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Abstract
This study examines the mathematical characteristics of the logistic, the generalized logistic and the Gompertz 
growth function used in human population analysis. When a population growth is mathematically modeled, it starts 
with differential equations considered as a preliminary study. Then, a general solution equation is derived. This is the 
method followed by the mathematicians who developed these models. To prepare for the study, I used the framework 
of the objectives and adhered to the resources and approaches outlined by mathematicians who developed the growth 
function. In addition, I wanted to evaluate the methodologies that remain valid in contemporary applications using the 
current perspectives. Mathematician and actuary Benjamin Gompertz developed the first survivors’ function in 1825 
which was used later as a population growth function while systematizing life tables. In his three published articles, the 
mathematician Pierre-François Verhulst developed a logistic human population growth function based on his economic 
analysis. In addition, he searched for test opportunities using the limited population statistics of France, Belgium, England, 
the USA, and Russia. Contemporary authors Richards and, ‘Ricketts and Head’ made very invaluable contributions to 
logistic growth function.

Keywords
Verhulst logistic function, Gompertz growth function, Generalized logistic growth function, Differential equations of 
Growth functions

This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License

http://orcid.org/0000-0003-2841-5964


Ekoist: Journal of Econometrics and Statistics

74

1. Introduction
This study examines the mathematical properties (including the historical 

development) of the Verhulst (logistic) growth function, generalized logistic growth 
function, and Gompertz growth function used in human population analysis. I have 
emphasized the properties of mathematical functions based on the analysis of the 
development of the human population only. Although there are a large number 
of growth functions, here I have included those that I have achieved successful 
application results in my previous statistical studies (İskender 2018 & 2019). 
Another point we take into account is that the authors of the growth functions that 
I examined used extensive statistical data to prove their theory. As an economist 
and statistician, this point impressed me, and I have felt close to these authors. 
Growth of human population is an important subject matter of economic sciences, 
for example as explained by Malthus and Verhulst more than two centuries ago. 
Many functions have been developed outside the human population for the analysis 
of biomedical sciences, botanical, and zoological events and communities; however, 
these disciplines are completely outside the scope of this article even if the logistic 
and Gompertz functions are used by authors in these fields very frequently.

When a population growth is modeled, it starts with differential equations that 
can be characterized as a preliminary study, and the derivation of a general solution 
equation is found. This is the method followed by the early mathematicians who 
developed these models. The resulting general solution equation is applied to the 
population data with statistical software and parameters, and other related findings 
of the equation are determined. In the final stage, it is possible to make predictions 
using these functions. The practice and predictions of statistical applications will not 
be covered in this article.

Based on the above objectives and using the resources and approaches of the 
mathematicians who developed growth functions, I evaluated the methodologies 
that remain valid until today in the contemporary works. Also, I took advantage of 
the approaches of the subsequent authors who contributed to the growth problem. 
I considered bringing together the perspectives of the mathematicians who were 
pioneers in the research area with today’s advanced statistical applications as applied 
in my previous works (İskender, 2018, 2019). In the meantime, I wanted to investigate 
the problems in the process of their historical development. Therefore, I started first 
by determining the differential equations and included research by Verhulst and 
Gompertz who had been ignored in the past and the contributions of whom had not 
been considered for over a century, yet still valid.

In the framework described above, the three articles of Verhulst (1838, 1845, 1847), 
allometric coefficient (1/v) of Richards (1959), second curvature with weight function 
of ‘Ricketts and Head’ (1999) that I see as main contributions will be discussed for 
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the logistic growth function. Also, the theoretical introduction of Gompertz’s (1825) 
article and Sprague’s (1861) explanations for the Gompertz differential to general 
solution equation for Gompertz growth function and of course addition of lower 
asymptote (L) for both Verhulst’s and Gompertz’s function will be next discussion 
subjects. Although there are many other growth function studies, none of them will 
be subject to review here.

2. Logistic Growth Function of Verhulst
The articles on population written by the Belgian professor of mathematics Pierre- 

François Verhulst (1804–1849) are “Notice on the Law That the Population Follows 
in Its Increase” (1838), “Mathematical Researches on the Law of Population Growth” 
(1845) and “Second Work on the Population Growth Law” (1847), respectively 
(Verhulst, 1838, 1845, and 1847). Verhulst described his function as logistic, and he 
named exponential curve as logarithmic. From the twentieth century onward, there 
has been a revival of interest in long- forgotten writings of him; subsequently, the 
function was called logistic and have been used until today. When I consider the titles 
that I provide above and the article contents, I should also need to qualify the function 
as mathematical population growth law. I understand that Verhulst developed and 
used the word “logistic” to mean “meets geographical and environmental conditions 
and constraints”. I also believe that the word logistic is used in comparison with (pro-
rata) Malthus’s “logarithmic” curve.

