A Note on Fano Configurations in the Projective Space PG(5,2)

Ziya Akça1* and Abdilkadir Altıntaş1

1*Eskişehir Osmangazi University, Faculty of Science and Letters, Department of Mathematics and Computer Science, 26480 Eskişehir, Turkey.

*Corresponding author

Abstract

Let \(n \geq 2 \) and let \(U_j \mid j \in J \), with \(|J| = n^2 + n + 1 \), be a set of disjoint subspaces (of the same dimension) of some finite projective space \(PG(N,q) \) with the property that the number of such subspaces in the span of any two such subspaces is always \(n+1 \) and the intersection of any two different such spans is always a subspace \(U_j \) (so we have a projective plane of order \(n \) with point set \(U_j \mid j \in J \)). In this work we search for Fano configurations in \(PG(5,2) \) whose lines are 3-spaces and points are lines.

Keywords: Projective spaces; Fano Plane; Fano Axiom

2010 Mathematics Subject Classification: Projective spaces; Fano Plane; Fano Axiom

1. Introduction

The smallest example of a projective plane is the Fano projective plane over the field \(GF(2) \). It is denoted by \(PG(2, 2) \). It is known that it has seven points and seven lines, and every line has exactly three points. Hence the Fano plane consists of the points \((1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1) \) and \((1,1,1) \).

In finite geometry, \(PG(3,2) \) is the smallest three-dimensional the projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. It also has the following properties:

- Each point is contained in 7 lines and 7 planes.
- Each line is contained in 3 planes and contains 3 points.
- Each plane contains 7 points and 7 lines.
- Each plane is isomorphic to the Fano plane.
- Every pair of distinct planes intersect in a line.

A line and a plane not containing the line intersect in exactly one point.

Some configurations in the projective spaces are worked in [1-8].

Let \(n \geq 2 \) and let \(U_j \mid j \in J \), with \(|J| = n^2 + n + 1 \), be a set of disjoint subspaces (of the same dimension) of some finite the projective space \(PG(N,q) \) with the property that the number of such subspaces in the span of any two such subspaces is always \(n+1 \) and the intersection of any two different such span is always a subspace \(U_j \) (so we have a projective plane of order \(n \) with point set \(U_j \mid j \in J \)).

We construct a projective plane \(PG(2,2) \) in the projective space \(PG(5,2) \) with four skew lines in \(PG(5,2) \). We start with three theorems and we give a main result.

Theorem 1.1. Let \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4 \) be four skew lines in the projective space \(PG(5,2) \) as in the list:

\[
\begin{align*}
\mathcal{L}_1 &= \{(1,0,0,0,0,0),(0,1,0,0,0,0),(1,1,0,0,0,0)\} \\
\mathcal{L}_2 &= \{(0,0,1,0,0,0),(0,0,0,1,0,0),(0,0,0,1,0,0)\} \\
\mathcal{L}_3 &= \{(0,0,0,0,1,0),(0,0,0,0,0,1),(0,0,0,0,0,1)\} \\
\mathcal{L}_4 &= \{(1,0,1,0,1,0),(0,1,0,1,1,1),(1,1,1,1,1,0)\}
\end{align*}
\]

It’s possible to construct Fano plane in the projective space \(PG(5,2) \) such that lines are projective 3-spaces and points are lines of the the projective space \(PG(5,2) \).

Proof. Since \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) are disjoint lines in \(PG(5,2) \) they span a 3-space in \(PG(5,2) \). \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) span the projective 3-space \(\mathcal{L}_1 = \{a_1,b_1,c_1,d_1,e_1,f_1\} \), \(a_1 = 0, b_1 = 0, c_1 = 0, d_1 = 0 \). We can write \(\mathcal{L}_1 = \{0,0,0,0,e_1,f_1\} \). \(\mathcal{L}_3 \) and \(\mathcal{L}_4 \) are disjoint lines in \(PG(5,2) \).
Theorem 1.2. Let \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4 \) be skew lines in the projective space \(PG(5,2) \) as in the list:

\[
\begin{align*}
\mathcal{L}_1 &= \{(0,0,1,0,1,0), (0,1,0,1,0,0), (0,1,1,1,0,0)\} \\
\mathcal{L}_2 &= \{(0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,1,1,0,0)\} \\
\mathcal{L}_3 &= \{(0,0,0,1,0), (0,0,0,0,0,1), (0,0,0,0,1,1)\} \\
\mathcal{L}_4 &= \{(0,0,1,1,1,0), (1,0,1,1,0,1), (1,1,0,1,1,0)\}
\end{align*}
\]

It's possible to construct Fano plane in the projective space \(PG(5,2) \) such that lines are projective 3-spaces and points are the lines of the projective space \(PG(5,2) \).

