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ABSTRACT 

The COVID-19 pandemic has been affecting our lives in many ways, not only the healthcare systems in the 

countries but the whole societies worldwide. Meantime, a considerable number of studies have been conducted 

and lots of medical techniques have been tried to overcome the pandemic. In this work, making use of real-world 

images, we applied Convolutional Neural Networks to chest X-ray images to predict whether a patient has the 

COVID-19 virus or not. Initially, we used transfer learning to fine tune a number of pre-trained ResNet, VGG, and 

Xception models, which are very well-known architectures due to their success in image processing tasks. While 

the achieved performance with these models was encouraging, we ensembled three models to obtain more accurate 

and reliable results. Finally, our ensemble model outperformed all other models with an F-Score of 97%. 
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Transfer Öğrenme Kullanarak Göğüs Röntgeni Görüntülerinden 

COVID-19 Tahmini 
 

ÖZ 

COVID-19 salgını, sadece ülkelerdeki sağlık sistemlerini değil, dünya çapında tüm toplumları birçok şekilde 

etkilemektedir. Bu süreçte, pandeminin üstesinden gelmek için önemli sayıda çalışma yapılmış ve birçok tıbbi 

teknik denenmiştir. Bu çalışmada, gerçek görüntülerden yararlanarak, bir hastada COVID-19 virüsünün olup 

olmadığını tahmin etmek için Evrişimsel Sinir Ağlarını göğüs röntgeni görüntülerine uyguladık. Başlangıçta, 

görüntü işleme alanındaki başarıları nedeniyle çok iyi bilinen mimariler olan bir dizi önceden eğitilmiş ResNet, 

VGG, ve Xception modellerini elimizdeki probleme uygun olarak yeniden eğitmek üzere Transfer Öğrenme 

kullandık. Bu modellerle ulaşılan performans tatmin edici olsa da daha isabetli ve güvenilir sonuçlar elde etmek 

amacıyla üç ayrı modeli bir araya getiren bir topluluk modeli oluşturduk. Son olarak, topluluk modelimiz %97'lik 

bir F-Skoru ile diğer tüm modellerden daha iyi performans gösterdi. 

 

Anahtar Kelimeler: Göğüs Röntgeni, COVID-19, Viral Pnömoni, Derin Öğrenme, Transfer Öğrenme, Topluluk 

Öğrenmesi 
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I. INTRODUCTION 
 
As of February 10th, 2021, there are 107,639,175 coronavirus cases which have resulted in the death of 

2,358,080 people [1]. Since December 2019, the coronavirus has started to become a major problem 

worldwide as a pandemic. The COVID-19 pandemic has been affecting our lives in many ways, not 

only the healthcare systems in the countries but the whole societies worldwide. Meantime, a 

considerable number of studies have been conducted and lots of medical techniques have been tried to 

overcome the pandemic. Some studies have particularly focused on the diagnosis of COVID-19 from 

medical images like X-rays and CT scans. 

 

There are several Deep Learning systems that were developed to identify and detect patients who had 

COVID-19 using their chest X-ray images. Minaee et al. tested some popular deep learning architectures 

such as ResNet [2] and DenseNet [3]. Their dataset was imbalanced due to the difficulty in finding X-

rays images of COVID-19 patients. Therefore, in order to increase the size of COVID-19 X-rays, they 

used image augmentation in their study [4]. 

 

In a study by Khan et al., a model based on Xception architecture [5] was able to give promising results 

[6]. They also used ImageNet [7] weights of Xception model, fine tuned last layers, and achieved 90% 

accuracy in 3-class classification. 

 

In another research, Apostolopoulos et al. used pre-trained models from architectures like MobileNet 

[8], Xception, and VGG [9] for the detection of COVID-19 using chest X-ray images [10]. They applied 

these models to both binary and multi-class classification and achieved 95% accuracy at best. 

 

Ozturk et al. built a CNN model for COVID-19 detection using chest X-rays [11]. Their model achieved 

87% and 98% accuracies for multi and binary class classification, respectively.  