When Verhulst begins working on the progress of population, his approach in the 
first sentence of his article written in 1845 defines the basis of event from a political 
economy point of view: 

“Of all the problems that political economy offers to the meditations of philosophers, 
one of the most interesting is, without a doubt, the knowledge of the law that regulates 
the progress of the population. To solve it accurately, one would have to be able to app-
reciate the influence of the numerous causes that prevent or promote the multiplication 
of the human species.” (Verhulst, 1845, p. 3)

Mathematician Verhulst also had the qualification of an economist like Malthus. 
Although he is a professor of mathematics, he also has extensive knowledge of 
his contemporary sciences. In addition, it is understood from the sentence that the 
progression of population is an issue that philosophers should consider in their work. 
Being a philosopher means being familiar with many disciplines in Verhulst’s age. In 
his three articles on the population, Verhulst is understood to be an economist firstly. 
After that, like today’s methods, mathematics and statistics will come into play in 
proving and solving the proposed economic problem. Three of his four published 
articles are on the human population and statistics, and one is on mathematics.
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When his friend Mr. Quetelet requested him to write an article on human population 
growth for his book Mathematics and Physics Correspondence, Verhulst complied; 
he began his article with Malthus’s human population analysis and continued with 
population growth/scarce resources approach of economic theory, he wrote:

“It is known that the famous Malthus has established as a principle that the human po-
pulation tends to grow in geometric progression, so as to double after a certain period, 
e.g., every twenty-five years. This proposal is indisputable, apart from the ever-incre-
asing difficulty of obtaining subsistence when the population has acquired a degree of 
agglomeration, or the resources that the population draws from its growth, even when 
society is still in its infancy, such as a greater division of labor the existence of regular 
government and defenses that ensure public tranquility, etc.” (Verhulst, 1838, p. 113)

Verhulst, believed that the population will face scarce resources with development, 
he also highlighted the restrictive effect of public burden on the economic development 
of society in the early stages of development. The first finding of Verhulst is the well-
known population and limited resources dilemma of economic analysis. The field of 
economics would possibly need another hundred years to address this issue.

The second phase of his economic analysis is the law of diminishing returns and 
population relationship. Each increase has a limit. He wrote as follows:

“In our old European societies, where fertile [productive] land has been cultivated for a 
long time, the work of improving land already in cultivation can only add to its products 
ever-decreasing quantities; admitting that, in the first twenty-five years, the soil product 
has been doubled, in the second period only the second period may be able to produce an 
extra third. The virtual increase in population thus finds a limit in the extent and fertility 
of the country, and the population tend, therefore, more and more to become stationary.” 
(Verhulst, 1838, p. 113)

Although the country has the potential to create new population growth through 
foreign trade when its facilities are used to the fullest, this is limited, and the maximum 
rule of population growth needs to be adhered to, as stated below-quoted text: 

“There is a limit to the growth of that population to the extent permitted by the land that 
meets the need for a population’s housing. The fact is that when a population consumes 
the cultivation opportunities of land, it can gain reciprocal responses from other count-
ries and a new increase in population. But it is clear that these imports will have limits, 
this situation can happen even long before all the areas of the country are reached. The-
refore, all formulas that will try to represent the laws of the population must accept the 
requirement that maximum can be reached in an extremely distant period. This maximum 
will be a population that has become stable.” (Verhulst, 1838, pp. 114–115)
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When I evaluate the quotes, it is obvious that Verhulst based his analysis on an 
economic thought: Certain factors limit the infinite increase rule. Once he established 
the Mathematical Population Theory, the statistician Verhulst performed application 
studies as well1. In Verhulst, economics, mathematics, and statistics coexisted. 
However, unlike Malthus’s population research that has been used in every stage of 
economic history to date, Verhulst’s research has not been applied to social sciences 
until the twentieth century or even twenty-first century. In one sense, Verhulst has not 
yet taken his rightful place, especially in the literature of economics and statistics. 
Blaug (1978, pp. 69–79), the contemporary writer of economics, does not mention 
Verhulst when describing Malthus on population theory section of his book.

The mathematical model that Verhulst developed about two hundred years ago 
carried the same principles as the basis of contemporary approaches, and the basis 
of the approach has been preserved to date by subsequent writers. The population 
growth model can be expressed as the difference between the population increase and 
decrease. Births and deaths are in an organic relationship with the current population; 
therefore, I can express the increase and decrease in the death and birth rates as a 
function of the population. Relationships, such as births/population = f(population) 
and deaths/population = f(population) (f: function), lie between the ratios and the 
absolute numbers. Assuming that these relationships are linear for simplicity, I may 
define the following functional expressions:

Figure 1. Sample Birth and Death Functions

1 Verhulst writes: “I have been trying for a long time to determine by analysis, the probable law of the 
population; but I have abandoned this kind of research, because there is too little observational data for the 
formulas to be verified, so as not to leave any doubt as to their accuracy.” (Verhulst, 1838, p. 115). He is 
well aware of the limited quality of data that he used.
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The death rate (d) and the birth rate (b) can be written as a linear function of the 
population (p)2 as follows3:

                                          (1)

                                           (2)

where d0, a, b0, and c are constants:

The death rate is an increasing function of the population and increases in parallel 
with the population growth starting (at least) at d0. The coefficient (slope) that 
determines the increment rate is a. Due to limited resources,4 the factors detrimental 
to population growth gain in strength and limit the growth. The birth rate is a 
decreasing function of the population. It starts to decline from the highest level of b0. 
The coefficient (negative slope) that determines the decrease rate is c. The population 
reaches its highest level at the intersection point of the two curves.

If I define the change in population as the difference between the births and deaths, 
the differential equation of the model can be given as follows:

                                              
(3)

                                
(4)

where p is the population, and t is the time.

