
CONSTRUCTIVE MATHEMATICAL ANALYSIS
4 (2021), No. 2, pp. 229-241
http://dergipark.gov.tr/en/pub/cma

ISSN 2651 - 2939

Research Article

Multivariate sampling Kantorovich operators: quantitative
estimates in Orlicz spaces

LAURA ANGELONI, NURSEL ÇETIN, DANILO COSTARELLI, ANNA RITA SAMBUCINI,
AND GIANLUCA VINTI*

ABSTRACT. In this paper, we establish a quantitative estimate for multivariate sampling Kantorovich operators by
means of the modulus of smoothness in the general setting of Orlicz spaces. As a consequence, the qualitative order of
convergence can be obtained, in case of functions belonging to suitable Lipschitz classes. In the particular instance of
Lp-spaces, using a direct approach, we obtain a sharper estimate than that one that can be deduced from the general
case.
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1. INTRODUCTION

The theory of generalized sampling-type operators is known since the 80’s, when it has been
introduced by P. L. Butzer and his school with the aim to study approximate version of the
celebrated Whittaker-Kotel’nikov-Shannon sampling theorem. It is closely related to positive
linear operators and therefore this work fits into a field of Approximation Theory in which
Prof. Francesco Altomare, to whom this paper is dedicated, has given basic and fundamental
results (see, e.g., [2–5]).

Considering the long relationship of esteem, sharing of scientific interests and friendship by
many of the authors of this paper with Prof. Francesco Altomare, it was an honor for us to have
been invited to write this contribution dedicated to him. He was and will certainly continue to
be a leading exponent of the Approximation Theory in Italy and abroad.

The Kantorovich version of the sampling-type operators has been introduced in [13], in one-
dimensional setting, with the aim to provide a family of linear operators suitable in order to
reconstruct not necessarily continuous signals. Indeed, approximation results have been es-
tablished in the very general context of Orlicz spaces ( [12, 32–34]), in which are included the
Lp-spaces and several other cases of well-known function spaces. Later on, a very complete
theoretical study on all the above operators have been given, see [1, 6–8, 10, 15, 22, 29, 30, 35].
For instance, saturation results and inverse theorems of approximation have been established
in [14, 26–28].
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The multivariate version of the above operators has been treated in [24] (see also [11]). This
revealed to be very useful in order to face the problem of image reconstruction in several ap-
plied fields, since digital images are typical examples of multivariate discontinuous signals.
For more details and, as concerns some applications of the above theory to concrete problems,
the readers can see [9, 16, 20, 21].

In the present paper, a quantitative estimate for the multivariate sampling Kantorovich op-
erators has been proved for functions belonging to Orlicz spaces. In order to get the above
task, a suitable definition of the modulus of smoothness, based on the modular of the space,
has been employed. We recall that the concept of modular arises from the theory of the modu-
lar spaces (see, e.g., [12, 32]), which represent a further generalization of the Orlicz spaces.
Moreover, let us remark that the results proved in the present paper contain, as particular cases,
some of the results established in [25] in the one-dimensional setting.

Formulating the prefixed results in the setting of Orlicz spaces allows a unifying approach
that naturally includes results in Lp-spaces, Zygmund spaces, exponential spaces, and others;
see, e.g., [12, 25, 32–34].

In particular, if we face the above problem in theLp-case (that coincides with the Orlicz space
generated by the ϕ-function ϕ(u) = up) by a direct approach, the modulus of smoothness of the
Orlicz space reduces to the usual Lp-modulus of smoothness ω(f, δ)p. This allows to exploit the
well-known properties of ω(f, δ)p in order to establish an estimate that turns out to be sharper
than that one achieved in the general (Orlicz) case.

Finally, the qualitative versions of the above results have been obtained assuming the in-
volved functions in suitable Lipschitz classes.

2. PRELIMINARY NOTIONS

We begin this section recalling the general setting of Orlicz spaces, in which we will work.
First, we recall the notion of ϕ-function. A function ϕ : R+

0 → R+
0 is said to be a ϕ−function if

it satisfies the following conditions:
(Φ1) ϕ is continuous and non-decreasing on R+

0 ;
(Φ2) ϕ (0) = 0, ϕ (u) > 0 for every u > 0;
(Φ3) lim

u→+∞
ϕ (u) = +∞.