 

In this study, we applied CNN models to chest X-ray images to predict whether a patient has the COVID-

19 virus or not. We used transfer learning to fine tune a number of pre-trained ResNet, VGG, and 

Xception models, which are very well-known architectures due to their success in image processing 

tasks.  

 

The studies mentioned above were similar to our study. However, their datasets were generally very 

small when compared to ours; that is, we trained our models on a relatively larger dataset. Some of the 

studies consistently reported that their datasets were imbalanced in terms of class distribution having 

small number of COVID-19 X-ray images while having much greater number of images from normal 

patients. Our dataset, on the other hand, had a comparatively balanced class distribution. Additionally, 

some of the studies applied image augmentation techniques to increase the size and variety of their 

datasets as we also took a similar approach. In our study, we also used ensemble learning to enhance the 

classification accuracy. Different from the previous studies, we were able to get better results using a 

larger dataset and ensemble learning. 

 

This paper is organized as follows: Section II explains the details of the datasets and deep learning 

models that we experimented with. In Section III, we present our results and discuss about them. Section 

IV concludes the study and provides some future directions for further research. 

 

 

II. MATERIAL AND METHOD 
 

A. DATASET 

 
The dataset used in this study were provided by Chowdhury et al. [12]. The original dataset contains 

3,886 Chest X-Ray images. The images in the dataset are divided into three categories as COVID-19, 
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Normal, and Viral Pneumonia according to their diagnosis, and their category distribution is 1,200, 

1,341, and 1,345, respectively. Some sample images from the dataset are given in Figure 1. 

 

 
COVID-19 Normal Viral Pneumonia 

 

Figure 1. Some sample images from the dataset [12].  

 

 
 

Figure 2. Some sample images we used to augment the COVID-19 category. 
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When we first examined the images in the original dataset, we observed that there were lots of duplicate 

images, especially in COVID-19 category. Thus, we identified the duplicates using a hashing method, 

and then removed them. 

 

After the duplicate removal process, the dataset became more imbalanced than the original with 917 

COVID-19, 1,339 Normal, and 1,338 Viral Pneumonia images. In order to make the dataset balanced, 

we augmented the COVID-19 category by warp shifting, rotating clockwise, and adding gaussian blur 

to 349 images that we picked at random. To achieve that, we used the image processing functions in 

OpenCV [13] and scikit-image [14] libraries. We flipped the images neither horizontally nor vertically 

because as data augmentation is performed, category labels of the images should stay the same. 

However, horizontal flip would make images of Normal category to have the heart on the right hand 

side of the chest which is a disease called “dextrocardia” [15]. Some sample images we used to augment 

the COVID-19 category are given in Figure 2. 

 
It is worth mentioning that the dataset contained images in variety of resolutions such as 331x331, 

1024x1024, and so on. Following the common practice in deep learning studies, we resized all images 

in the dataset to 224x224. 

 
Once we obtained the final dataset, we split the dataset into train, validation, and test sets. We used 65% 

of the images for training, 15% for validation, and 20% for testing, as seen in Table 1. We need to state 

that we used the augmented images in COVID-19 category only for training. That is, those images did 

not appear in validation and test sets. 

 
Table 1. Distribution of image categories in the dataset over train, validation, and test sets. 

 

Split COVID-19 Normal Viral Pneumonia 

Train 874 875 826 

Validation 184 224 176 

Test 208 240 336 

Total 1,266 1,339 1,338 

 

 

B. DEEP LEARNING METHODS 

 

B. 1. Deep Learning 

 
Deep learning is a subset of machine learning where algorithms are inspired by the connectivity patterns 

of human brain called Artificial Neural Networks (ANN). There are different deep learning architectures 

that have been applied to fields such as computer vision, speech recognition, natural language 

processing, and so on. Convolutional Neural Networks (CNN) is an architecture that has been used for 

image feature extraction. One other architecture is Recurrent Neural Networks (RNN) which has 

connections between its layers as a form of directed graph, allowing the information carried in layers to 

remember. Long Short Team Memories (LSTM) are special type of an RNN, capable of remembering 

long-term dependencies [16]. 