By replacing the definitions of m = b0 - d0 and n = c + a and making necessary 
arrangements, the differential equation can be given as follows:

                                 
(5)

                                 
(6)

                                            
(7)

2 I am tracking Verhulst’s notation.
3 Equation order numbers are in parantheses. 
4 Verhulst says that Quetelet, who was a mathematician, faculty member, and his colleague, was thinking 

that these forces were inversely proportional to the square of the population multiplied by the sum of the 
gradients of the birth and mortality functions (). Verhulst’s differential equation is also built on this idea. 
(Verhulst, 1838)



İskender / Mathematical Study of the Verhulst and Gompertz Growth Functions and Their Contemporary Applications

79

In this way, I obtained the differential equation of Verhulst. The parameter m is the 
difference between the maximum birth rate and minimum mortality rate at zero time. 
It also specifies the difference between the intrinsic growth rate of the differential 
equation and the solution equation. The two curves intersect at the point where the 
maximum population is .

If I integrate the differential equation5

                              
(8)

and substitute the initial values as t = 0 and p = p0 (the initial point of the 
population), I have

                    
(9)

If I solve for p, then I obtain the Verhulst6 logistic function as follows:

                                    
(10)

For  In Verhulst’s notation lower-case p is the current 
population. When 

Dividing the numerator and denominator of (10) by n and instead of lower-case 
(p) substituting upper-case P = m/n yields a logistic population growth function that 
contains the upper limit of the population as P.

                                        
(11)

Verhulst first emphasized that the factors that slow down the population growth are 
an unknown of p. Then, the function of φ(p) was used as the simplest hypothesis in 
his article. He assumed that the appropriate provision was φ(p) = np2. Verhulst stated 
that he had also tried the below-given functions and population figures calculated 
from these functions, and the census results were approximately the same:

5 All the logarithmic expressions in our article are e-based natural logarithms, unless otherwise stated.
6 There are no solution details of the differential equation in the article written by Verhulst in 1838. Verhulst 

uses p' for the initial point of population instead of p0.
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The results of the main solution equations that I have calculated according to these 
four alternatives differ from one another. It is impossible to say that the estimated 
values calculated by each function give appropriate and close results with the actual 
observation values. Verhulst might have been expressing the idea that predictions 
calculated with the term of φ(p) = np2 were almost the same as the actual observation 
values.

When I take the death function as φ(p) = np1 and solve the differential equation, 
the solution equation was found to be P = P0e

t(m-n). This form is the well-known 
exponential growth function. Verhulst did not mention this simple exponential case 
in his writing. Replacing the term of death as φ(p) = np2 in the equation, I obtained 
the growth function of (11). When the growth function is replaced by φ(p) = np3, I 
obtained two solution equations and when y φ(p) = np4, I obtained three solution 
equations but two of them contains imaginary numbers.

Verhulst reached a solution by defining the upper limit P of the population as the 
upper asymptote in his mathematical model. In the application of growth models 
with statistics, there is a need for defining the lower asymptote and including it in the 
model. Researchers, Paine et al. (2012) have used mathematical models, including 
the lower asymptote level (L). I also preferred the use of two asymptote models in 
my previous studies (İskender, 2018, 2019) because of the possibilities provided by 
these models. 

I define the following variables: 

Y  Population, dependent variable,
t  Time, explanatory variable,
T  Base year7,
K  Upper asymptote, at most level of population
L  Lower asymptote, at least level of population
p0 = Y0 Initial population,
m = r  Intrinsic rate of growth,
p = Y - L  Difference between the current population level and lower 

asymptote,
P = K - L  Difference between the upper and lower asymptotes,

7 T and t were used differently. T is the base year, and t is time, explanatory variable.
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Substituting these variables in (11), yields

                                
(12)

Dividing the numerator and denominator by Y0e
r(t-T), I obtain

                                      
(13)

If I define and replace , I obtain the final growth function as follows:

                                        
(14)

or as:

                                     
(15)

Here, Y is the population (a dependent variable), and t is the time (an explanatory 
variable) indexed with the base year T. The logistic function is a mathematical growth 
function with two variables, four parameters K, L, Q, and r are to be estimated and 
has a nonlinear structure. The non-linearity definition of the function refers to the 
structure in which other parameters are found in the derivative equations when the 
partial derivatives of the function are taken according to each parameter successively. 

There are no four separate simultaneous functions at hand to determine the four 
parameters. Therefore, a statistical analysis of nonlinear functions requires special 
software that contains convergence criterion and the iteratively weighted least-
squares estimation. NLIN procedure of SAS® Studio software provides linearity 
tests in addition to known (standard errors, F-test etc.) statistical tests: Hougaard’s 
skewness, Box’s bias test and Ratkovsky’s global nonlinearity measures are among 
them. For details of nonlinearity and references see (Gebremariam, 2014; SAS 
Institute Inc., 2017, 2018). 

According to SAS/STAT® 14.3 User’s Guide:

“The NLIN procedure fits nonlinear regression models and estimates the parameters 
by nonlinear least squares or weighted nonlinear least squares… Estimating parameters 
in a nonlinear model is an iterative process that commences from starting values. You 
need to declare the parameters in your model and supply their initial values for the 
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NLIN procedure…Nonlinear least-squares estimation involves finding those values in 
the parameter space that minimize the (weighted) residual sum of squares.” (SAS Ins-
titute Inc., 2017, p. 6616)

The summary description I give just above regarding the statistical application of 
logistic function also applies to generalized form of logistic and Gompertz functions.