For any fixed ϕ−function ϕ, we introduce the following modular functional Iϕ : M (Rn) →
[0,+∞] defined by

Iϕ [f ] :=

∫
Rn

ϕ (|f (x)|) dx

for every f ∈M (Rn) ,where hereM (Rn) denotes the set of all Lebesgue measurable functions
f : Rn → R. Then, the Orlicz space generated by a ϕ function ϕ is defined by

Lϕ (Rn) := {f ∈M (Rn) : Iϕ [λf ] < +∞ for some λ > 0} .

Now, we can recall a well-known concept of convergence in Orlicz spaces, i.e., the modular
convergence (see, e.g., [12,31,32]). We say that a net of functions (fw)w>0 ⊂ Lϕ (Rn) is modularly
convergent to a function f ∈ Lϕ (Rn) , if

(2.1) lim
w→+∞

Iϕ [λ (fw − f)] = lim
w→+∞

∫
Rn

ϕ (λ |fw (x)− f (x)|) dx = 0

for some λ > 0. Now, in order to establish a quantitative estimate for the order of approx-
imation of a family of linear multivariate operators, we recall the definition of the modulus
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of smoothness in Orlicz spaces Lϕ (Rn). For any fixed f ∈ M(Rn) and δ > 0, we define the
Orlicz-type modulus of smoothness by

(2.2) ω (f, δ)ϕ := sup
‖t‖2≤δ

Iϕ [f(·+ t)− f(·)] ,

where ‖ · ‖2 denotes the usual Euclidean norm of Rn. It is well-known (see [12, Theorem 2.4] )
that if f ∈ Lϕ(Rn), then there exists λ > 0 such that

lim
δ→0

ω (λf, δ)ϕ = 0.

Now, we recall the definition of the class of operators we work with. Let Πn =
(
tk
)
k∈Zn ⊂ Rn

be a sequence defined by tk = (tk1 , ..., tkn), where each (tki)ki∈Z , i = 1, ..., n is a sequence of
real numbers such that −∞ < tki < tki+1 < +∞, lim

ki→±∞
tki = ±∞ for every i = 1, ..., n and

there are two positive constants ∆, δ for which δ ≤ ∆ki := tki+1− tki ≤ ∆ for every i = 1, ..., n.
Moreover, we denote by

Rw,tk :=

[
tk1
w
,
tk1+1

w

]
× ...×

[
tkn
w
,
tkn+1

w

]
, (w > 0),

the n−dimensional interval associated to the sequence Πn. For the sake of simplicity, we denote
the Lebesgue measure of any Rw,tk by Ak/wn, where Ak := ∆k1 · ∆k2 · . . . · ∆kn . In general,
sequences of the form Πn are not necessarily equally distributed on Rn, in fact producing a
non-uniform sampling scheme. Clearly, if we consider the sequence tk = k, k ∈ Zn, we obtain
an equally spaced grid of nodes, with δ = ∆ = ∆ki = 1 and Ak = 1 for every k ∈ Zn. From
now on, a function χ : Rn → R will be called a kernel if it satisfies the following conditions:

(χ1) χ ∈ L1 (Rn) and is bounded in a neighborhood of 0 ∈ Rn;
(χ2) for every u ∈ Rn, with u = (u1, ..., un), we have∑

k∈Zn
χ
(
u− tk

)
= 1;

(χ3) for some β > 0,

mβ,Πn (χ) := sup
u∈Rn

∑
k∈Zn

∣∣χ (u− tk)∣∣ ∥∥u− tk∥∥β2 < +∞,

i.e., the discrete absolute moment of order β of χ is finite.

For examples of multivariate kernels see, e.g., [24]. We recall that, several (but not all) examples
of multivariate kernels are defined as the product of n one-dimensional kernels, such as the
Fejér kernel, the central B-splines, and many others ( [17–19]). Now, we recall the following
lemma that will be useful in the proof of the results of the next section.

Lemma 2.1. (see [24]) Let χ be a kernel satisfying conditions (χ1) and (χ3) . Then, we have

m0,Πn (χ) := sup
u∈Rn

∑
k∈Zn

∣∣χ (u− tk)∣∣ < +∞,

where the convergence of the series
∑
k∈Zn

∣∣χ (u− tk)∣∣ is uniform on the compact subsets of Rn.
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Thus, for any given kernel χ, the corresponding family of multivariate sampling Kantorovich
operators is defined by

(Sχwf) (x) :=
∑
k∈Zn

χ
(
wx− tk

)wn
Ak

∫
Rw,tk

f (u) du

 , x ∈ Rn,

where f : Rn → R is a locally integrable function such that the above series is convergent
for every x ∈ Rn. It is well-known that the above operators are well-defined, for instance, if
f ∈ L∞(R), or if f ∈ Lϕ(R), where ϕ is any convex ϕ-function (see [24]). In particular, in the
setting of Orlicz spaces, the modular convergence of the family Sχwf to f has been established
in Theorem 4.5 of [24].