 
RNNs and LSTMs are more suitable for sequential data such as text, time series, financial data, speech, 

audio, video, and so on. Therefore, they are commonly used for tasks such as natural language 

processing and time series processing. CNNs, on the other hand, are best suitable to work with spatial 

structures like images. 
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Figure 3. The overall architecture of the generic Convolutional Neural Network (CNN) [17]. 

 
The overall architecture of the generic CNN is given in Figure 3. Most crucial components of this 

architecture are the convolution and pooling operations. Convolution represents the direct application 

of any mathematical filter to a given input that results in an activation. Repeating the same process with 

the same filter results in a map of activations that is called feature maps, indicating the locations and 

strength of a detected characteristic of the given input. Pooling is used for reducing the spatial 

dimensions of mapped feature maps. Pooling layer operates on each feature map independently [16]. 
 

B. 2. ResNet Models 

 
ResNet models are one of the most popular CNN (Convolutional Neural Network) models. In theory as 

neural networks become deeper, the expected performance should increase. However, in practice, 

performance degrades. In order to overcome this issue, ResNet architecture was introduced [2]. The key 

idea in this architecture is skipping connections while providing identity shortcuts for the networks. This 

makes gradient updates much easier for deeper layers. All ResNet models follow the same logic; the 

only difference is the number of layers in the network. 

 

B. 3. VGG Blocks 

 
The VGG CNN architecture was a significant milestone in deep learning and computer vision. VGG 

blocks consist of small filter sized convolutions followed by max pooling layers. The VGG blocks start 

with two convolutional layers which have 64 and 128 filters respectively. Then, the third layer contains 

256 filters. In the ordinary usage of VGG blocks, filters are increased with the depth of the network [9]. 

 

B. 4. Xception Model 

 
Xception model consists of three main parts named as entry flow, middle flow, and exit flow 

respectively. The entry flow has two convolution layers followed by a layer of ReLU activation function 

[5]. In this model Separable convolutional layers are used as a main difference from the previous similar 

architectures. There are additional “skip” connections, where two tensors are added to merge. Similarly, 

the Middle flow and the Exit flow are constructed with the same principles. 

 

B. 5. Transfer Learning 

 
Transfer learning is a machine learning technique to re-use pre-trained models for new objectives. That 

is, layers and weights of a pretrained model are used as a starting point in model creation [16]. Transfer 

learning is usually used when there are insufficient number of samples to train a model from scratch. In 
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this way, we make use of the information readily available in the parameters of a previously trained 

model. In addition, training of a new model takes considerably less amount of time. For instance, 

obtaining a model which was already trained on ImageNet dataset [7] which contains millions of images 

can be a good starting point for any image classification task. This kind of a model can also be used for 

COVID-19 detection purposes. An illustration of transfer learning can be seen in Figure 4. 

 

 
Figure 4. Illustration of transfer learning: a CNN is pretrained on ImageNet and subsequently trained on X-ray 

images for our research. 

 

As the size of our dataset was small, we used transfer learning to fine tune popular pre-trained deep 

learning architectures in our study. Specifically, we used pre-trained models of ResNet18, ResNet50, 

ResNet101, ResNet152, VGG16, VGG19, and Xception architectures. 

 

B. 6. Ensemble Models 

 
A special type of classifier, called Ensemble Classifier, combines multiple base classifiers in order to 

improve the total accuracy of all base classifiers for different circumstances [18]. A result acquired from 

combination of several machine learning models can be more accurate than a single classifier. The main 

issue here is how to generate different base classifiers that complement each other. In addition, how to 

combine the outputs of base classifier for maximum accuracy is another problem [19]. There are several 

ensemble classification techniques developed for combining multiple classifiers. Well known and 

widely used ensemble classification techniques are Bagging [20] and Boosting [21, 22]. 