Allen8 (1969, p. 419) prefers to use the differential equation based on upper limit 
value of population (K) for the solution equation of the logistic function. To do this, 
I write the differential equation of Verhulst as follows:

and replace the definitions K = m / n, m = r and p = Y

                                           
(16)

I re-write the equation as follows:

                                           
(17)

Integrating both sides:

                                    
(18)

I can write the left-hand side of (17) according to the partial fraction method as 
follows:

   
(19)

8 British economist, statistician and mathematician Sir Roy G. D. Allen lived between 1906-1983, was 
lecturer at the London School of Economics and wrote many books on mathematical economics.
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Therefore,

                                     
(20)

After rearranging and replacing Q = e-C (an arbitrary constant), I obtain

                                 
(21)

and reach the following logistic equation:

                                             
(22)

With the addition of the lower asymptote L and the base year T, I obtain (15) as 
solution equation.

The mathematical properties that are useful for the population analysis of the 
Verhulst logistics growth function are as follows: 

Logistic function of Verhulst:

                                   
(23)

The first derivative of the function shows the absolute growth (that is the change 
increase or decrease) in years:

                       
(24)

I calculate the relative growth rate or the annual average growth, by dividing the 
first derivative figure with the value of the function:

         

(25)

The second derivative of the function is used to calculate the inflection points of 
the curve and to monitor changes in the absolute growth:

    
(26)
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Time inflection point of the function: When the second derivative is equated to 
zero and solved for (t), I determine the inflection point of time as follows:

                                           
(27)

or

 
                                          

(28)

If I replace the time inflection point in (23), I find the population figure in the 
middle of the logistic function as follows between the lower and upper asymptotes:

                                                     
(29)

The logistic function has a symmetrical structure. It has a turning point in the 
middle of the curve. At this point, the relative growth is at the highest level. The 
logistic curve also brings some problems with its symmetrical structure. Thus, when 
the function is symmetrical, the course of the first and second half of the curve follows 
the concave/convex frame. If the actual figures of the analyzed population are not 
close to a symmetrical structure, then the ability to represent the logistics curve is 
decreased. The authors who noticed this problem have developed the methods that I 
will consider in section 3.

 

The differential equation of (15) with the upper and lower asymptotes is as follows:

                             
(30)

3. Generalized Logistic Growth Function

3.1. First Development
The logistic growth function was developed by writers in the twentieth century 

while expanding the application areas and new requirements. The first of these 
developments was seen in the article of Richards F. J., (1959). Here, the author 
proposed that 1/v (1/(1-m) in his manuscript) be located at the denominator exponent 
of the logistic function.

As the title of the Richards F. J., (1959) article suggests, the variable v provides 
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flexibility to the predicted dependent variable of the function and increases the 
compliance of the curve to the actual data. The authors specified v as the “allometric 
coefficient.” When v = 1, it becomes the logistic growth function of (15). A logistic 
function given in the form of (31) is called a “Richards logistics function or curve”.

Function:

                                      
(31)

First derivative of the function:

       
(32)

Annual average growth (or relative growth rate); the first derivative is divided by 
the function:

           

(33)

Second derivative of the function:

 
(34)

Time inflection point of the function is as follows: 

                                         
(35)

I find population figure equivalence of the inflection point as follows:

                                 
(36)

The structure of the curve is asymmetrical. Y is not equivalent to (K + L)/2. The 
flexibility of adaptability is high because v affects the formula. Therefore, it is quite 
different from the logistic curve. 
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The differential equation of the logistic growth function which is based on (v) 
parameter and the details of obtaining the solution equation may be found in Heinen 
(1999) and Skiadas (2010).

3.2. Second Development
The second important modification of the logistic growth function was the 

application of authors Ricketts and Head (1999). The aim is to strengthen the 
asymmetric structure of the logistic function.

The authors separated Q (i.e., starting value, multiplier of (e) base of the growth 
function) into two multipliers Q1 and Q2. Also, the weighting function as weighted 
with the harmonic mean Q1 and Q2 of was included in the equation defining ft for Q1 
and (1 - ft)  for Q2. They made the symmetry of the logistic function asymmetrical. 
The Qe-r(t-T) term of the logistic equation is as follows in the generalized logistic 
growth function:

           
(37)

When Q1 becomes equal to Q2, I obtain a simple logistic function. However, the 
authors made a different application by changing the location of some parameters as 
required by the nature of the medical event that they examined. In their study, they 
took the logistic growth function of (15) as their base; there was no 1/v parameter in 
its denominator (See İskender, 2018 for details).

They also applied the weighting function of (41) to the coefficients in the 
denominator of logistic function. It “defines a logistic weighting function varying 
smoothly between 0 and 1” (Ricketts & Head, 1999, p. R444).

Let Y be the population (dependent variable) and t be the time (explanatory 
variable) indexed with the base year T. The generalized logistic growth function is 
a mathematical function with two variables and six parameters (K, L, Q1, Q2, r, v); 
this function has a nonlinear structure. The various mathematical properties of the 
functions are as follows:

Generalized logistic growth function:

                         
(38)

Coefficients:

                                       (39)
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                                           (40)

Weighting function:

                                     
(41)

Harmonic mean:

                                              
(42)

If I write the functions of (38) – (42) together, the generalized logistic function 
takes the following broad and detailed form9:

    
(43)

The weight function, allometric coefficient v and separation of Q into two multipliers 
as Q1 and Q2. overcome the constraints imposed by the symmetry event and to better 
reflect the asymmetrical nature of the data; therefore, the inflection point was not in 
the middle of the curve. The flexibility of this function is as much an advantage as 
it is, one and most important drawback is the increase in the number of parameters 
to be estimated by two more. Difficulties of estimating of the increased number of 
parameters are felt during the computer software application. In summary; I defined 
the logistic population growth function as the generalized logistics growth function 
based on changes; (i) addition of lower asymptote (L), (ii) the addition of the allometric 
coefficient (1/v), (iii) the separation of the coefficient (Q) of base (e) into two (as Q1 and 
Q2), (iv) the inclusion of the weighting function f(t-T) in the denominator of equation.