3. MAIN RESULTS

In this section, we establish a quantitative estimate for the multivariate sampling Kantorovich
operators using the modulus of smoothness in Orlicz spaces Lϕ (Rn), recalled in Section 2.

Theorem 3.1. Let ϕ be a convex ϕ-function. Suppose that for any fixed 0 < α < 1, we have

(3.3) wn
∫

‖y‖
2
>1/wα

∣∣χ (wy)∣∣ dy ≤Mw−γ , as w → +∞

for suitable positive constants M , γ depending on α and χ. Then, for every f ∈ Lϕ (Rn) and a suitable
λf = λ > 0, the following estimate holds:

Iϕ [λ (Sχwf − f)] ≤
‖χ‖1

2δnm0,Πn (χ)
ω

(
2m0,Πn (χ) f,

1

wα

)
ϕ

+
MIϕ [4λm0,Πn (χ) f ]

2δnm0,Πn (χ)
w−γ

+
∆n

2δn
ω

(
2m0,Πn (χ) f,

√
n

∆

w

)
ϕ

for every sufficiently large w > 0, where m0,Πn (χ) < +∞ in view of Lemma 2.1. In particular, if
λ > 0 is sufficiently small, this inequality implies the modular convergence of multivariate sampling
Kantorovich operators Sχwf to f.

Proof. Let λ > 0 be fixed. Taking into account that ϕ is convex and non-decreasing, we have

Iϕ [λ (Sχwf − f)]

≤1

2


∫
Rn

ϕ

2λ

∣∣∣∣∣∣∣(Sχwf) (x)−
∑
k∈Zn

χ
(
wx− tk

) wn
Ak

∫
Rw,tk

f

(
u+ x−

tk
w

)
du

∣∣∣∣∣∣∣
 dx

+

∫
Rn

ϕ

2λ

∣∣∣∣∣∣∣
∑
k∈Zn

χ
(
wx− tk

) wn
Ak

∫
Rw,tk

f

(
u+ x−

tk
w

)
du− f (x)

∣∣∣∣∣∣∣
 dx


= : J1 + J2.
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Now, we estimate J1. Using Jensen inequality twice (see, e.g., [23]), the change of variable

y = x−
tk
w

, and Fubini-Tonelli theorem, we obtain

2J1 ≤
∫
Rn

ϕ

2λ
∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

∣∣∣∣f (u)− f
(
u+ x−

tk
w

)∣∣∣∣ du
 dx

≤ 1

m0,Πn (χ)

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣ϕ
2λm0,Πn (χ)

wn

Ak

∫
Rw,tk

∣∣∣∣f (u)− f
(
u+ x−

tk
w

)∣∣∣∣ du
 dx

≤ 1

m0,Πn (χ)

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

ϕ

(
2λm0,Πn (χ)

∣∣∣∣f (u)− f
(
u+ x−

tk
w

)∣∣∣∣) dudx
≤ 1

m0,Πn (χ) δn

∫
Rn

∣∣χ (wy)∣∣wn ∑
k∈Zn

∫
Rw,tk

ϕ
(
2λm0,Πn (χ)

∣∣f (u)− f
(
u+ y

)∣∣) dudy
=

1

m0,Πn (χ) δn

∫
Rn

∣∣χ (wy)∣∣wn ∫
Rn

ϕ
(
2λm0,Πn (χ)

∣∣f (u)− f
(
u+ y

)∣∣) dudy
=

1

m0,Πn (χ) δn

∫
Rn

wn
∣∣χ (wy)∣∣ Iϕ [2λm0,Πn (χ)

(
f (·)− f

(
·+ y

))]
dy.

Now, let 0 < α < 1 be fixed. We now split the above integral as follows:

1

m0,Πn (χ) δn


∫

‖y‖
2
≤1/wα

+

∫
‖y‖

2
>1/wα

wn
∣∣χ (wy)∣∣ Iϕ [2λm0,Πn (χ)

(
f (·)− f

(
·+ y

))]
dy

=:J1,1 + J1,2.