 

In this study, we took a bagging approach to combine different deep learning models to improve the 

classification accuracy. That is, we particularly created two different ensemble models to combine 

different deep learning models. Every output of each individual model was combined and averaged to 

get better classification accuracy. We called the first model we created ENS1, which was a combination 

of VGG16, ResNet101, and Xception models. The second one, ENS2, was based on VGG19, ResNet50, 

and Xception models. Our choice of base models was based on the performances of the models on the 

COVID-19 category. General architecture of our ensemble models can be seen in Figure 5. 

Transfer Trained 

Weights 

67% cat 

30% dog 

… 

0.1% plane 

90% covid19 

6% normal 

4% vpnom 

ImageNet Dataset Pretrained Convolutional Layers Predictions Fully-Connected 

Layers 

New Dataset Transferred Convolutional Layers Predictions Fully-Connected 

Layers 
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Figure 5. General architecture of our ensemble models. 

 

C. MODEL TRAINING 

 
We used GeForce GTX 1660 Ti and Tesla K80 GPUs for training all the models. Models and 

architectures were generated using TensorFlow 2.5.0 [23] and Keras 2.5.0 [24] in Python 3.8.3 

environment. During the training process we used random image processing feature of Keras such as 

zoom_range and width_shift_range to prevent overfitting, which is done internally by Keras. 

 

We trained all the models with slightly low learning rates. Categorical cross entropy loss was used to 

minimize the score of distance between predictions and ground truth values. As pre-trained models 

include various regularization techniques, we only added dropout layers with a rate of 0.4 between the 

layers that we tried to fine tune and train. Models and used optimizers to minimize the loss are given in 

Table 2. 

 
Table 2. Models and their optimizer parameters for the training process. 

 

Model Optimizer Momentum Nesterov Learning Rate 

VGG16 SGD 0.9 True 0.00009 

VGG19 SGD 0.9 True 0.00009 

ResNet18 SGD 0.9 True 0.00009 

ResNet50 SGD 0.9 True 0.00009 

ResNet101 SGD 0.9 True 0.00005 

ResNet152 SGD 0.9 True 0.00005 

Xception SGD 0.9 True 0.00005 

ENS1 Adam - - 0.00003 

ENS2 Adam - - 0.0001 

 

Unlike for the other models, we used Adam optimizer for our ensemble models rather than SGD 

optimizer. Adam is an adaptive optimizer and adaptive optimizers are known to be better than SGD for 

especially large-scale models and they are prefferred due to their faster convergence [25]. In addition, 

during our experimental studies, we obtained slightly better performance with Adam than SGD, and 

thus, we settled on Adam. 

 

Average 

Layer 

VGG 

Input Layer 

ResNet Xception 



1402 

 

The learning rate controls how fast the gradients are updated, in other words, it controls how the model 

adapts itself to the problem. Higher learning rates make the model converge faster, however, they can 

cause the model to diverge. Using a low learning rate means the model is taking small steps towards 

minimum point of loss function. As it takes small steps, more epochs are required. Very low learning 

rate also can cause model to stuck, which means no learning takes place [16]. 

 
For our dataset, using a higher learning rate was giving rise to oscillation of validation loss as well as 

the training loss. Thus, we picked reduced learning rates with momentum. Additionally, we used three 

Keras callbacks to control the training process, namely, ReduceLROnPlateu, ModelCheckpoint, and 

EarlyStopping. ReduceLROnPlateu reduces the learning rate when the given monitoring metric stopped 

improving. We used ReduceLROnPlateu with the following parameters: factor = 0.01, patience = 4, 

minimum learning rate = 5×10-8 [26]. ModelCheckpoint saves the model to a specific directory when 

monitoring metric is improved at the end of every epoch. We monitored the validation loss with the 

parameter save_best_only = True. Thus, we overwritten the previous saved model [24]. Early Stopping 

is a callback we used as a preventive measure to overfitting. Overfitting is a common problem when the 

training dataset is small in which the model memorizes the training data, and it performs quite well with 

seen data but performs very poorly with unseen data. In order to prevent this and make sure that our 

models were not overfitting, we used early stopping with a parameter patience = 16 while monitoring 

the validation loss [27]. 