Although the computer outputs of the mathematical properties of the generalized 
logistic function (43), like first derivative, relative growth rate and second derivative 
formulas etc. are easily available but voluminous, I have not included them here to 
keep this article short.

4. Gompertz’s Survivors Function or Population Growth  
Function of Gompertz

In the first quarter of the 19th century, the British, self-educated, mathematician 
and actuary Benjamin Gompertz (1779-1865), in his work on the mortality tables, 
9 It is more convenient to use the above partitioned equations (38)-(42) in computer software, such as SAS 

Studio Software, Microsoft Excel, and so on. For applications of a wide range of functions including 
growth functions in the SAS environment, see (Sit & Poulin-Costello, 1994).
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made the following assertions. This excerpt is taken from Gompertz’s article of 1825, 
as it was without any changes, and reflects the writing style of that period:

“I now call the reader’s attention to a law observable in the tables of mortality, for equal 
intervals of long periods; and adopting the notation of my former paper, considering 
Lx to express the number of living at the age x, and using λ for the characteristic of the 
common logarithm; that is, denoting by λ(Lx) the common logarithm of the number 
of persons living at the age of x, whatever x may be, I observe that if λ(Lx) - λ(Ln+m), 
λ(Ln+m) - λ(Ln+2m), λ(Ln+m) - λ(Ln+3m), &c. be all the same; that is to say, if the differences 
of the logarithms of the living at the ages n, n+m; n+m, n+2m; n+m, n+3m; &c. be 
constant, then will the numbers of living corresponding to those ages form a geometrical 
progression; this be the fundamental principle of logarithms. This law of geometrical 
progression pervades, in an approximate degree, large portions of different tables of 
mortality.” (Gompertz, 1825, p. 514)

In the life tables, the sample population (cohort size), which is a certain value 
at the age of zero, will change because of deaths10. The changes in the sample 
population are equal to the rate of mortality multiplied by the initial population 
volume. According to Gompertz’s observations, the sample population series will 
change geometrically by age; that is the essence of the assumption. The change will 
be geometrical; therefore, it is possible to determine this change in a mathematical 
form. But geometric progression in life tables applies to both survivors and deaths. A 
geometric decrease is seen in survivors, and a geometric increase is seen in deceased 
persons.

In his study, Gompertz based his observation on the fact that when the differences of 
logarithms of the survivors’ figures are arranged equally, the number of survivors by 
age (which coincide with these equal intervals) would indicate a geometric decrease. 
In his calculations on four life tables that he analyzed, the number of survivors in the 
life table decreased geometrically when the logarithms of the survivors’ figures in 
the life table were ordered at equal intervals. To explain our goal diagrammatically, 
I drew the graph shown in Figure 2 from the Northampton life table in Gompertz’s 
article. The chart shows the equidistant logarithmic values of the population on the 
vertical axis, and the population quantities corresponding to these values are on 
the horizontal axis. A visual examination of the chart shows that the curve has a 
geometric progression. 

10 See İskender (2019) for a detailed application and perfect combination of Gompertz curve and Richards 
logistic curve with Turkish life tables data of 2015 and explanations of life tables generally.
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Figure 2. Life Table Graph of Northampton
Note: Compiled from Northampton life table of Gompertz, 1825

Starting with the assumption that logarithmic differences are constant, I 
determine the age and population sequences that coincide with these fixed 
intervals in life tables, which is a very labor-intensive task. The ages that coincide 
with equal logarithmic intervals will be determined by trial and error. Even if 
the equality of the logarithmic differences in the middle-age groups of the life 
tables occurs as expected, this rule can deviate at the upper-end and lower-end 
regions of the curve. The life tables examined by Gompertz generally covered 
the population between the ages of 10–60 years. Those were the some additional 
problems that complicate Gompertz’s research.

For a more precise approach, I rearranged the Northampton mortality table as a 
pivot table (table 1) and a graph (figure 3). I have specified equal age intervals on 
the horizontal axis of the figure and the natural logarithms of equal age intervals of 
survivors on the vertical axis. When the table and graph are examined, as the equal 
age intervals on the horizontal axis increase, the logarithmic differences in the vertical 
axis also increase in geometric order; this means that the number of survivors decrease 
rapidly. The increase in the logarithm numbers of the equal age intervals suggest that 
the number of deaths increase geometrically. Here, the decisive explanatory variable 
is the age progression. A geometric decrease in the survivors’ figures also means a 
geometric increase in the number of deaths. Therefore, the Gompertz function can 
also be defined and evaluated as a growth function (Winsor, 1932)\”On the Nature of 
the Function Ex- pressive of the Law of Human Mortality,\” in which he showed that 
\”if the average exhaustions of a man’s power to avoid death were such that at the 
end of equal infinitely small intervals of time, he lost equal portions of his remaining 
power to oppose destruction,\” then the number of sur- vivors at any age x would be 
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given by the equation LX = kge (1. However, I aim to follow the first explanation of 
the growth function herein through the descending series of life tables.