For J1,1, one has

J1,1 ≤
1

m0,Πn (χ) δn

∫
‖y‖

2
≤1/wα

wn
∣∣χ (wy)∣∣ω (2m0,Πn (χ) f,

∥∥y∥∥
2

)
ϕ
dy

≤ ω
(

2m0,Πn (χ) f,
1

wα

)
ϕ

wn

m0,Πn (χ) δn

∫
‖y‖

2
≤1/wα

∣∣χ (wy)∣∣ dy
≤ ω

(
2m0,Πn (χ) f,

1

wα

)
ϕ

‖χ‖1
m0,Πn (χ) δn

.

On the other hand, taking into account that ϕ is convex, for J1,2, we can write

J1,2 ≤
1

m0,Πn (χ) δn

∫
‖y‖

2
>1/wα

wn
∣∣χ (wy)∣∣ 1

2
{Iϕ [4λm0,Πn (χ) f (·)]

+Iϕ
[
4λm0,Πn (χ) f

(
·+ y

)]}
dy.
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Moreover, it can be easily seen that

Iϕ [4λm0,Πn (χ) f (·)] = Iϕ
[
4λm0,Πn (χ) f

(
·+ y

)]
for every y. Therefore, by assumption (3.3), we finally have

J1,2 ≤
1

m0,Πn (χ) δn

∫
‖y‖

2
>1/wα

wn
∣∣χ (wy)∣∣ Iϕ [4λm0,Πn (χ) f (·)] dy

≤ Iϕ [4λm0,Πn (χ) f ]

m0,Πn (χ) δn
Mw−γ

for w > 0 sufficiently large. Now, we can estimate J2. Using the singularity assumption (χ2),
we immediately have

2J2 ≤
∫
Rn

ϕ

2λ
∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

∣∣∣∣f (u+ x−
tk
w

)
− f (x)

∣∣∣∣ du
 dx.

Now, using twice Jensen inequality as above and the change of variable y = u−
tk
w
, we obtain

2J2 ≤
1

m0,Πn (χ)

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

ϕ

(
2λm0,Πn (χ)

∣∣∣∣f (u+ x−
tk
w

)
− f (x)

∣∣∣∣) dudx
≤ 1

m0,Πn (χ) δn

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣wn ∫
(
Rw,tk−

tk
w

)ϕ
(
2λm0,Πn (χ)

∣∣f (x+ y
)
− f (x)

∣∣) dydx,

where the symbol
(
Rw,tk −

tk
w

)
:=

[
0,

∆k1

w

]
× . . . ×

[
0,

∆kn

w

]
for every k ∈ Zn and w > 0.

Hence, by the Fubini-Tonelli theorem,

2J2 ≤
1

δn

∫
Rn

wn
∫

(
Rw,tk−

tk
w

) ϕ
(
2λm0,Πn (χ)

∣∣f (x+ y
)
− f (x)

∣∣) dydx

≤ wn

δn

∫
(
Rw,tk−

tk
w

) Iϕ
[
2λm0,Πn (χ)

(
f
(
·+ y

)
− f (·)

)]
dy

≤ wn

δn

∫
(∆w)

Iϕ
[
2λm0,Πn (χ)

(
f
(
·+ y

)
− f (·)

)]
dy,
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where (∆w) :=

[
0,

∆

w

]
× . . .×

[
0,

∆

w

]
. Then, we get

2J2 ≤
wn

δn

∫
(∆w)

ω

(
2m0,Πn (χ) f,

√
n

∆

w

)
ϕ

dy

≤ ∆n

δn
ω

(
2m0,Πn (χ) f,

√
n

∆

w

)
ϕ

,

which completes the proof. �

Remark 3.1.

(1) Note that, it is easy to show that for any kernels such that χ(u) = O(‖u‖−θ2 ), as ‖u‖2 →
+∞, for θ > 1, we have that assumption (3.3) is satisfied for some constant M > 0 and
γ = (1− α)(θ − 1) > 0 for every fixed 0 < α < 1 (see, e.g., [25]).

(2) For further examples of kernels satisfying assumption (3.3), with and without compact support,
the reader can refer to [15].

Now, we recall the definition of Lipschitz classes in Orlicz spaces Lϕ (Rn). We define by
Lipϕ (ν) , 0 < ν ≤ 1, the set of all functions f ∈M (Rn) such that there exists λ > 0 with

Iϕ [λ (f (·)− f (·+ t))] =

∫
Rn

ϕ (λ |f (x)− f (x+ t)|) dx = O (‖t‖ν2)

as ‖t‖2 → 0. From Theorem 3.1, we immediately obtain the following corollary.

