The differences in the results of 

different estimation methods (REML and Bayesian) 

occurred the most in the estimation of error variance. 
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Such a comparison increases our confidence in the 

Bayesian analysis. 

The original Bayesian method is more complicated than 

the classical maximum likelihood-based method REML, 

because multiple integrals are often involved in obtaining 

the posterior expectations of the unknown parameters. 

In most situations, an explicit form of the multiple 

integrals does not exist, and thus limits the application of 

Bayesian analysis. Although Bayesian inference was 

proposed earlier than the likelihood-based inference, it 

has only recently become popular due to the advent of 

high computing power and the advanced MCMC 

algorithms for numerical integrations. With the MCMC 

implemented Bayesian method, it has become much 

easier to adopt complicated models. Since it is often very 

simple to obtain the fully conditional posterior 

distributions, the MCMC process is much easier to 

understand than the maximum likelihood method. 

Thanks to the MCMC algorithm, which has revolutionized 

the field of Bayesian inference, the non-statisticians can 

also perform Bayesian analysis. Conducting an MCMC 

sampling process is no more complicated than doing an 

agricultural field experiment. 

Frequentist approaches to making inferences about the 

parameters of interest in general linear models have 

several limitations and may not be able to handle 

complicated models. These include reliance on 

asymptotic theory and a failure to account for 

uncertainty for model parameters. A Bayesian approach 

to making inferences about the unknown parameters is 

proposed that circumvents many of the problems 

associated with alternative frequentist approaches. 

Markov Chain Monte Carlo (MCMC) and Gibbs sampling 

are used to obtain posterior point estimates from the 

posterior distributions. The 95% credible intervals (CI) 

were also obtained and finally compared with that 

obtained using classical approach. The Bayesian method 

for agricultural field experiments is useful to both 

researchers and students who will appreciate the 

importance of Bayesian approach when applied to 

practical statistical problems. 

One of the main differences between the Bayesian and 

likelihood-based approaches is the way in which they 

deal with nuisance parameters (Smith and Naylor, 1987). 

This is apparent from our results. The conditional 

posterior density is obtained by a Monte Carlo numerical 

integration method, which is known as a Gibbs Sampler, 

whereas the likelihood function is obtained by 

maximizing with respect to the nuisance parameters. In 

certain cases, the two operations may produce sharply 

contrasting results. The computations required to 

implement the Bayesian method are of the same order of 

magnitude as those required for the REML method, and 

therefore the Bayesian method are likely to be 

computationally feasible whenever the REML methods 

are computationally feasible. 

Implementation of the Bayesian method not only 

simplifies the interpretation of the results, especially in 

ranking and selection of the varieties, but also enables 

the researcher to analyze complex formulations with 

comparative ease, by using Markov chain Monte Carlo 

approaches in any agricultural field trial. Bayesian 

estimators depend on the information about the 

parameters contained in the data, and also on prior 

knowledge. This is one of the potential advantages of the 

Bayesian methods. Therefore, it is expected that the 

Bayesian method will do better than the classical 

procedures when the data contain little information 

about the parameters of interest. Moreover, the Bayesian 

method implicitly account for the uncertainty about the 

values at the parameters of interest. 

Finally, we can conclude that the Bayesian method of 

estimation using the Gibbs sampling approach is suitable 

for estimating the unknown parameters under a full 

factorial Randomized Block Design (RBD) with two 

three-level treatment factors as compared to traditional 

methods, particularly for small sample data sets. It is also 

feasible computationally and appears to give much more 

sensible answer to the inferential problems than 

likelihood-based estimation methods. Indeed, we have 

maintained that Bayesian inference has some important 

practical advantages in analyzing field experiments. For 

example, the results are easier to interpret, particularly 

in ranking and selection of animals for next generations 

and when communicating with non-statisticians; the 

results from previous experiments can be incorporated 

in a rather natural manner into the prior for treatments 

or varieties in a subsequent trial, and there seems more 

freedom in using MCMC methods to analyze reasonably 

realistic formulations and to address model uncertainty. 

 

5. Conclusion 
It is also clear from our study that Bayesian method to 

agricultural experiments is a very rich and useful tool. It 

provides in depth study of different features of the data 

which are otherwise hidden and cannot be explored 

using other techniques. Moreover, SAS software has a 

power and efficiency to deal with the numerical as well 

as graphical features of data sets from agricultural 

experiments. Our Bayesian method uses Markov chain 

Monte Carlo (MCMC) approach and conjugate priors and 

balanced data. Simulating from full conditionals can also 

be easily done for the analysis of unbalanced data with 

possibly nonconjugate priors using the SAS PROC MCMC 

codes presented here, without leading one to consider 

alternative Markov chain Monte Carlo schemes. 
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