 

D. MODEL EVALUATION METRICS 

 
In order to measure the classification performance of the selected models, we used Accuracy, Precision, 

Recall, and F-Score metrics. For each of these metrics, the higher the metric value, the higher the 

performance of a classifier is. We used scikit-learn [28] to generate desired metrics. 

 

When we test a classifier, we obtain four different counts as True Positive (TP), False Positive (FP), 

True Negative (TN), and False Negative (FN). Using these counts, it is possible to compute the above 

metrics as given in Eqn. 1, 2, 3, and 4, respectively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝐹-𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
 

A. MODEL PERFORMANCE COMPARISON 

 
We first obtained classification performance metrics for each model with respect to each one of the three 

classes COVID-19, Normal, and Viral Pneumonia. In this study, our focus was particularly on the 

successful detection of COVID-19 cases. Therefore, we first present our experimental results for the 

COVID-19 class in Table 3. 
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Table 3. Model performance comparison for COVID-19 class. 

 

Model Precision Recall F-Score 

VGG16 0.99 0.85 0.92 

VGG19 0.98 0.87 0.92 

ResNet18 0.94 0.84 0.89 

ResNet50 1.00 0.93 0.96 

ResNet101 0.99 0.91 0.95 

ResNet152 0.98 0.88 0.93 

Xception 0.99 0.93 0.96 

ENS1 1.00 0.92 0.96 

ENS2 0.99 0.97 0.98 

    

Most of the models have a high precision but lower recall rates compared to each other. If a model has 

a high precision rate, then it predicts the given image as positive when it is really positive. It can be 

trusted. However, with a low recall rate, if it predicts the given image as negative, it cannot be trusted 

as much as the predictions of positive. There is still some probability that given sample’s label is 

positive. Therefore, for a reliable classification, both high precision and high recall are expected from 

the models. 

 

When we examine the individual model performances in Table 3, we observe that VGG models almost 

performed the same, as the number of layers used in the models were close to each other. ResNet50 

performed better than ResNet152, which may indicate that there was a high mismatch between the high 

model complexity of ResNet152 and our dataset. Xception model, on the other hand, performed closely 

or better than ResNet and VGG models as expected. ENS1 model was better than ENS2 in terms of 

precision. That was expected, as ENS1 included the models that had the highest precision score. When 

we constructed the ENS2 model, we chose the models that obtained the highest Recall scores. As a 

result, our ENS2 model outperformed all other models when it comes to the detection of whether a 

patient has the COVID-19 infection or not. 

 

As this is a multiclass classification, it is better to compare the performances of models with respect to 

all classes. In Table 4, we present a comparison of model performances for all classes in terms of F-

Score. 

 
Table 4. Model performance comparison for all classes. 

 

Model COVID-19 Normal  Viral Pneumonia Weighted Average 

VGG16 0.92 0.86 0.91 0.89 

VGG19 0.92 0.91 0.90 0.91 

ResNet18 0.89 0.92 0.91 0.89 

ResNet50 0.96 0.92 0.94 0.94 

ResNet101 0.95 0.95 0.95 0.95 

ResNet152 0.93 0.91 0.94 0.93 

Xception 0.96 0.90 0.91 0.92 

ENS1 0.96 0.93 0.94 0.94 

ENS2 0.98 0.96 0.97 0.97 

 

Whereas ENS1 was one of the best-performing models in COVID-19 prediction, it showed only an 

average performance among the other models in terms of F-Score. On the other hand, ENS2 was the 

best in overall prediction performance as well as in COVID-19 prediction only. 

 

In order to demonstrate the generalization capabilities of our models, we present the accuracies of the 

models on train, validation, and test splits in Table 5. When we analyze these accuracy scores, we see 

that ENS2 achieved the highest level of generalization as well as the highest prediction performance. 
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Table 5. Model accuracies for train, validation, and test splits. 