Corollary 3.1. Under the assumptions of Theorem 3.1 with 0 < α < 1 and for any f ∈ Lipϕ (ν),
0 < ν ≤ 1, there exist K > 0 and λ > 0 such that

Iϕ [λ (Sχwf − f)] ≤ Kw−θ

for sufficiently large w > 0, where θ := min {αν, γ}.

Note that, the results established in Theorem 3.1 and Corollary 3.1 are valid in case of func-
tions belonging to Lϕ(Rn), with ϕ convex. Hence, applications can be easily obtained in some
well-known cases of Orlicz spaces, such as the Lp-spaces, the Zygmund (or interpolation)
spaces, and the exponential spaces. For more details concerning the above instances of Or-
licz spaces, see, e.g., [13, 24].

Actually, in the particular case of Lp-spaces (i.e., when ϕ (u) = up, u ∈ R+
0 , p ≥ 1), thanks

to the well-known properties of the first order modulus of smoothness in Lp, we can also es-
tablish the following direct quantitative estimate, which turns out to be sharper than that one
established in the general case considered in Theorem 3.1 (and consequently also in Corollary
3.1).

In order to obtain the above mentioned result for the multivariate sampling Kantorovich
operators, we recall, for f ∈ Lp (Rn), the definition of the Lp-first order modulus of smoothness
of f, given by

ω (f, δ)p = sup
‖h‖2≤δ

∫
Rn

|f (t+ h)− f (t)|p dt

1/p

,

with δ > 0, 1 ≤ p < +∞. We can prove the following estimate.
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Theorem 3.2. Suppose that

(3.4) Mp (χ) :=

∫
Rn

|χ (t)| ‖t‖p2 dt < +∞

for some 1 ≤ p < +∞. Then, for every f ∈ Lp (Rn) , the following quantitative estimate holds

‖Sχwf − f‖p ≤
[2m0,Πn (χ)]

(p−1)/p

δn/p
[‖χ‖1 +Mp (χ)]

1/p
ω (f, 1/w)p

+

(
∆

δ

)n/p
m0,Πn (χ)ω

(
f,
√
n

∆

w

)
p

for every sufficiently large w > 0.

Proof. Proceeding as in the first part of the proof of Theorem 3.1, and using the Minkowsky
inequality, the concavity and hence the subadditivity of the function | · |1/p, we have

‖Sχwf − f‖p ≤

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

∣∣∣∣f (u)− f
(
u+ x−

tk
w

)∣∣∣∣ du

p

dx


1/p

+

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

∣∣∣∣f (u+ x−
tk
w

)
− f (x)

∣∣∣∣ du

p

dx


1/p

=: J1 + J2.

We now estimate J1. Proceeding as in the proof of Theorem 3.1, i.e., applying Jensen inequality

twice, Fubini-Tonelli theorem and the change of variable y = x−
tk
w

, we get

Jp1 =

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

∣∣∣∣f (u)− f
(
u+ x−

tk
w

)∣∣∣∣ du

p

dx

≤ m0,Πn (χ)
p−1

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣
wn
Ak

∫
Rw,tk

∣∣∣∣f (u)− f
(
u+ x−

tk
w

)∣∣∣∣ du

p

dx

≤ m0,Πn (χ)
p−1

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣
wn
Ak

∫
Rw,tk

∣∣∣∣f (u)− f
(
u+ x−

tk
w

)∣∣∣∣p du
 dx

≤ m0,Πn (χ)
p−1

∫
Rn

∑
k∈Zn

∣∣χ (wy)∣∣
wn
Ak

∫
Rw,tk

∣∣f (u)− f
(
u+ y

)∣∣p du
 dy

≤ m0,Πn (χ)
p−1

δn

∫
Rn

wn
∣∣χ (wy)∣∣

∑
k∈Zn

∫
Rw,tk

∣∣f (u)− f
(
u+ y

)∣∣p du
 dy
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=
m0,Πn (χ)

p−1

δn

∫
Rn

wn
∣∣χ (wy)∣∣

∫
Rn

∣∣f (u)− f
(
u+ y

)∣∣p du
 dy

≤ m0,Πn (χ)
p−1

δn

∫
Rn

wn
∣∣χ (wy)∣∣ω (f, ∥∥y∥∥

2

)p
p
dy

≤ m0,Πn (χ)
p−1

δn

∫
Rn

wn
∣∣χ (wy)∣∣ (1 + w

∥∥y∥∥
2

)p
ω

(
f,

1

w

)p
p

dy

≤ m0,Πn (χ)
p−1

δn
2p−1ω

(
f,

1

w

)p
p

∫
Rn

wn
∣∣χ (wy)∣∣ [1 +

(
w
∥∥y∥∥

2

)p]
dy

=
m0,Πn (χ)