Table 1
Northampton Mortality Table of Gompertz (Summary)11

Age Survivors Logarithms of  
Survivors

Logarithmic Differences  
(Five-year)

Logarithmic Differences 
(Ten-year)

15 5423 3.73424  
20 5102 3.70774 -0.02650  
25 4762 3.67779 -0.02995  
30 4403 3.64375 -0.03404 -0.06399
35 4021 3.60433 -0.03941  
40 3630 3.55991 -0.04443 -0.08384
45 3235 3.50987 -0.05003  
50 2831 3.45194 -0.05793 -0.10797
55 2436 3.38668 -0.06526  
60 2052 3.31218 -0.07450 -0.13976
Note: Compiled from Northampton mortality table of Gompertz, (1825).

The Northampton pivot table12 and the graph I have arranged reveal a summary of 
the theory. In the population analysis, I explain using logarithmic scales because I am 
interested in proportional changes, not absolute changes (Allen, 1969, pp. 220–221, 
246). In the table and graph, the geometrical growth of the differences between the 
logarithms of the surviving population according to equal age intervals requires the 
study of the m, mp, mp2, mp3, which is based on a differential equation of the series 
of structures. 

In the first part of Gompertz’s article, the solution of the differential equation 
was based on logarithmic calculations, although the basis of the assumption was a 
geometric series. In the second presentation, Gompertz followed a method that was 
directly based on a geometric series for solving the differential equation.

11 I use dot to separate the decimal places in my article.
12 Gompertz supported his theoretical model by working on the four life tables: Northampton, Deparcieux, 

Sweden, and Carlisle. Last three tables whose graphs are not shown in this article also show curves similar 
to that of the Northampton table.
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Figure 3. Graph of Northampton Table (Ten-year basis)

4.1. Basic Solution of Gompertz
In his first approach, Gompertz gives the solution of the differential equation in 

six steps of logarithmic definitions. This excerpt is taken from Gompertz’s article of 
1825, as it was, without any changes, and reflects the writing style of that period. As 
I explained below, it carries many printing errors. (The equation order numbers in the 
circles mine)

“If the average exhaustions of a man’s power to avoid death were such that at the end 
of equal infinitely small intervals of time, he lost equal portions of his remaining power 
to oppose destruction which he had at the commencement of those intervals, then at the 
age x his power to avoid death, or the intensity of his mortality might be denoted by aqx, 
a and q being constant quantities; and ① if Lx be the number of living at the age x, we 
shall have aLx × qx . ẋ for the fluxion of the number of deaths=-(Lx); ②⸫ abqx = , ③ 
⸫ abqx =- hyp. log. of b × hyp. log. of Lx, and ④ putting the common logarithm of × 
square of the hyperbolic logarithm of 10=c, ⑤ we have c.qx = common logarithm of 
; d being a constant quantity, and ⑥ therefore Lx or the number of persons living at the 
age of x = d.g⅂qx; g being put for the number whose common logarithm is c. The reader 
should be aware that I mean g⅂qx to represent g raised to the power gx and not gq raised to 
the x power; which latter I should have expressed by g⅂qx, and which would evidently be 
equal to gqx. I take this opportunity to make this observation, as algebraists are someti-
mes not sufficiently precise in their notation of exponentials”13 (Gompertz, 1825, p. 518)

The first sentence describes the two dimensions of the assumption, that is, the 
power to avoid death (survivors) and the remaining power to oppose destruction or 
13 The x 's in the excerpt refer to multiply and x to age of survivors. Three triangle dots (⸫) mean ‘therefore’. 

Fluxion: derivative. Hyp. log.: natural logarithm.
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the rate of approach to the end (deaths). The function expresses both states: survivals 
and fatalities. In other words, the curve represents a series that is both decreasing 
and ascending, depending on whether the sign is negative or positive. However, it 
is painful for mathematicians to follow and understand the explanation and achieve 
the solution equation using the six steps described in the second part of the sentence. 
The mathematical descriptions are very short; the critical auxiliary equations of the 
solution are not in the text, and there are printing errors.14 In addition, the sentences 
are very long with a few sentences even spanning half a page. The spellings used by 
Gompertz are also difficult to follow.15 In 1861, debates started on the article, Sprague 
(1861) published a work that gave a systematic explanation of the Gompertz’s proof 
and found printing errors as Gompertz was moving from the differential equation to 
the solution equation in his article. Sprague’s explanation is a lengthy alternative, but 
is easily understandable.16

According to Sprague, “If we denote the mortality rate as , where a and q are 
constants, and if Lx is the number of persons living at the age x, then the number of 
deaths in the shortest time interval of dx will be aLxqx”. I can write the differential 
equation as follows17:

1                                                                                        (44)

or as:

2                                            
                                                 

(45)

The requirement of the rule18

                                                                             

(46)

14 The b’s in the text above will be “x or dot” (meaning multiplication) (Sprague, 1861). 
15 The same understanding dominates Adam Smith’s famous work “The Wealth of Nations,” which was first 

released in 1776.
16 Sprague, in his criticism of the time directed at Gompertz, stated that the Royal Society did not allow any 

corrections in the published articles as a rule. He himself examined the copy that contained Gompertz’s 
corrections. The corrections were made in the Institute of Actuators Library. These corrections were printing 
errors and did not change any of the content. The author wrote this article to clarify the criticism directed 
Gompertz. However, he also included a reference to the article of Peter Gray who previously discussed the 
subjects that he mentioned when he was writing on the mathematical explanation of Gompertz’s formula 
(Gray, 1857).