 

Model Train Validation Test 

VGG16 0.91 0.89 0.88 

VGG19 0.91 0.91 0.91 

ResNet18 0.90 0.88 0.89 

ResNet50 0.96 0.95 0.94 

ResNet101 0.95 0.94 0.95 

ResNet152 0.94 0.92 0.93 

Xception 0.94 0.93 0.92 

ENS1 0.96 0.95 0.94 

ENS2 0.97 0.97 0.97 

 

 

B. PERFORMANCE DETAILS OF OUR ENSEMBLE MODEL ENS2 

 

Our ENS2 ensemble model is made up of VGG19, ResNet50, and Xception models. The purpose of 

ensembling these models was to combine the variety of models as every one of them follows a different 

architecture. We picked ResNet50 instead of ResNet101 because performance scores of ResNet50 on 

COVID-19 prediction were better. Prediction of each model in the ensemble is combined and averaged 

to get more reliable results. Keras implementation of ENS2 model is given in Figure 6. 

 

models = [model_xception, model_resnet, model_vgg] 

model_input = tf.keras.Input(shape=(224, 224, 3)) 

model_outputs = [model(model_input) for model in models] 

ensemble_output = tf.keras.layers.Average()(model_outputs) 

ensemble_model = tf.keras.models.Model(inputs=model_input, \ 

                     outputs=ensemble_output, name='ensemble') 

 

Figure 6. Ensembling models in Keras. 

 

In Table 6, we present performance scores of ENS2 model for each class in more detail. In addition, we 

present the confusion matrix obtained from our experiments in Table 7. 

 
Table 6. Performance scores of ENS2 model for each class. 

 

 Accuracy Precision Recall F1-Score 

COVID-19 0.97 0.99 0.97 0.98 

Normal 0.99 0.93 0.99 0.96 

Viral Pneumonia 0.95 0.99 0.95 0.97 

 
Table 7. Confusion matrix of ENS2 model. 

 

Predicted Classes 

 

 

 

Actual 

Classes  

 
COVID-19 Normal 

Viral 

Pneumonia 
Total 

COVID-19 202 4 2 208 

Normal 0 238 2 240 

Viral 

Pneumonia 
3 14 319 336 

Total 205 256 323 784 
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Table 8. Confusion matrix of test samples as predicted by ENS2 model. 

 

 Predicted Classes 

 

 

 

Actual 

Classes 

 
COVID-19 Normal 

Viral 

Pneumonia 

COVID-19 

   

Normal None 

  

Viral 

Pneumonia 

   
 

ENS2 model obtained a very high precision, recall, and as a result, a very high F-Score when predicting 

COVID-19 class. On the other hand, precision of Normal category is not as high as other metrics. When 

we examine the confusion matrix, we see that our ENS2 model misclassified some Viral Pneumonia 

images as Normal. This might be because, in some cases, the images from Normal class resemble the 

images from Viral Pneumonia class as seen in Figure 1. Additionally, we provide sample images from 

the test set as they were predicted by ENS2 model in Table 8 in a confusion matrix form. 

 

 

IV. CONCLUSION AND FUTURE DIRECTIONS 
 

In this study, we proposed several CNN models to predict whether a patient has the COVID-19 virus or 

not from chest X-ray images. We used transfer learning to fine tune a number of pre-trained ResNet, 

VGG, and Xception models, which are very well-known architectures due to their success in image 

processing tasks. We trained two ensemble learning models to include a variety of the base models in 

order to improve the classification accuracy. The best performing ensemble model was our ENS2 model 

that outperformed the other models with 97% accuracy on the three-class classification. We also show 

in this study that transfer learning is a highly effective way of creating deep learning models on new 

tasks.  

 

A major limitation of our study is that we had to use a limited number of X-ray images that depict 

COVID-19 infection. As a future work, we plan to make our model more accurate and reliable by 

collecting more images from both local and global public data sources. 

 

Entire system proposed in this study was based purely on medical images of patients. Despite the 

apparent success proved by our experiments, a better and more reliable system for diagnosing COVID-

19 and similar infections can possibly be developed by incorporating some other medical data of patients 

into the model.  
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