p−1

δn
2p−1ω

(
f,

1

w

)p
p


∫
Rn

wn
∣∣χ (wy)∣∣ dy +

∫
Rn

wn
∣∣χ (wy)∣∣ (w ∥∥y∥∥

2

)p
dy


=
m0,Πn (χ)

p−1

δn
2p−1ω

(
f,

1

w

)p
p

(‖χ‖1 +Mp (χ)) < +∞

for every w > 0, where ‖χ‖1 and Mp (χ) are both finite, in view of (χ1) and (3.4). Note that, in
the above estimates, we used the well-known inequality:

ω(f, λδ)p ≤ (1 + λ)ω(f, δ)p, λ, δ > 0.1

Now, we estimate J2. Using Jensen inequality twice, the change of variable y = u −
tk
w

and
Fubini-Tonelli theorem, we have

Jp2 =

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
Rw,tk

∣∣∣∣f (u+ x−
tk
w

)
− f (x)

∣∣∣∣ du

p

dx

≤
∫
Rn


∑
k∈Zn

∣∣χ (wx− tk)∣∣ wn
Ak

∫
(
Rw,tk−

tk
w

)
∣∣f (x+ y

)
− f (x)

∣∣ dy


p

dx

≤ m0,Πn (χ)
p−1

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣

wn

Ak

∫
(
Rw,tk−

tk
w

)
∣∣f (x+ y

)
− f (x)

∣∣ dy


p

dx

1 In general, this inequality does not hold in the case of ω(f, δ)ϕ (i.e., in Orlicz spaces).
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≤ m0,Πn (χ)
p−1

δn

∫
Rn

∑
k∈Zn

∣∣χ (wx− tk)∣∣wn


∫
(
Rw,tk−

tk
w

)
∣∣f (x+ y

)
− f (x)

∣∣p dy
 dx

≤ m0,Πn (χ)
p

δn

∫
Rn

wn

 ∫
(∆w)

∣∣f (x+ y
)
− f (x)

∣∣p dy
 dx,

where (∆w) :=

[
0,

∆

w

]
× . . .×

[
0,

∆

w

]
. Then, we obtain

Jp2 ≤
m0,Πn (χ)

p

δn

∫
(∆w)

wn

∫
Rn

∣∣f (x+ y
)
− f (x)

∣∣p dx
 dy

≤ m0,Πn (χ)
p

δn

∫
(∆w)

wn

[
ω

(
f,
√
n

∆

w

)
p

]p
dy

=
m0,Πn (χ)

p

δn
∆n

[
ω

(
f,
√
n

∆

w

)
p

]p
.

This proves the theorem. �

Note that also assumption (3.4) is quite standard and it is satisfied for kernels χ having
sufficiently rapid decay, as for instance χ with compact support. Moreover, we remark that
assumption (3.4) implies (3.3) but, in this context, (3.4) appears more natural to assume rather
than (3.3). Also, note that what it allows us to achieve a sharper quantitative estimate depends
only on the properties of the Lp-modulus of smoothness.

As made in the general context of Orlicz spaces, from the above quantitative estimate, we
can directly deduce the qualitative order of approximation, assuming f in suitable Lipschitz
spaces.

Firstly, we recall that the Lipschitz class of Zygmund-type in Lp-spaces, with 0 < α ≤ 1, are
defined as follows:

(3.5) Lip (α, p) := {f ∈ Lp (Rn) : ‖f (·+ t)− f (·) ‖p = O (‖t‖α2 ) , as ‖t‖2 → 0} .

Now, we can state the following result.

Corollary 3.2. Suppose that

Mp (χ) :=

∫
Rn

|χ (t)| ‖t‖p2 dt < +∞
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for some 1 ≤ p < +∞. Then, for every f ∈ Lip (α, p) , 0 < α ≤ 1, we have

‖Sχwf − f‖p ≤
[2m0,Πn (χ)]

(p−1)/p

δn/p
[‖χ‖1 +Mp (χ)]

1/p
C1

1

wα

+

(
∆

δ

)n/p
m0,Πn (χ)C1

(√
n

∆

w

)α
for every sufficiently large w > 0, where C1 > 0 is the constant coming from definition (3.5).
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