Proof. Similar arguments work in Theorem 1.1.

\begin{proof}

Let \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4 \) be skew lines in the projective space \(PG(5,2) \) as in the list:

\[
\begin{align*}
\mathcal{L}_1 &= \{(0,0,1,0,1,0), (0,1,0,1,0,0), (0,1,1,1,1,0)\} \\
\mathcal{L}_2 &= \{(0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,1,1,0,0)\} \\
\mathcal{L}_3 &= \{(0,0,0,1,0), (0,0,0,0,0,1), (0,0,0,0,1,1)\} \\
\mathcal{L}_4 &= \{(0,0,1,1,1,0), (1,0,1,1,0,1), (1,1,0,1,1,0)\}
\end{align*}
\]

It's not possible to construct Fano plane in the projective space \(PG(5,2) \) such that lines are projective 3-spaces and points are the lines of the projective space \(PG(5,2) \).

\begin{proof}

Since \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) are disjoint lines in \(PG(5,2) \) they span a 3-space in \(PG(5,2) \). \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) spans 3-space \(\mathcal{F}_1 = [a_1, b_1, c_1, d_1, e_1, f_1] \), \(e_1 = 0, e_1 = 0, f_1 = 0, b_1 = d_1 \). We can write 3-space \(\mathcal{F}_1 = [a_1, b_1, 0, b_1, 0, 0] \). \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) are disjoint lines in \(PG(5,2) \) they span a 3-space in \(PG(5,2) \). \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) spans 3-space \(\mathcal{F}_2 = [a_2, b_2, c_2, d_2, e_2, f_2] \), \(a_2 = 0, d_2 = 0, e_2 = 0, f_2 = 0 \). We can write 3-space \(\mathcal{F}_2 = [0, b_2, 0, 0, 0, 0] \).

\[\mathcal{L}_5 = \mathcal{L}_1 \cap \mathcal{L}_2 = \{(0,0,0,0,0,1), (0,0,0,0,1,0), (0,0,0,0,1,1)\}\]

But \(\mathcal{L}_5 \) and \(\mathcal{L}_4 \) are not skew lines. They have the intersection point \((0,0,0,0,1,1)\), hence \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4 \) in \(PG(5,2) \) don't generate a projective plane in \(PG(5,2) \).

2. Conclusion

Theorem 1.3 shows that it's not always possible to construct Fano configuration in the projective space \(PG(5,2) \) with four skew lines. To construct Fano configuration in the projective space \(PG(5,2) \) we must have extra condition: Let \(PG(5,2) \) be a 5-dimensional the projective space over GF(2). Let \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4 \) be the set of four skew lines in \(PG(5,2) \). \(P_i, j = 1, 2, 3 \) be the points of \(\mathcal{L}_1 \). Similarly \(P_i, j = 1, 2, 3 \) be the points of \(\mathcal{L}_2 \) and \(P_i, j = 1, 2, 3 \) be the points of \(\mathcal{L}_3 \). Additionally, any four points \(P_i, j = 1, 2, 3 \) be the points of \(\mathcal{L}_4 \). Now we can define the geometry \(U \) in \(PG(5,2) \) as follows: the points of \(U \) are the elements of \(\mathcal{L} = \{ \mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4 \} \) and the elements of \(\mathcal{L} = \{ \mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4 \} \) its lines such that the 3-dimensional subspaces spanned by any two distinct elements of \(\mathcal{L} \).
Acknowledgments

This work was supported by the Scientific Research Projects Commission of Eskişehir Osmangazi University under Project Number 2019-2542.

References