17 The equation sequence numbers on the left-hand side (1–9) facilitate the follow-up of the equations in 
Sprague’s article.

18 The average variation of a function (i.e., division of a derivative by a function) is equal to the derivative of 
the logarithm of that function. (Allen, 1969, p. 246)
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yields: 

2a                                           
                                            

(47)

If I integrate both sides, loge D being the integral constant19,

2b                               
        

                             (48)        

By rearrangement of (48), I may obtain

2c                              
                                        

(49)

3                                           
                                            

(50)

Following the rule loga  = - loga q (a is any base), I have

3a
                                                                                           

(51)

I substitute the following two equations (52 and 53) in (51).

3b                                     
                                  

(52)

3c                                          
                                  

(53)

Then, I obtain

4a                             
                            

(54)

By rearranging (54), I obtain

4b                                    
                             

(55)

19 I replaced d in Gompertz’s final equation with D because d is used to specify the differential (e.g., dx).
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I define the constant on the right-hand side of (55) as

5                                   
                                             

(56)

By substituting (56) in (55), I obtain 

6                                             
                                                 

(57)

Exponentiating each side yields the following equality:

7                                               
                                                      

(58)

If I replace g = 10c or g = log-1
10

c, the solution equation is

8                                                  
                                                       

(59)

9                                                                                                      (60)

After the differential equation is established in (44), the logarithmic transformation 
of (47) is used as its base. Thus, the logarithmic differences in the number of survivors 
are based on a mathematical rule. In the latest phase, we obtain the equation of the 
general solution with anti-logarithmic arrangements. 

The following table lists the equations of Gompertz that also carry printing errors 
and the corrected and/or updated equivalents of these equations.

Table 2
Gompertz’s Equations and Corrected and Updated Equivalents
x Gompertz’s equations y Corrected and/or updated equations
1 1

2 2

3
2b

4 5

5 6

6 9

Note: The x column shows the circled numbers of the equations that I marked in Gompertz’s excerpt. The y 
column shows the left-hand-side numbers of the equations of (44) – (60).
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The solution equation can also be achieved by making the following abridged 
applications in (48). In (48), if we substitute c = log (D) and  = loge (g) which 
are logarithmic and constant numbers, we obtain

                                 (61)

Exponentiating both sides yield the final solution:

                                                (62)

4.2. Second Solution of Gompertz: Basis of Geometric Series
The second solution of differential equation in the article (Gompertz, 1825, pp. 

519-20, Art. 6.) is based on a geometric progression and arithmetic series. Contrary 
to the first solution, we find here an explanation that follows the rules of mathematics 
step-by-step and is also in conformity with the current notation. The solution equation 
of Lx = aqx is appropriate for the Northampton example (table 1, figure 3) and is in 
compliance with the structure of m, mp, mp2, mp3 given below.

If be the number of living persons at the age of x, we can write the following series 
as a geometric progression.

                                 (63)

                             (64)

                          (65)

In general, writing the series

                        (66)

by continual addition gives

     (67)

and

                            
(68)
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Therefore, replacing q = p  and log(ε) =  20 in (83) with the rule of (p( ))n = (q)n, 
we have

                          (69)

and

                      (70)

with the exponential arrangements

                            (71)

and

                                            (72)

Substituting a + n by x, we have

                                        (73)

Again, by using D =  and g = εq-a
, we obtain

                                               (74)

In our opinion, Gompertz’s solution that we provided above is an educational 
example that should also be included in contemporary studies on advanced differential 
calculus and their applications.21 Unfortunately, this second approach of Gompertz, to 
solve the differential equation, has not been mentioned and included in any articles, 
manuscripts etc. until today.

4.3. Gompertz Function: Updated and Its Mathematical Properties
I can obtain (75) by making the necessary substitutions in equation (74). For this, I 

substitute q = e log(q) in (74) and obtain qx = exlog(q). Substituting the constant number as 
log(q) = -r finally yields qx = e-rt. However, I may write g = elog(g) = e-Q as the constant 
log(g) = -Q. Then, I have:

20 This formula  is in the form of  in the original article of Gompertz, I have corrected 
it above believing it to be a printing error.

21 In the references, I see a Gompertz modeling in which the first part is based on the m, mp, mp2, mp3 series 
and the curve slope of Matsui (1999, 2009). For an application of Matsui Gompertz equation to Turkish 
population data see appendix 1 of İskender (2018, pp. 126–128).
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                                              (75)

If I specify K as the upper asymptote, Y as the population, Y0 as the initial 
population, and t as the time (explanatory variable) indexed with the base year T, and 
add the definitions Lx = Y - Y0, D = K - Y0, and x = t - T the Gompertz function can 
be obtained as shown in (76). 

The Gompertz function is a mathematical growth function with two variables and 
four parameters (K, Y, Q, r) and has a nonlinear structure. 

The Gompertz function,

                            (76)

may be written in the form of a division as follows:

                                            
(77)

The first derivative of the function is:

            
(78)

The relative growth rate or annual average growth (first derivative/function) of the 
function is:

                 
(79)

The second derivative of the function is:

   
(80)

The time inflection point of the function is:

                                  
(81)
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If I replace the time inflection point in the function, I get,

                                 
(82)

The Gompertz function is asymmetrical, and the value of (81) is not a simple 
arithmetic mean of K and Y0. 

In the Gompertz population growth function when r and Q are positive, the value 
of the function (Y) tends to the upper asymptote K as the explanatory variable time t 
tends to positive infinity, and the time tends from negative infinity to Y0.

The differential equation, which includes the upper asymptote and initial population 
point of the function, is as follows:

                      
(83)

5. Final Comments and Results

5.1. Comments
The mathematicians Verhulst and Gompertz not only theoretically explained the 

population growth, but they also investigated the testing of the models with statistical 
data using the mathematical models they developed in the first half of the 19th century.

After establishing the mathematical model of the population growth in his first 
article, Verhulst performed application studies using the population statistics of 
France, Belgium, Essex, and Russia of his time. With the French population statistics, 
the figures predicted by the function were extremely close to the actual numbers. The 
growth function could be successfully applied. In his short essay, there were no details 
of how the equation was applied to the population data; no mathematical details were 
followed while reaching the solution equation from the differential equation. Verhulst 
developed methods for estimating the function parameters even though this work 
remained unpublished. He posted it in his article of (Verhulst, 1845).

In his article of 1845, Verhulst reconsidered the population problem in greater 
detail and published the results of his studies on the population of the United States 
of America, France, and Belgium. The land and border changes in Europe due to the 
imperial wars, population registration systems, and so on created significant statistical 
problems in the data used for analysis. For determining the computational results of 
function, he developed a mathematical calculation method of the parameters based 
on calculating the coordinates of the three equally spaced points on the curve. Using 
the results in his first two articles, Verhulst rediscussed the population issue in his 



İskender / Mathematical Study of the Verhulst and Gompertz Growth Functions and Their Contemporary Applications

99

paper of 1847 and worked on the population statistics of Belgium and France with a 
new population growth function that he had developed (Verhulst, 1847).

The theoretical and practical contributions of his writings are apparent. Verhulst 
studies were quite advanced for his time. We cannot expect Verhulst to achieve 
complete excellence with the statistical data collected in the first half of the nineteenth 
century. Even today, we encounter many problems related to data. Today, we know 
that the number of growth functions has dramatically increased. Growth functions 
provide different applications of the results in various events. Even if there are growth 
functions more generally accepted, and they have found application areas, it is not 
possible a priori to say that one is superior to another before applying the data.

Gompertz worked on the data from four life tables, and he derived and generalized 
a mathematical formula from the tables’ figures. Then he presented his mathematical 
findings to the highly developed actuaries’ sector in England during that period and 
used it in his own actuary company. Gompertz’s model appeared in the following 
hundred years of actuarial writings (King, 1902). In 1932, the Gompertz function 
started to be used as a growth function (Winsor, 1932).

Despite the limited data and insufficient statistical accounting techniques of their 
period, both authors did not remain confined to the mathematics phase of their research, 
but they also emphasized the statistical application. The methods they applied form the 
bases of research even today. They knew the importance of the statistical applicability 
of the mathematical models that they developed. Their writings focus more on data 
application to the functions and methods than on the theoretical explanations of the 
models. In the first article of Verhulst, the general solution equation obtained from 
the differential equation is very short. However, the problems in the arrangement and 
mathematical application of the population statistics are more prominent in the writings.

The approaches that both authors applied two hundred years ago still remain valid. 
In the beginning of the 19th century, modern statistical science required more than a 
hundred years to develop. Nevertheless, Gompertz and Verhulst continued with the 
mathematical model–statistical application relationship to the very end. In the second 
half of the twentieth century, the growth functions of Gompertz and Verhulst took top 
positions in the list of generally accepted growth functions. 

5.2. Results
• Verhulst did not set out to establish a simple growth function, as mentioned in 

countless articles for two centuries.
• He developed a mathematical method to create the application of economic 

thought that he developed and supported that method with statistical data. 
These aspects of his works have been neglected to this day.
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• Verhulst was an economist, mathematician and one of the first statisticians in 
the history of economic sciences.

• Verhulst built his work entirely on needs of human population and limited 
resources dilemma.

• Gompertz’s mathematical model, based on life tables, has come to this day as 
a growth model and has gained widespread popularity. It is the formula of both 
decreasing and increasing populations. 

• It should be accepted that Gompertz was one of the first statisticians with the 
statistical application of his mathematical model on four life tables of his time. 
His statistical study covers sixty-three pages of his article which is seventy 
pages.

• The contributions of contemporary authors (Richards, 1959; Ricketts & 
Head, 1999) to Verhulst’s growth function have put advanced opportunities in 
practice in front of us.

• Verhulst’s and Gompertz’s mathematical works, which reach the general 
solution equation from the differential equation, are still the best way to be 
followed in research today and need to be supported by contemporary applied 
statistical science methods in application.

• As the growth functions have a nonlinear structure, linearity tests (like 
skewness, bias, global nonlinearity measures tests, as described in SAS Studio 
software documents) should be performed during statistical applications in 
addition to known statistical tests. Ordinary statistical test values, such as 
standard error, F-test etc. are not enough for accurate evaluation and results. 
(SAS Institute Inc, 2017).

• Along with growth functions; first derivative, relative growth rate, second 
derivative and inflection point functions should also be used when explaining 
population development of a country with statistical analysis (İskender, 2018). 
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